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Simple Summary: Honey bees are key pollinators in agricultural crops. Today, honey bee colonies in
decline are a global concern as a result of various stressors, including pesticides, pathogens, honey
bee health, and parasites. A healthy honey bee colony refers to colonies that are not exposed to biotic
and abiotic stressors. In this study, we examine how thiamethoxam (pesticide) and deformed wing
virus type A (DWV-A) interact in effects on honey bee health. The results revealed that the honey
bees were infected with DWV-A and were additionally exposed to thiamethoxam, showing effects
that increased the mortality rate, and crippled wings in newly emerged adult honey bees. Moreover,
the exposure to thiamethoxam and DWV-A injection resulted in induced expression of immune
genes (hymenoptaecin gene) while downregulation of two apoptosis genes (caspase8-like, caspase9-like
genes). The impact interaction of pesticide and DWV-A have on the expression of apoptosis genes
can directly affect viral susceptibility in the honey bee host.

Abstract: Honey bees are economically important insects for crop pollination. They play a significant
role as pollinators of wild plants and agricultural crops and produce economical products, such as
honey, royal jelly, wax, pollen, propolis, and venom. Despite their ecological and economical impor-
tance, the global honey bee population is in decline due to factors including pathogens, parasites,
intensive agriculture, and pesticides. Moreover, these factors may be interlinked and exacerbate the
loss of honey bees. This study aimed to investigate the interaction between a pesticide, thiamethoxam,
and deformed wing virus type A (DWV-A) to honey bees and the effects on survival rate, wing
characteristics, and expression of immune and apoptosis genes in Apis mellifera. We described the
potential interaction between thiamethoxam and DWV-A on honey bee wing characteristics, DWV-A
loads, and the expressions of immune (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy,
apaf1, caspase3-like, caspase8-like, and caspase9-like). Honey bee larvae were fed with three different
thiamethoxam doses (0.001, 1.4, and 14.3 ng/µL of the diet). Then, thiamethoxam-treated white-eyed
pupae were injected with 107 copy numbers/honey bee of the DWV-A genome. The interaction
between thiamethoxam and DWV-A caused a high mortality rate, crippled wings in newly emerged
adult honey bees (100%), and resulted in induced expression of hymenoptaecin gene compared to
the control group, while downregulation of caspase8-like, caspase9-like genes compared to the DWV
injection group. Therefore, the potential interaction between thiamethoxam and DWV-A might have a
deleterious effect on honey bee lifespan. The results from this study could be used as a tool to combat
DWV-A infection and mitigate pesticide usage to alleviate the decrease in the honey bee population.
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1. Introduction

The western honey bee, Apis mellifera, is the main pollinator of wild plants and agri-
cultural crops. They also produce honey and other hive products such as royal jelly, wax,
pollen, propolis, and venom [1–3]. The global and rapid loss of honey bee colonies has been
associated with various factors, including pesticides, pathogens, honey bee health, and
parasites [4]. However, these losses are thought to be largely attributed to the pesticide as
well as emergent pathogens, including viruses [5]. Furthermore, viruses and pesticides can
be concurrent threats to honey bee colonies, as honey bees infected with different pathogens
encounter pesticides when collecting pollen and nectar [6,7].

When honey bees forage pollen, pesticide residue in crops up to 10 km away can
pollute collected pollen and nectar and consequently cause pesticide contamination in
colonies. Thiamethoxam (nitro-substituted neonicotinoid) is now the most commonly
used insecticide in crops worldwide for seed coatings or directly sprayed on crops [8,9].
Previous studies have shown that thiamethoxam had negative effects on honey bees in
the larval stage [10–13], pupal stage [14], and adult stage [15–18]. Moreover, neonicotinoid
insecticides are likely to cause changes in honey bee physiology, such as hypopharyn-
geal gland development [19,20], honey bee behavior [21–23], colony development [24],
foraging [25,26], and memory and learning [27–29].

Among honey bee pathogens, viruses have been one of the main culprits associated
with honey bees’ colony decline [30,31]. To date, about 26 honey bee viruses have been
described, most of which are single-stranded RNA viruses, primarily belonging to the
Dicistroviridae and Iflaviridae families [30]. The most common honey bee viruses include
acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus
(CBPV), deformed wing virus (DWV), Israeli acute bee paralysis virus (IABPV), Kashmir
bee virus (KBV), and sacbrood virus (SBV) were detected in honey bee colonies [5,32]. DWV
is widespread and dominant in A. mellifera, positively correlated with varroa mites and
tropilaelaps mites infestation [32–35]. DWV causes crippled wings and reduced body size
in adult honey bees [36]. Several studies have documented that DWV has been linked to
colony losses [32,37,38]. Three master variants of DWV (DWV-A, DWV-B, and DWV-C)
have been discovered, with DWV-A being the most widespread variant [39–41]

Effects of co-exposure between pesticides and honey bee viruses have already been
reported, resulting in an increase in DWV loads [42], BQCV loads [43], and CBPV loads [44]
in honey bees. The effect of these factors has also been found to cause higher mortality
rates in honey bee larvae [45]. Moreover, the change in gene expression pattern has been
observed in immune and detoxification genes in honey bees [44]. Although the co-exposure
of honey bees to DWV and thiamethoxam were investigated in previous studies [45],
information on the relationship between crippled wings honey bees and gene pattern
is still scarce. In this study, we described the effects of DWV-A infection and different
concentrations of thiamethoxam treatment on the survival, viral loads, wing characteristics,
and expressions of immune and apoptosis genes in newly emerged adult honey bees.

