insects

Article

Use of Thymol in Nosema ceranae Control and Health
Improvement of Infected Honey Bees

Uros Glavinic 1'*

, Jovan Blagojevic

1(0, Marko Ristanic !, Jevrosima Stevanovic 1), Nada Lakic 2,

Milorad Mirilovic 3 and Zoran Stanimirovic !

check for
updates

Citation: Glavinic, U.; Blagojevic, J.;
Ristanic, M.; Stevanovic, J.; Lakic, N.;
Mirilovic, M.; Stanimirovic, Z. Use of
Thymol in Nosema ceranae Control
and Health Improvement of Infected
Honey Bees. Insects 2022, 13, 574.
https://doi.org/10.3390/
insects13070574

Received: 9 May 2022
Accepted: 20 June 2022
Published: 24 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Biology, Faculty of Veterinary Medicine—University of Belgrade, Bul. Oslobodjenja 18,
11000 Belgrade, Serbia; jovan.blagojevic95@gmail.com (J.B.); mristanic@vet.bg.ac.rs (M.R.);
rocky@vet.bg.ac.rs (J.S.); zoran@vet.bg.ac.rs (Z.S.)

Department of Statistics, Faculty of Agriculture—University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
nlakic@agrif.bg.ac.rs

Department of Economics and Statistics, Faculty of Veterinary Medicine—University of Belgrade,

Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; mija@vet.bg.ac.rs

Correspondence: uglavinic@vet.bg.ac.rs

Simple Summary: In the European Union, there is no registered product for the control of the honey
bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The
aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived
from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects
(increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the
spore loads in Nosema-infected bees. However, when applied to Noserma-free bees, thymol caused
certain health disorders; therefore, beekeepers should be careful with its use.

Abstract: Nosema ceranae is the most widespread microsporidian species which infects the honey
bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive
and reproductive capacities. The only registered product for its control is the antibiotic fumagillin;
however, in the European Union, there is no formulation registered for use in beekeeping. Thymol
(3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has
been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol
supplementation on the expression of immune-related genes and the parameters of oxidative stress
and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae.
The results reveal mostly positive effects of thymol on health (increasing levels of immune-related
genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied
to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects
in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could
cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation
of some immune-related gene expressions), showing that one should be careful with preventive,
uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this
phytogenic supplement on the immunity of uninfected bees.

Keywords: honey bee; Nosema ceranae; thymol; oxidative stress; immune-related gene expression

1. Introduction

Nosemosis is a honey bee disease caused by microsporidia from the genus Noserma
(N. apis and N. ceranae). It is the most widespread microsporidian infection of adult Apis
mellifera individuals that leads to chronic infection, the weakening of honey bee colonies [1],
and the decline of their productive and reproductive capacities [2—4].

This endoparasite survives in the infected colony throughout the year and reaches its
maximum number before the end of winter and in early spring [5,6]. Diseased bees excrete
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a large amount of infectious agent in their feces, which easily reaches uninfected bees. In
intensive beekeeping, forager bees have high metabolic requirements, which further poten-
tiates the development of nutritional and energy stress [1,7]. The only registered product for
nosemosis is the antibiotic fumagillin; however, in the European Union, there is no formu-
lation registered for use in beekeeping [8-10]. The tendency to reduce the use of antibiotics
in beekeeping has led to the continual search for natural alternatives in the treatment of
diseases such as nosemosis, reviewed in [11] including dietary supplements [12-22].

Similar to Varroa ectoparasite control [23,24], organic chemicals or natural-based
treatments are welcomed for Nosema treatment [25-27]. Thymol (3-hydroxy-p-cymene) is a
natural compound as it is a component of essential oil, derived from Thymus vulgaris L.,
Lamiaceae, and many other plant species. The inhibitory effect of thymol on the growth
of pathogenic bacteria and fungi, such as Escherichia coli, Streptococcus spp., Salmonella
typhimurium, Staphylococcus aureus, Aspergillus flavus, and Cryptococcus neoformans, has been
known for many years [28,29]. In beekeeping, thymol has been used for decades to control
the honey bee mite Varroa destructor [30,31] with variable success [32]. The first studies of
the potential effect of thymol in the control of Noserma infection in the hive were performed
at the beginning of the 21st century [33,34], but to date, the anti-Nosema potential and effect
of thymol on Nosema have not been fully elucidated. It was assumed that the mechanism of
thymol action is based on penetration into the Nosema spore, interfering with the plasma
membrane and preventing spore germination [28,33]. Thymol can be found naturally
in low concentrations in honey [35,36], and it was thought not to leave residues in bee
products [37]. However, recent studies revealed residues of thymol in honey [38] and
beeswax [38,39].

