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Simple Summary: Tabanidae suck the blood of humans and animals, are important biological vectors
for the transmission of diseases, and are of considerable economic and medical significance. However,
current knowledge about the mitochondrial genome of this family is limited. Therefore, six newly
completed mitochondrial genomes of four genera of Tabanidae (Haematopota turkestanica, Chrysops
vanderwulpi, Chrysops dissectus, Tabanus chrysurus, Tabanus pleskei, and Hybomitra sp. species) were
sequenced and analyzed. The results show that the six newly mitochondrial genomes have quite
similar structures and features. Phylogeny was inferred by analyzing the 13 amino acid sequences
coded by mitochondrial genes of 22 mitogenomes (all available complete mitochondrial genomes
of tabanidae). Bayesian inference, maximum likelihood trees, and maximum parsimony inference
analyses all showed consistent results. This study supports the concept of monophyly of all groups,
ratifies the current taxonomic classification, and provides useful genetic markers for studying the
molecular ecology, systematics, and population genetics of Tabanidae.

Abstract: Tabanidae suck the blood of humans and animals, are important biological vectors for
the transmission of diseases, and are of considerable economic and medical significance. However,
current knowledge about the mitochondrial genome of this family is limited. More complete mito-
chondrial genomes of Tabanidae are essential for the identification and phylogeny. Therefore, this
study sequenced and analyzed six complete mitochondrial (mt) genome sequences of four genera of
Tabanidae for the first time. The complete mt genomes of the six new sequences are circular molecules
ranging from 15,851 to 16,107 base pairs (bp) in size, with AT content ranging from 75.64 to 77.91%.
The six complete mitochondrial genomes all consist of 13 protein-coding genes (PCGs), 2 riboso-
mal RNA genes (RRNA), 22 transfer RNA genes (tRNAs), and a control region, making a total of
37 functional subunits. ATT/ATG was the most common start codon, and the stop codon was TAA
of all PCGS. All tRNA except tRNA Ser1 had a typical clover structure. Phylogeny was inferred
by analyzing the 13 concatenated amino acid sequences of the 22 mt genomes. Bayesian inference,
maximum-likelihood trees, and maximum-parsimony inference analyses all showed consistent re-
sults. This study supports the concept of monophyly of all genus, ratifies the current taxonomic
classification, and provides effective genetic markers for molecular classification, systematics, and
genetic studies of Tabanidae.

Keywords: mitochondrial genome; Tabanidae; phylogenetic analyses; Chrysops; Haematopota; Tabanus

1. Introduction

Tabanidae is commonly known as the horsefly. Adult Tabanidae, whole metamor-
phosis insects, are stout, good flyers, and have scraping and licking mouthparts [1,2].
Brachycera are divided into over 20 families, with Tabanidae being one of the largest,
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comprising approximately 4455 species belonging to 144 genera [3,4]. Approximately
1300 species of Tabanidae belong to the genus Tabanus (subfamily Tabaninae: tribe Ta-
banini) [5]. Female horseflies bite and suck blood from humans and livestock, causing
atopic dermatitis or anemia, resulting in weight loss in livestock. They are also important
biological vectors for the transmission of several diseases, including trypanosomiasis, tu-
laremia, and anthrax. They threaten animal husbandry and public health security, which
has important significant economic and medical implications [6–9]. Different species may
transmit different diseases, thus the accurate study of parasite species is important for the
study of parasitic diseases, their prevention, and control methods.

Currently, Tabanidae species identification is based on morphological characteris-
tics [10,11]. However, the body color of samples changes during storage due to the variabil-
ity of physical characteristics, which leads to the false identification of tabanidae flies [12,13].
Hence, use of molecular identification methods can reduce the limitation of using only
morphological features.

DNA barcoding based on mitochondrial (mt) cox 1 gene sequences has been recog-
nized as a standard method for distinguishing various arthropod species [14,15], including
tabanid flies [1,5,12,13]. Mitochondrial genome sequences are effective and reliable molecu-
lar markers for evolutionary studies of parasites due to their strict maternal inheritance,
apparent lack of recombination, rapid evolutionary rate, and comparatively conserved
genomic structure. It is widely used in molecular epidemiology, phylogenetic, genetics
studies of different organisms, and so on [16,17]. The horsefly mitochondrial genomes
has a conserved structure following the Brachycera gene number and order, consisting of
13 protein–coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control
region, making a total of 37 functional subunits. [18–21]. Currently, there are many methods
to obtain the mitochondrial genome, such as second- and third-generation sequencing
platforms suitable for molecular biological research. However, current knowledge about the
mitochondrial genome of Tabanidae is limited, and species identification and classification
of Tabanidae is challenging [5,12]. Thus, it is crucial to acquire more mt genome information
on Tabanidae for their identification, epidemiology, and phylogeny. The identification of
the horsefly species has a direct impact on related research on horseflies [22].

Therefore, the objective of this study is to use next generation sequencing (NGS)
to sequence the complete mitogenome of Ha. turkestanica, C. vanderwulpi, C. dissectus,
T. chrysurus, T. pleskei, and Hy. sp. In order to investigate and to provide new genetic
markers for further study of taxonomic, systematics and genetics of Tabanidae, the obtained
mitogenomes were compared to all available complete mitochondrial genomes of tabanidae
in Brachycera.

2. Materials and Methods
2.1. Specimens and DNA Extraction

Field expeditions in Daqing, Heilongjiang Province, China (46◦71′ N, 124◦86′ E) were
performed to collect samples using the human attraction method. According to the exter-
nal morphological characteristics, dichotomous keys were used to identify the collected
representatives of Tabanidae (Figure 1) [11,23].

The samples were thoroughly washed three times in physiological saline [11,23], then
fixed in 75% (v/v) ethanol and stored at−80 ◦C until further use. TIANamp Genomic DNA
Kit (Tiangen) was used to extract insect cox 1 sequence and amplify the cox 1 sequence
by PCR for molecular identification, using forward and reverse primers (5′–ATT CAA
CCA ATC ATA AAG ATA TTG G–3′) and (5′–TAA ACT TCT GGA TGT CCA AAA AAT
CA–3′), respectively. The final PCR reaction mix (25 µL) consisted of 18.3 µL of distilled
water, 2.5 µL of 10× Ex Taq buffffer, 2 µL of dNTP mixture, 0.5 µL of each primer, 1 µL of
DNA template, and 0.2 µL of Ex Taq DNA polymerase. The PCR reaction mix, in 0.2 Ml
PCR tubes, was placed in a Takara TP600 thermocycler (TAKARA, Kusatsu, Japan) and
the following thermocycling conditions were used: 94 ◦C for 5 min (initial denaturation),
then 94 ◦C for 30 s (denaturation), 40 ◦C for 1 min (annealing), and 72 ◦C for 1 min/kb
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(extension) for 40 cycles, and a final extension at 72 ◦C for 10 min. The PCR products were
sent to Sangon Biotech Company (Shanghai, China) for sequencing in both directions using
the same primers.
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2.2. Construction of the Genomic Library and Sequencing

The standard Illumina TruSeq Nano DNA LT library Preparation Guide was used
to construct the required on-machine libraries. The main process was as follows (Kit:
TruSeqTM DNA Sample Prep Kit, San Diego, CA, USA): (1) DNA fragmentation: Covaris
is used to interrupt DNA and make it fragmented, and the target fragment is purified and
sorted by magnetic beads; (2) DNA double–end Repair: the DNA fragment with protruding
End was repaired by the joint action of 3‘–5’ exonuclease and polymerase in End Repair
Mix; (3) Introduction of “A” base at the 3‘end: introduction of A single base “A” at the
3’ end of the repaired and flat DNA fragment; The 3‘end of the joint contains A single base
“T”, so as to ensure that the DNA fragment and the joint can be connected by “A” and “T”
complementary pairing, and to prevent the DNA insertion fragments from connecting to
each other in the process of connecting the DNA fragment; (4) Connector connection: under
the action of ligase, the connector containing the tag is incubated with the DNA fragment
to make it connected; (5) Purification of ligation products: magnetic beads purify ligation
products to remove free and self–ligation sequence; (6) Verification library: quantitative
library using Pico Green; Agilent Bioanalyzer 2100 (State of California) was used for quality
control of PCR-enriched fragments to verify the size and distribution of DNA library
fragments; (7) Homogenized and mixed library: multiplexed DNA libraries (multiplexed
DNA libraries) homogenized to 10 nM after equal volume mixing; and (8) Sequencing: the
mixed library (10 nM) was gradually diluted and quantified to 4–5 pM before computer
sequencing. The raw data generated were transferred to a computer workstation for
analysis and genome characterization. In order to obtain high–quality sequences, FastQC
V.0.11.9 [24] software was used to verify the quality index of the data obtained, and Trim
Galore V.0.6.5 [25] software was used to remove the adaptation sequences. Finally, Fast QC
software was used for further quality inspection and data verification.
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2.3. Genomic Assembly

The obtained high-quality second-generation sequencing data were assembled from
scratch using A5–MISeq V20150522 [26] and SP Adesv3.9.0 [27] software, respectively.
For collinearity analysis, Mummerv3.1 software [28] was used to complete any Spaces
between contigs. The final mitochondrial gene sequences was obtained by Pilon V1.18 soft-
ware [29]. The assembled mt genomes were compared with the same genus in the
genebank (Haematopota vexativa Genbank ID: NC059934.1, Tabanus haysi Genbank ID:
MW182417.1, Atylotus miser Genbank ID: NC030000.1, Cydistomyia duplonotata Genbank ID:
DQ866052.1, Tabanus formosiensis Genbank ID: MW182416.1, and Tabanus amaenus Genbank
ID: MW182415.1) and were checked manually.