Thymol is thought to interfere with the GABA signaling pathway in the central
nervous system of insects [40], and there is therefore a legitimate concern that thymol also
affects bees [41]. In addition, in a study by Bergougnoux et al. [42], thymol negatively
affected the phototactic behavior of bees. Boncristiani et al. [43] reported that thymol had
increased the susceptibility of bees to N. ceranae infection through the reduced expression
of the Dscam and Basket genes, which are significant cellular and humoral immune factors,
respectively, in defending bees from parasites [44,45]. In several studies, treatment with
thymol (orally or topically) did not induce toxic effects on bees [42,46,47], and bees even
lived longer compared with the control [47]. These data together with earlier observations
on the low toxicity of thymol [48], as well as its importance for beekeeping, led to thymol’s
approval by the European Union [49] for the control of the honey bee mite V. destructor in
conventional and organic beekeeping [28,37].

An infection with N. ceranae induces oxidative stress in bees and compromises their
immunity [13-16], particularly in combination with pesticides [50,51]. Thus, it could
be important to identify the effects of a thymol-enriched diet on the biochemical and
transcription levels of Nosema-infected bees. The aim of this study was to investigate the
effect of thymol supplementation on bees’ spore loads, their expression of immune-related
genes, and the parameters of oxidative stress, as well as the survival of bees infected with
microsporidia N. ceranae.

2. Materials and Methods
2.1. Bees and Experimental Design

Colonies of Apis mellifera bees used as a bee brood source were located at the apiary
of the Faculty of Veterinary Medicine, University of Belgrade. In accordance with good
beekeeping practice, all colonies were without clinical symptoms of either adult bee diseases
or brood diseases. The Varroa infestation was maintained at a minimum level, following the
recommendations of the COLOSS BEEBOOK [52]. A sealed brood (prior to emergence) was
taken from five randomly selected hives. The frames were placed in net bags to keep any
emerging bees on the frame and left overnight in an incubator under controlled conditions
(temperature 34 + 1 °C, and humidity 66 £ 1%). After 12 h, the emerged bees were collected
and placed randomly in cages that were specially designed for this purpose, following
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the method described by Glavinic et al. [13]. Each cage contained 80 randomly selected
bees (15 for the RNA extraction, 15 for the analyses of oxidative stress, and 30 for counting
Nosema spores, while the remaining 20 bees were used for survival monitoring). According
to the experimental design (Table 1), the cages (experimental units) were divided into
six experimental groups: bees in the non-infected control (NI), bees infected with N. ceranae
(infected control—I), bees treated with thymol (treatment control—T), and three treatment
groups—all infected with Nosema and treated with thymol from the first, third, and sixth
day (I-T1, I-T3, and I-T6, respectively). The whole experiment was repeated, and the results
were merged into a single dataset.

Table 1. Experimental design.

Group ! Initial Treatment Day 2 In flz 'thif;‘:'gaey 2 Sampling Day >
NI - - 6 9 15
I - 3 6 9 15
T 1 - 6 9 15
I-T1 1 3 6 9 15
I-T3 3 3 6 9 15
I-T6 6 3 - 9 15

1 Bees were either non-infected (NI) or infected with N. ceranae (I) and treated with thymol (T). 2 Days after
bee emergence.

The bees were fed ad libitum with 50% (w/v) sucrose solution. The tested substance
was thymol (Sigma-Aldrich, St. Louis, MO, USA, CAS 89-83-8). The feeding solution was
prepared in a concentration of 0.1 mg/g (0.1 g/kg) of syrup, according to Costa et al. [47].
The syrup volume was measured before and after the bees had been fed for 24 h to ascertain
syrup consumption [16]. Further, the average consumption per bee per day was calculated.
The dead bees were removed from cages daily, and the number of dead bees per cage
was recorded.

2.2. Experimental Infection with N. ceranae Spores

On the third day of the experiment, the bees from the infected control group (I) and
the treatment groups (I-T1, I-T3, and I-T6) were infected according to the experimental
design (Table 1), with inoculum freshly prepared according to a previously published
procedure [15]. The final concentration of inoculum was 1 x 10° spores/mL, while the
presence of N. ceranae and absence of N. apis was confirmed by species-specific PCR tests [53].
The food was removed from the cages two hours before the infection was performed, in
order to starve the bees and ensure better consumption of the inoculum.