2.4. Annotation and Bioinformatics Analysis

The complete mitochondrial genome sequences obtained by splicing were uploaded
to MITOS Web for function annotation (http://mitos2.Bioinf.unileipzig.de/index.py ac-
cessed on 1 July 2022) [30]. TRNAscan–SE was used to identify the secondary structure of
tRNA (http://lowelab.ucsc.edu/tRNAscan--SE accessed on 1 July 2022) [31]. DNAStar
(V.5.0) was used to calculate the boundaries between genes of A + T, G + C and content,
AT–skew = (A − T)/(A + T) and GC–skew = (G − C)/(G + C) [32]. An online open read-
ing frame finder was used to analyze and translate PCGs (https://www.ncbi.nlm.nih.
gov/orffinder/ accessed on 1 July 2022). The relative synonymous codon usage (RSCU)
of PCGs was determined using the invertebrate mitochondrial genetic code of MEGA
X [33]. Comparisons in gene lengths and nucleotides were made between Ha. turkestanica,
C. vanderwulpi, C. dissectus, T. chrysurus, T. pleskei, and Hy. sp., all of which belong to
the Tabanidae family. Differences in the nucleotide and amino acid sequences were cal-
culated using the MEGAX software. Sliding window analysis was also used to estimate
nucleotide diversity (π) between the mitogenomes of Tabanidae species by overlapping at
25 bp intervals for every 200 bp and π was drew at the midpoint position. DnaSP software
(V.6) was used to compare the proportion of nonsynonymous (dN) and synonymous (dS)
substitutions (dN/dS) in the obtained sequences [34].

2.5. Phylogenetics Analysis

Concatenated amino acid sequences of the complete Ha. turkestanica, C. vanderwulpi,
C. dissectus, T. chrysurus, T. pleskei, and Hy. sp. mt genome were aligned with the corre-
sponding amino acid sequences of 15 horseflies from a suborder all available in GenBank,
with Anopheles sacharovi (MZ382545) as the outgroup. The MAFFT algorithm was used to
align all 13 PCGs of each sequence obtained in this study and GenBank database [35].

Phylogenetic relationships between the analyzed species were reconstructed using
three methods: BI, MP, andML. MrBayes 3.1 was used to reconstruct the BI tree, and
four independent Markov chain runs were performed for 1,000,000 metropolis–coupled
(MCMC) generations, sampling a tree every 100 generations. The first 25% (2500) of the
generated trees were omitted as burn-in, with the remaining trees being used to calculate
Bayesian posterior probabilities. Phylogenetic trees were visualized using the FigTree
software. MP methods were performed using the Fitch criterion (1000 bootstrap replicates)
within PAUP 4.0 Beta 10. The ML methods were performed using MEGA X software (https:
//www.megasoftware.net accessed on 1 July 2022), and bootstrapping was performed with
1000 replicates. Phylograms were drawn using FigTree (v. 1.42) [36].

The cox 1 sequences of the six horseflies in this study were compared with 31 horseflies
of five genera of Tabanidae in GenBank, using Rhamphomyia insignis as the outgroup
(KT225299.1). A phylogenetic evolutionary tree was constructed using the ML method, as
described above.

http://mitos2.Bioinf.unileipzig.de/index.py
http://lowelab.ucsc.edu/tRNAscan--SE
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.megasoftware.net
https://www.megasoftware.net
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3. Results and Discussion
3.1. Acquisition of Mitochondrion cox1 Genes

The specimens were identified as Ha. turkestanica, C. vanderwulpi, C. dissectus,
T. chrysurus, T. pleskei, and Hy. sp., which was verified by morphological characteris-
tics. Hy. sp. identification was not species-specific as only the genera was identified. The
amplified cox1 sequences were observed to be 93.5%, 93.8%, 96.2%, 95.62%, 96.48%, and
96.15% identical to the sequences of species available in GenBank (MT231188, OM991886,
OM991887, NC062705, NC062705, and MT410834), respectively. The cox 1 sequences of the
six horseflies in this study were compared with 31 horseflies of five genera of Tabanidae
in GenBank, using Rhamphomyia insignis as the outgroup (KT225299.1). A phylogenetic
tree was constructed using an ML analytical approach. The results of the phylogenetic
trees were consistent with those of the six branches. In this study, Hy. sp. was noted to
be in the same branch as Hybomitra astur; Hybomitra lurida, and Hybomitra bimaculata, all
belonging to the genus Hybomitra. Furthermore, T. pleskei and T. chrysurus were observed to
belong to the genus Tabanus and Ha. turkestanica was observed in the genus Haematopota.
The six horseflies of the genus Atylotus were noted to belong to the same branch and both
C. dissectus and C. vanderwulpi were located in the same branch as the horseflies of the genus
Chrysops (Figure 2). The results of cox 1 sequence-based evolution analysis were consistent
with the results of homology and morphology analyses, indicating that our identification
methods are accurate.
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3.2. mtDNA Features of Six Horseflies in This Study

Complete mitogenomes of Ha. turkestanica, C. vanderwulpi, C. dissectus, T. chrysurus,
T. pleskei, and Hy. sp. ranged from 15,851–16,107 bp in length, and were arranged in a
classic double-stranded circular DNA molecules. The complete mt genome of Hy. sp.
obtained in this study is the first of the genus Hybomitra. Detailed annotations of the mt
genomes of the six newly sequenced, including the position and length of each gene and
direction of the sequence, are reported in Figure 3.
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Figure 3. Structural representations of the six newly sequenced horseflies mitogenomes. The circle
represents the arrangement of PCGs, tRNAs, and rRNAs. Each tRNA is identified by a unique letter
abbreviation. ‘NCR’ indicates the non-coding region.

All mitogenomes comprised 13 PCGs (cox 1–3, nad 1–6, nad 4L, atp 6, atp 8, and
cyt b), 2 rRNA (rrn L and rrn S), 22 tRNAs and a control region, a total of 37 functional
subunits, organized along the N (forward) and J (reverse) strands (Table 1). It has the same
structure as other horseflies. Each of the six newly sequenced mitochondrial genomes had
one or only one control region, ranging in length from 946 to 1122 bp. The control region
contains a large number of AT–rich regions and repeats, which have been shown to be the
main reason for the failure of PCR amplification and Sanger sequencing of complete split
genomes in invertebrates [37,38].

The sequences of this study were compared with those of Diptera families, and
the results showed that the six newly sequenced horseflies had the same gene order
as Tanbanidae, Athericidae, and Rhagionidae species are all from Brachycera, but were
different from the Culicidae, Sciaridae, and Trichoceridae species all from Nematocera.
Tabanidae mitochondrial genomes are conserved and characterized by the sequence in
Diptera. In their mt genome, 23 genes were located on the plus strand, and the remaining
14 genes were located on the minus strand (Figure S1) [18–21].

In this study, the AT content of the mt mitochondrial genomes were ranging from
75.64 to 77.91%, which are similar to the putative characteristics of previously reported
Tabanidae mt genomes, including Ha. vexativa 77.75%, T. haysi 77.77%, and A. miser
77.65% [39–41]. The AT skew of these newly sequenced mitogenomes ranged from
−0.01 (Ha. turkestanica) to 0.01 (C. vanderwulpi), and the GC-skew ranged from −0.21
(Ha. turkestanica) to −0.17 (Figure 4). There is a clear stand bias exists in their mt genomes,
as is other Dipteran mt genomes [39].
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Table 1. Mitochondrial genome organization of Hybomitra sp., Haematopota turkestanica, Chrysops vanderwulpi, Chrysops dissectus, Tabanus chrysurus, and Tabanus pleskei.