2.3. Counting of Nosema Spores

The number of spores per bee was estimated according to the methodology adopted
by Glavinic et al. [13]. Briefly, the abdomen of a single bee was placed in a 1.5 mL tube with
1 mL of dH,O and homogenate in TissueLyser II (Qiagen, Germany) for 1 min at 25 Hz.
The suspension was observed using a hemocytometer according to the OIE guidelines [54].

2.4. Gene Expression Analyses

RNA was extracted from five bees from each cage, using a Quick-RNA MiniPrep Kit
(Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. For cDNA
synthesis, 1000 ng of RNA per sample were reverse-transcribed using the RevertAid™ First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Vilnius, Lithuania).

The expression levels of abaecin, hymenoptaecin, defensin, apidaecin, and vitellogenin
(immune-related genes) were determined by the methodology described in our previous
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studies [15,16]. The 2°99Ct method was used, while [-actin was an internal control gene [55].
The median value of the non-infected group served as a calibrator.

2.5. Oxidative Stress Analyses

The spectrophotometric analyses described in our previous study [15] were used
for oxidative stress-parameter measurements: activities of the antioxidative enzymes
superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and the
concentrations of malondialdehyde (MDA). Pools of five bees collected from every cage on
each sampling day (6, 9, and 15) were used and analyzed on a UV /VIS Spectrophotometer
BK-36 5390 (Biobase Jinan, Shandong, China,).

2.6. Statistical Analyses

The Kaplan—Meier survival function was used for the survival dynamic presentation.
To compare the difference in survival between two or more independent groups, a log-rank
test was used. To ensure heterogeneity of the data for gene expression levels and spore
loads, we used the Mann—-Whitney U test in order to determine the significance of the
difference between medians of two samples. We used ANOVA to maintain homogeneity
of the oxidative stress data when determining the significance in the differences between
three or more means. Moreover, the Tukey’s test was used to test the difference between
the means of sample pairs.

All conclusions were made by comparing the level of significance of the realized value
of the sample test statistics, p, with standard levels of significance, 0.05 and 0.01.

The statistical analyses of the results were done with Statistica Software (StatSoft Inc.,
Tulsa, OK, USA).

3. Results and Discussion

Nosema ceranae infection induced significant bee mortality (p = 0.008) in the infected
control (I) group compared with the non-infected control (NI) group, confirming a negative
impact of Nosema infection on bees’” lifespan [13-16]. When simultaneously analyzing the
number of dead bees in the control group I and in all the thymol-treated groups, the log-
rank test found an absence of significant differences (x> = 5.173; p = 0.270). Furthermore, the
log-rank test for the two groups revealed the absence of statistically significant differences
in the number of dead bees between control group I and each group treated with thymol
(p > 0.126) (Figure 1). The same Nosema- and thymol-induced mortality was reported by
Maistrello et al. [28]. Bee mortality induced with thymol could be explained by the toxic
potential of thyme essential oils being classified as a moderately toxic product [28]. On the
other hand, in this experiment (Figure 1), there was no significant differences (log-rank test:
x? = 3.048; p = 0.550) observed in the survival dynamic of the control group NI and groups
treated with thymol. The number of dead bees between the control group NI and each
group treated with thymol was not statistically significantly different (p > 0.095). This result
is in accordance with those of Ebert et al. [46], Costa et al. [47], and Bergougnoux et al. [42],
who found that thymol was not toxic to bees. Nevertheless, according to EU Regulation
834/2007 on organic production [49], thymol is authorized for use in Varroa control in
organic beekeeping. Keeping in mind that the presence of V. destructor reduces the potential
of bees to combat N. ceranae [56], a great advantage of thymol could be its potential to
control both pathogens.

According to the Mann-Whitney U test, no significant differences (p > 0.05) between
the control group I and groups infected and treated with thymol (I-T1, I-T3, and I-T6)
were noticed in the number of Nosema spores in bees collected on day 9 (semi-logarithmic
diagram, Figure 2). On day 15, the number of spores were significantly higher (p < 0.01),
and the numbers varied between the experimental groups from 0.2 to 2 x 10°/bee (semi-
logarithmic diagram, Figure 2), which is similar to some previous studies [15,16,47,57,58]. A
significantly higher (p < 0.001) Nosema spore load was detected in the infected control group
compared with bees collected on day 15 from the I-T1, I-T3, and I-T6 groups. This difference
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could be due to thymol’s inhibitory effect on Nosema development, which resulted in lower
Nosema spore loads in the latter stages of the experiment. Maistrello et al. [28] assumed that
the mechanism of thymol’s anti-Noserma effect is based on its interaction with the Nosema
spore by interfering with the plasma membrane and preventing spore germination [28,33].
Similar to our results, Costa et al. [47] detected significantly lower Nosema spore loads in
bees supplemented with thymol, while Van den Heever et al. [59] reported that thymol
decreased spore load by 40%. Keeping in mind the described effects of thymol consumption,
especially its potential in Noserma control, we further investigated its impact on immune-
related genes and the oxidative stress in bees infected with Noserma.
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Figure 1. Survival curves of bees from control groups and from groups treated with thymol. Group
infected with N. ceranae (I), group that was non-infected but treated with thymol (T), groups infected
with N. ceranae and treated with thymol from day 1 (I-T1), day 3 (I-T3), and day 6 (I-T6), and
non-infected (NI) group.
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Figure 2. N. ceranae spore loads on day 9 and day 15 in bees from the control group and from groups
infected and treated with thymol. Group infected with N. ceranae (I) and groups infected with N.
ceranae and treated with thymol from day 1 (I-T1), day 3 (I-T3), and day 6 (I-T6).
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The expression levels of the abaecin gene on day 9 were significantly higher in the
infected (I) group (Mann-Whitney U test: p < 0.012) compared with all groups treated with
thymol (Figure 3 and Figure S1). Therefore, thymol decreased abaecin’s gene expression
more than the Nosema infection, which is in accordance with findings of Maistrello et al. [28]
and Costa et al. [47], who identified that thymol worked best after longer usage (at the end
of the experiment), contrary to Noserma whose negative effects increased over time [13,47].
Moreover, the oxidative stress parameters were inconsistent and without a clear pattern
(Figure 4) in bees collected on day 9, which is in line with the detected number of spores
on day 9 (that did not differ significantly among groups), because bees were struggling to
overcome the negative impact of the endoparasite (N. ceranae) through the production of
ROS (Reactive Oxygen Species) and by activating antioxidant (protective) mechanisms in
order to prevent tissue damage caused by the ROS [14].

B max

Day

hymenoptaecin

apidaecin
vitellogenin

abaecin
defensin

oM

1-T1

1-T3

1-T6

Figure 3. Heat map of median values for the relative genes’ expression levels (abaecin, hymenop-
taecin, defensin, apidaecin, and vitellogenin) at different time points (day 6, 9, and 15) in the
experimental groups. Group infected with N. ceranae (I), group that was non-infected but treated
with thymol (T), groups infected with N. ceranae and treated with thymol from day 1 (I-T1), day 3
(I-T3), and day 6 (I-T6).

At the end of the experiment (on day 15), the thymol consumed through the sucrose
syrup exerted the best anti-Nosema effect (observed through the number of spores, Figure 2).
Moreover, the results of the activity and concentrations of monitored oxidative stress
parameters revealed the best effect of thymol consumption on day 15 (Figure 4). The
activities of all antioxidative enzymes (SOD, CAT, and GST) and MDA concentrations were
significantly higher according to Tukey’s test (p < 0.05) in the infected (I) group compared
with the majority of the other groups (Figure 4). The lowest activities of antioxidative
enzymes (SOD, GST, and CAT) were detected in the groups supplemented with thymol
from the first day of experiment (T and I-T1), which were lower than the majority of
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the other groups (Tukey’s test: p < 0.05). The reason for these findings could be the
balance in the redox potential of thymol-fed bees and in the bees’ success in controlling the
antioxidative response. In the infected control (I) group (which did not receive thymol),
N. ceranae successfully induced oxidative stress, which was detected by increased levels of
SOD, CAT, GST, and MDA at the end of the experiment (Figure 4). Oxidative stress induced
by different stressors, such as N. ceranae [15,60] and environmental pollutants [61,62], was
also reported in some previous studies.
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Figure 4. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase
(GST) and malondialdehyde (MDA) concentration at different time points in experimental groups.
Non-infected control (NI) group, N. ceranae-infected control (I) group, thymol-treatment control
group (T), and groups infected and supplemented with thymol from day 1 (I-T1), day 3 (I-T3), and

day 6 (I-T6).