Genes Strand

Position and nt Sequence Length (bp)
Initiation

Codon
Stop

Codon Anticodon
Hybomitra sp. Haematopota

turkestanica
Chrysops

vanderwulpi Chrysops dissectus Tabanus chrysurus Tabanus
pleskei

trnI N 1–66 (66) 1–66 (66) 1–67 (67) 1–67 (67) 1–66 (66) 1–66 (66) GAT
trnQ J 68–136 (69) 64–132 (69) 65–133 (69) 65–133 (69) 67–135 (69) 67–135 (69) TTG
trnM N 149–218 (70) 141–210 (70) 152–220 (69) 138–206 (69) 146–215 (70) 146–215 (70) CAT
nad2 N 219–1250 (1032) 211–1242 (1032) 221–1252 (1032) 207–1238 (1032) 216–1247 (1032) 216–1247 (1032) ATT TAA
trnW N 1249–1317 (69) 1241–1309 (69) 1256–1324 (69) 1242–1310 (69) 1247–1316 (70) 1247–1316 (70) TCA
trnC J 1310–1373 (64) 1302–1369 (68) 1317–1379 (63) 1303–1367 (65) 1309–1373 (65) 1309–1373 (65) GCA
trnY J 1376–1442 (67) 1375–1441 (67) 1389–1456 (68) 1377–1444 (68) 1375–1441 (67) 1375–1441 (67) GTA
cox1 N 1477–2982 (1506) 1476–2981 (1506) 1491–2900 (1500) 1479–2978 (1500) 1476–2981 (1506) 1476–2981 (1506) ATT TAA
trnL2 N 2978–3043 (66) 2977–3042 (66) 2995–3060 (66) 2983–3048 (66) 2977–3042 (66) 2977–3042 (66) TAA
cox2 N 3045–3732 (688) 3044–3731 (688) 3062–3748 (687) 3050–3736 (687) 3044–3731 (688) 3044–3731 (688) ATG T(AA)
trnK N 3733–3803 (71) 3732–3802 (71) 3750–3820 (71) 3738–3808 (71) 3732–3802 (71) 3732–3802 (71) CTT
trnD N 3805–3871 (67) 3805–3871 (67) 3820–3887 (68) 3813–3881 (69) 3811–3877 (67) 3807–3873 (67) GTC

atp8 N 3872–4033 (162) 3872–4033 (162) 3888–4049 (162) 3882–4043 (162) 3878–4039 (162) 3874–4035 (162) ATT/
ATC TAA

atp6 N 4027–4704 (678) 4027–4704 (678) 4043–4720 (678) 4037–4714 (678) 4033–4710 (678) 4029–4706 (678) ATG TAA

cox3 N 4704–5492 (789) 4704–5492 (789) 4720–5508 (789) 4714–5502 (789) 4710–5498 (789) 4706–5494 (789) ATG TAA/
TAG

trnG N 5495–5560 (66) 5495–5560 (66) 5510–5575 (66) 5504–5569 (66) 5501–5566 (66) 5497–5562 (66) TCC

nad3 N 5558–5914 (357) 5561–5914 (354) 5576–5929 (354) 5570–5923 (354) 5567–5920 (354) 5563–5916 (354) ATA/
ATT TAA

trnA N 5918–5984 (67) 5918–5984 (67) 5935–6001 (67) 5929–5995 (67) 5924–5990 (67) 5920–5986 (67) TGC
trnR N 5984–6047 (64) 5984–6047 (64) 6001–6065 (65) 5995–6059 (65) 5990–6053 (64) 5986–6049 (64) TCG
trnN N 6050–6115 (66) 6050–6115 (66) 6066–6134 (69) 6062–6127 (66) 6056–6121 (66) 6052–6118 (67) GTT
trnS1 N 6116–6182 (67) 6116–6182 (67) 6135–6201 (67) 6128–6194 (67) 6122–6188 (67) 6119–6185 (67) GCT
trnE N 6183–6249 (67) 6183–6249 (67) 6203–6268 (66) 6198–6263 (66) 6189–6255 (67) 6186–6252 (67) TTC
trnF J 6266–6333 (68) 6266–6333 (68) 6285–6351 (67) 6280–6347 (68) 6272–6339 (68) 6269–6336 (68) GAA

nad5 J 6334–8068 (1735) 6334–8068 (1735) 6351–8087 (1737) 6347–8083 (1737) 6340–8074 (1735) 6337–8071 (1735) GTG/
ATT T(AA)
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Table 1. Cont.

Genes Strand

Position and nt Sequence Length (bp)
Initiation

Codon
Stop

Codon Anticodon
Hybomitra sp. Haematopota

turkestanica
Chrysops

vanderwulpi Chrysops dissectus Tabanus chrysurus Tabanus
pleskei

trnH J 8069–8135 (67) 8069–8135 (67) 8088–8154 (67) 8084–8150 (67) 8075–8141 (67) 8072–8138 (67) GTG
nad4 J 8136–9474 (1339) 8135–9475 (1341) 8155–9493 (1339) 8151–9489(1339) 8141–9480 (1340) 8138–9477 (1340) ATG T(AA)
nad4L J 9468–9764 (297) 9469–9765 (297) 9487–9783 (297) 9483–9779 (297) 9474–9770 (297) 9471–9767 (297) ATG TAA
trnT N 9767–9831 (65) 9768–9832 (65) 9786–9851 (66) 9782–9847 (66) 9773–9837 (65) 9770–9834 (65) TGT
trnP J 9832–9897 (66) 9833–9898 (66) 9852–9917 (66) 9848–9913 (66) 9838–9903 (66) 9835–9900 (66) TGG