The expression levels of the apidaecin and hymenoptaecin genes on day 15 were
significantly higher (Mann-Whitney U test: p < 0.021) in all thymol-treated groups com-
pared with the infected control (I) group. Apidaecin-gene expression levels were lower
(p <0.036) in the T group (thymol-treated and Nosema-free) compared with the infected
and thymol-treated bees, while for hymenoptaecin expression levels, no difference was
defected (p > 0.05). Bees from the T group had lower values for abaecin and defensin
gene expression compared with groups infected and treated with thymol (I-T1, I-T3, and
I-T6). The defensin levels in group T were lower (p < 0.022) even when compared with the
infected control group I (Figure 3 and Figure S1).

The number of Nosema spores at the end of the experiment (Figure 2) indicates an
evident anti-Nosema effect of thymol in our cage experiment. Accordingly, the results of the
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gene expression levels showed that thymol prevented the suppressive effect of N. ceranae on
the expression of immune-related genes. Moreover, thymol treatment reduced the activity
of SOD, CAT, and GST, as well as concentration of MDA (Figure 4). The suppression
of certain genes in the thymol-treated and Nosema-free group (T) indicates the potential
immunosuppressive effect of thymol when given preventively to uninfected bees. The
negative impact of thymol on some other insect species has been known; thus, thymol was
used for the suppression of the development and survival of adult mosquitoes [63,64] and
cockroaches [65]. Gene expression levels for all genes except vitellogenin continuously
increased over the experiment throughout the three sampling times in all groups infected
with Nosema and treated with thymol (I-T1, I-T3, and I-T6). These findings could be
explained by the anti-Nosema activity of thymol [28,47], which subsequently mitigated the
immunosuppression caused by Noserma.

The vitellogenin levels in bees collected on day 15 (Figure 3 and Figure S1) were
the least altered. There was no difference in vitellogenin expression levels between the
infected group (I) and the thymol-treated group (T) with to the other experimental groups
(p > 0.05). This indicates that the level of vitellogenin was similar in the group that received
thymol and in the groups that did not. Therefore, N. ceranae inhibited the expression
of the vitellogenin gene equally to thymol. In addition, no synergistic effect (Nosema or
thymol) on the vitellogenin gene expression was noted, keeping in mind that the same
level of vitellogenin gene expression was obtained in the groups treated with thymol and
infected with Nosema (I-T1, I-T3, and I-T6). Thymol used in Varroa treatment in the study of
Boncristiani et al. [43] led to the downregulation of the vitellogenin gene, as well as other
genes important for the detoxification and immunity of bees, which were not monitored in
our experiment. Changes in the vitellogenin gene expression levels under the influence of
thymol has been linked to possible modifications of bee-specific traits that are significantly
influenced by vitellogenin [66]. It is also worth noting the rapid effect of thymol application
on gene expression in the brain of the honey bee: significant upregulation of the transient-
receptor-potential-like (TRPL) gene and downregulation of the octopamine receptor OA1
gene Amoal [67].

Initial studies of the effect of thymol on bees infected with Varroa mites [31,46,68] did
not report negative effects of thymol on bees. However, further research reported some
negative effects of thymol on bees [43,69-71], which was one of the reasons for our research.

Our study revealed the positive effects of thymol on the health of Nosema-infected bees
without producing negative effects. The proven anti-Nosema effect of thymol and subse-
quent prevention of Nosema’s negative effects could be beneficial on bees” health. Moreover,
our results indicate that in Nosema-free bees, thymol itself could cause certain disorders
(side effects such as inducing oxidative stress, immunosuppression of the monitored genes,
and reduction in bee longevity). Keeping in mind the obtained results, one should be
careful with the preventive, uncontrolled, and excessive use of thymol. Further research
should be conducted in order to determine the possible mechanisms of thymol activity
when applied to infected and uninfected bees.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/insects13070574/s1, Figure S1: Expression levels of abaecin,
hymenoptaecin, defensin, apidaecin and vitellogenin at different time points (day 6, 9 and 15) in
experimental groups. N. ceranae infected control (I) and groups infected and supplemented with
thymol from day 1 (I-T1), day 3 (I-T3) and day 6 (I-T6).
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