nad6 N 9900–10,424 (525) 9901–10,425 (525) 9920–10,441 (522) 9916–10,440 (525) 9906–10,430 (525) 9903–10,427 (525) ATT/
ATA TAA

cytb N 10,429–11,565 (1137) 10,430–11,566 (1137) 10,449–11,585 (1137) 10,448–11,584 (1137) 10,434–11,570 (1137) 10,431–11,567 (1137) ATG TAG/
TAA

trnS2 N 11,564–11,631 (68) 11,565–11,632 (68) 11,599–11,668 (70) 11,595–11,664 (70) 11,569–11,636 (68) 11,570–11,637 (68) TGA/TCA

nad1 J 11,638–12,595 (958) 11,639–12,596 (958) 11,601–12,632 (1032) 11,672–12,628(957) 11,643–12,600 (958) 11,644–12,601 (958)
ATA/
TTG/
ATG

TAA

trnL1 J 12,597–12,661 (65) 12,598–12,662 (65) 12,634–12,697 (64) 12,630–12,693 (64) 12,602–12,665 (64) 12,603–12,666 (64) TAG/TGA
rrnL J 12,675–13,970 (1296) 12,675–13,967 (1293) 12,675–14,002 (1328) 12,671–13,997 (1327) 12,677–13,974 (1298) 12,644–13,975 (1332)
trnV J 13,995–14,066 (72) 13,995–14,066 (72) 14,030–14,101 (72) 14,025–14,096 (72) 13,999–14,070 (72) 14,000–14,071 (72) TAC
rrnS J 14,066–14,859 (794) 14,066–14,863 (789) 14,101–14,895 (795) 14,096–14,887 (792) 14,070–14,865 (796) 14,071–14,866 (796)
AT N 14,860–15,851 (992) 14,864–15,893 (1030) 14,896–16,017 (1122) 14,888–15,833 (946) 14,866–15,853 (988) 14,867–15,856 (990)
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3.3. Characteristics of Protein–Coding Genes (PCGs)

The genomes had 13 PCGs, with lengths ranging from 11,043 to 11,289 bp (AT%
content ranging from 75.68 to 77.03%). The 13 subunits that are commonly reported in other
Dipteran mitogenomes are: nad 5 > cox 1 > nad 4 > cyt b > nad 2 > nad 1 > cox 3 > cox 2 >
atp 6 > nad 6 > nad 3 > nad 4L > atp 8 [18,40]. Of all the obtained mitochondrial genomes,
9 PCGs showed transcription on the plus strand (N): nad 2, cox 1, cox 2, atp 8, atp 6, cox 3,
nad 3, nad 6, and cyt b, with the remaining genes exhibiting a sense of transcription on the
reverse strand (J): nad 5, nad 4, nad 4L, and nad 1.

All 13 PCGs (except Hy. sp. and C. vanderwulpi for nad 5 with GTG) used ATN as the
start codon, with ATG being the most frequently used (cox 2, atp 6, cox 3, nad 4, nad 4L, and
cyt b), followed by ATT (nad 2, cox1, atp 8, and nad 3). All genes used TAA as the standard
stop codon (except T. chrysurus and T. pleskei for nad 5, T. chrysurus for cytb, Ha. turkestanica
for cox3 and nad 6 using TAG as stop codon) (Table 1). The canonical start codons most
commonly used for invertebrate mitogenomes are ATN, TTG, GTT, and GTG. Generally,
horsefly PCGs use ATN as the start codon, whereas the nad 5 gene in some species use
GTG as the start codon, which is considered common across various organisms [17,42,43].

The overall codon usage, RSCU, used in all 13 PCGs, was presented. The most
common amino acids were leucine (8.98–16.14%), serine (9.03–13.25%), and phenylalanine
(8.92–12.76%), and the amino acids with low representation were His (1.08–2.20%), Arg
(0.84–1.49%), and Asp (0.97–1.94%). The relative synonymous codon usage (RSCU) showed
similar codon usage to the CUB analysis (Figure 5). Codons ending with A or U were more
frequently used than codons ending with CG or GC, which is a common feature noted in
several dipteran insects [41].
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3.4. Analysis of the RNA (2 rRNAs and 22 tRNAs)

The location of the two ribosomal RNA genes (rRNAs, rrn L and rrn S) are conserved in
all mitogenomes, with rrn L being flanked by trn L1 and trn V, and rrn S being flanked by the
trn V- and AT-rich regions. The AT content was similar, despite almost all species belonging
to different genera. Individually, the variation in length of the six rRNAs was minimal. The
large subunit of mt RNA of the six horseflies varied from 1293 bp in Ha. vexativa to 1332 bp
in T. pleskei, and the small subunit was 789 bp long in Ha. vexativa and 796 bp in Tabanus spp.
mitogenome. These values were similar to those of previous horsefly mitogenome studies.

The total length of the 22 tRNAs ranged from 2076 to 2444 bp in the six newly se-
quenced mt genomes, and the individual gene lengths varied from 64 to 72 bp (Table 1).
All six horseflies characteristically lacked a DHU arm. The lack of a DHU arm was ob-
served in trnS1 of several other metazoans [44], including tabanid flies [23]. The most
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common nucleotide mismatch was G–U, followed by U–U, which plays an important role
in maintaining the stability of tRNA secondary structure (Figure S2).

3.5. Evolutive Analysis

In genetics, dN/dS represents the ratio between non-synonymous (dN) and synony-
mous replacement rates (dS). This ratio determines whether there is selection pressure on
the protein-coding gene. The corresponding sequences of each PCG in the studied species
were paired based on observations of non-synonymous and synonymous replacement rates
(dN/dS). The results are shown in two images. The results obtained indicated that the
different regions evaluated are evolving globally under the effect of negative pressure, with
dN/dS values < 1 and with ratios ranging from cox 1 (0.02 to 0.06) to atp 8 (0.12 to 0.36).
Thus, the order of influence of evolutionary pressure was depicted according to the aver-
ages obtained: cox 1 < atp 6 < cyt b < cox 3 < cox 2 < nad 3 < nad 1 < nad 4 < nad 4L <
nad 2 < nad 5 < nad 6 < atp 8 (Figure 6). In addition, as reported in other studies, PCGs
belonging to mitochondrial complexes III and IV had strong purification pressures and
PCGs belonging to the complex I region were weaker. Although the dN/dS rates of atp
8 and nad 6 were < 1, there were signs of weak purification pressure and transient positive
evolutionary pressure [16,45,46].
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Three additional analyses were performed to assess π among the mitochondrial se-
quences obtained in this study and other horsefly sequences of Tabanidae. Only one mi-
tochondrial whole genome sequence was found in Hybomitra, and thus the nucleotide di-
versity analysis of Hybomitra could not be performed. The first analysis evaluated the π 
among mitochondrial sequences of horseflies belonging to the genera of Tabanus, the sec-
ond analysis evaluated the π belonging to the Chrysops, and the third analysis evaluated 
the π belonging to the Haematopota. Figure 7 showed the values of π, considering the 
groups of evaluated sequences. The π values ranged from 0.01 to 0.12 in Tabanus (red line), 

Figure 6. Proportions between rates of non-synonymous (dN) and synonymous (dS) nucleotide sub-
stitutions (dN/dS). (A) Bar chart of the pairwise proportions of dN/dS for each of the mitochondrial
subunits of the investigated species. (B) Box chart illustrating the averages for pairwise proportions
of dN/dS for each of the mitochondrial subunits of the investigated species. The dN/dS ratios are
plotted on the y-axis, and the PCGs are plotted on the x-axis.

Three additional analyses were performed to assess π among the mitochondrial se-
quences obtained in this study and other horsefly sequences of Tabanidae. Only one
mitochondrial whole genome sequence was found in Hybomitra, and thus the nucleotide
diversity analysis of Hybomitra could not be performed. The first analysis evaluated the
π among mitochondrial sequences of horseflies belonging to the genera of Tabanus, the
second analysis evaluated the π belonging to the Chrysops, and the third analysis evaluated
the π belonging to the Haematopota. Figure 7 showed the values of π, considering the
groups of evaluated sequences. The π values ranged from 0.01 to 0.12 in Tabanus (red
line), 0.01 to 0.12 in Chrysops (green line); 0.00 to 0.11 in Haematopota (blue line) (Figure 7).
The concatenated sequences revealed that the lowest nucleotide diversity was observed
in nad 1 in Tabanus; Chrysops and Haematopota. The nad 2, nad 6, and cytb showed higher
nucleotide diversity in all three data sets [41].
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Figure 7. Nucleotide diversity (π) among the obtained mitogenomes in this study.

The red lines indicate π values based on the evaluation of sequences from Tabanus
genu, including Tabanus chrysurus and Tabanus pleskei. Green lines indicate π values based
on the evaluation of sequences from the genus Chrysops, including Chrysops dissectus and
Chrysops vanderwulpi. Blue lines indicate π values based on the evaluation of sequences from
Haematopota genus, including Haematopota turkestanica and Haematopota vexativa. Values
were calculated from a 200–bp sliding window analysis of 25 bp steps and plotted on the
y-axis, and the length of the sequence was plotted on the x-axis.

3.6. Phylogenetic Analyses

Phylogenetic analyses of the amino acid concatenated coding regions were aligned
using the 13 PCGs from 22 taxa (six from this study, the remaining from the GenBank
database) using three analytical approaches (BI, MP, and ML). All the methods produced
nearly identical tree topologies (Figure 8). A monophyletic large group included 21 taxa
corresponding to the suborder Brachycera, with Anopheles sacharovi (Diptera: Culicidae)
serving as the outgroup. The suborder Brachycera presented a topology with two well-
supported clades, with the top clade corresponding to the subfamilies Tabanomorpha and
the lower clades corresponding to Muscomorpha and Stratiomyomorpha. The Tabanomor-
pha clade, contained 13 species (including the six gadflies sequenced in this study), and
five subclades, representing the genera Chrysops, Haematopota, Tabanus, Hybomitra, and
Atylotus, were recovered as a sister group to the Tabanidae tribe, as previously indicated.
The phylogenetic trees revealed that C. dissectus and C. vanderwulpi belonged to the genus
Chrysops in the same clades as Chrysops silvifacies; Ha. turkestanica and Ha. vexativa belonged
to the genus Haematopota in the same clade; T. chrysurus, in the same clade as T. pleskei,
belonged to the genus Tabanus. Hy. sp., and T. haysi were closely related in the same clade,
followed by A. miser.
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Fu et al. (2021) reported that ML and BI phylogenies showed nonmonophyletic
relationships among species of Tabanus and/or Atylotus, where A. miser clustered with
T. formosiensis, while Tabanus did not form a single clade. Previous phylogenetic analyses
of the nuclear and mitochondrial genomes based on conventional barcoding have also
suggested paraphyletism in the genera Tabanus and/or Atylotus [1,5,47,48].

The evolutionary tree constructed in this study showed that Hy. sp. and T. haysi were
in the same branch. The evolutionary tree constructed with the cox 1 sequence showed
that Hy. sp. was in the same branch as Hybomitra astur; Hybomitra lurida, and Hybomitra
bimaculata, and they all belong to the genus Hybomitra. However, T. haysi was in the genus
Tabanus, with each genus having its own separate branch, which was consistent with the
method of using cox 1 as molecular marker.

Therefore, it is considered that such classification results can be formed because
there was only one sequence of Hybomitra in this study, which is the first reported for the
genera. Therefore, Hy. sp. was in the same clade as T. haysi, suggesting that phylogenetic
analysis using only 21 protein-coding sequences of these species is not representative
of the 4455 clades of these species. The evolutionary relationship between the genera
Atylotus and Hybomitra within Tabanidae remains unclear, owing to the scarcity of complete
mitogenome sequences. Due to its higher mutation rate, mt DNA is generally more prone to
saturation than the nuclear genome. Thus, in order for a more accurate and comprehensive
analysis of the classification and evolution of horseflies, it is necessary to sequence more
mitogenomes of horseflies and include them in future analyses to solve the problem of
horsefly classification, as complete mitochondrial genome sequences have been shown to
resolve the phylogenetic relationships of many other surface parasites [49–52].

4. Conclusions

In this study, we first determined the complete mitochondrial genomes of six horseflies,
and secondly, the mitochondrial genomes characteristics and phylogenetic analysis of six
newly sequenced were carried out. All mitogenomes evaluated were similar to the mtDNA
molecular pattern for the Tabanidae family: 37 subunits were subdivided into 13 PCGs,
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22 tRNAs, 2 rRNAs, and a control region. All tRNAs had a typical leaf clover structure,
except tRNA Ser 1. The three analysis methods, BI, MP, and ML, yielded similar topologies.
Our mitogenomes phylogenetic analysis supports the paraphyly of genus Tabanus; Chrysops
and Haematopota. Only 21 sequences of these species is not representative of the whole
family Tabanidae. Due to a lack of complete genome sequence, Hybomitra and Atylotus
genera evolutionary relationship are unclear. Thus, in order for a more accurate and
comprehensive analysis of the classification and evolution of horseflies, it is necessary to
sequence more mitogenomes of horseflies to solve the problem of horsefly classification
to enrich the knowledge of their molecular aspects. These findings provide new genetic
markers for further studies of taxonomic, systematics, and genetics of Tabanidae.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects13080695/s1. Figure S1: Comparison of linearized mitogenomes of Diptera species.
The tRNA genes are shown by a single-letter code of corresponding amino acids. Newly sequenced
mitogenomes are indicated in bold. Asterisks indicate the incomplete mitogenomes. Figure S2:
Secondary structures of tRNAs of Hybomitra sp.; Chrysops vanderwulpi; Haematopota turkestanica;
Chrysops dissectus; Tabanus chrysurus; and Tabanus pleskei.
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