2. Materials and Methods
2.1. Honey Bee Samples

Seven Apis mellifera colonies maintained at Bee Protection Laboratory (BeeP) apiary,
Chiang Mai University, Thailand (18◦48′14.3′′ N 98◦57′22.2′′ E) during 2018–2019 were
used in this study. The crippled honey bees were collected from four colonies kept without
ectoparasitic mites treatment. Three honey bee colonies, no visible clinical symptoms, and
low/no ectoparasitic mites infestation were used for in vitro larval rearing.

2.2. Preparation of Deformed Wing Virus Type A (DWV-A) Lysate

The crippled adult honey bees were collected from A. mellifera colonies to prepare a
DWV-A lysate. Five crippled adult honey bees were frozen in liquid nitrogen and crushed
with a mortar. The ground crippled adult honey bees were suspended in 5 mL of phosphate
buffer solution (pH 7.4) and then centrifuged at 6440× g for 10 min at 4 ◦C (K3 Series,
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Centurion Scientific Ltd., London, UK). The supernatant was collected after centrifugation
and filtered through a 0.2-micron filter (Millipore, Merck, Darmstadt, Germany) to eliminate
bacteria, fungi, and Nosema. The absence of six common honey bee viruses (acute bee
paralysis virus (ABPV) [46], black queen cell virus (BQCV) [46], chronic bee paralysis virus
(CBPV) [46], Israeli acute bee paralysis virus (IABPV) [47], Kashmir bee virus (KBV) [46],
and sacbrood virus (SBV) [46]) in the lysate was confirmed by quantitative real-time PCR
(qRT-PCR). The sequence of primers used is shown in Table S1. Lysate without all six
common honey bee viruses was used for this study. The lysate was kept at −80 ◦C until
use [48]. The level of DWV genome equivalents in the lysate was measured using the same
qRT-PCR technique described later in the Materials and Methods (Sections 2.6 and 2.7).

2.3. Diet and Larval Feeding

The first instar larval stage of A. mellifera was grafted onto an artificial diet plate.
The levels of different sugar and yeast extract concentrations in food were provided for
each developmental larval stage to meet the nutritional requirements. The artificial diet
consisting of 50% w/w of royal jelly and 50% w/w of distilled water that contained either
diet A (12% w/v glucose, 12% w/v fructose, and 2% w/v yeast extract), or diet B (15% w/v
glucose, 15% w/v fructose, and 3% w/v yeast extract), or diet C (18% w/v glucose, 18% w/v
fructose, and 4% w/v yeast extract) was refreshed every day. On the first and second days
of in vitro rearing, each larva was fed with diet A, and then diet B was fed on the third day.
Finally, diet C was fed on the fourth, fifth, and sixth days of the larvae developmental stage.
Plates of larvae were incubated at 34 ± 1 ◦C and 96% RH [49].

2.4. Exposure to Thiamethoxam

Thiamethoxam was mixed in with diet C at three concentrations, including 0.001
(LT group), 1.4 (MT group), and 14.3 (HT group) ng/µL of the diet (note that the con-
centration of 0.001 ng/µL was the equivalent level of residues found in nectar, pollen,
and beebread) [13]. The medium and high concentrations of thiamethoxam were selected
according to a previous study [12], which were the lethal and sub-lethal concentrations of
thiamethoxam to honey bee larvae reared in vitro. Diet C with no thiamethoxam was used
in the control group (C group). The experimental groups were fed with diet C at different
concentrations on the 4th day after grafting. After that, larvae received only food without
the insecticide on the 5th and 6th days. On the 4th, 5th, and 6th days, each larva was
fed 30, 40, and 50 ng/µL of diet C, respectively [12]. Overall, 105 honey bee larvae were
subject to each treatment. Larval mortality was checked individually by observation under
a stereomicroscope (Olympus, Tokyo, Japan) until they developed into the white-eyed
pupae stage.

2.5. Injection of DWV-A to Honey Bee White-Eyed Pupae

The white-eyed pupae were collected and divided into 9 groups. Thiamethoxam-
treated white-eyed pupae were injected laterally between the second and third tergite of the
abdomen with 2 µL per honey bee of PBS containing 107 copy numbers/honey bee of DWV-
A genome. Thiamethoxam-treated white-eyed pupae were divided into six groups: LT/V-
(treated with 0.001 ng/µL thiamethoxam); LT/NC (treated with 0.001 ng/µL thiamethoxam
with PBS injection); LT/V+ (treated 0.001 ng/µL thiamethoxam with DWV-A injection);
MT/V- (treated 1.4 ng/µL thiamethoxam); MT/NC (treated 1.4 ng/µL thiamethoxam
with PBS injection); MT/V+ (treated 1.4 ng/µL thiamethoxam with DWV-A injection).
Thiamethoxam-untreated white-eyed pupae were injected with 2 µL per honey bee of
107 copy numbers/honey bee of DWV-A genome as a positive DWV-A control group (PC
group). White-eyed pupae that were not treated with thiamethoxam and PBS injected were
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used as a negative control group (NC group). The PBS injection treatments were used as a
control for the injection [45,50]. White-eyed pupae that were not treated with thiamethoxam
and not injected were used as a handling control group (C group). All white-eyed pupae
were incubated at 34 ± 1 ◦C and 70% RH until developing into newly emerged adult honey
bees [51,52]. The honey bee survival rate was monitored during development.

2.6. RNA Extraction and cDNA Synthesis

Total RNA of adult honey bees was individually extracted by using TRIzol® (Invit-
rogen, Carlsbad, CA, USA) following the manufacturer’s protocol. RNA concentration
and quantity were determined using a BioDrop Duo spectrophotometer (BioDrop Ltd.,
Cambridge, UK). Reverse transcription was performed from 1 µg RNA to cDNA using the
Tetro cDNA synthesis kit (Bioline, Alexandria, NSW, Australia) following the manufac-
turer’s protocol.

2.7. Quantitative Real-Time PCR Parameters

The number of DWV-A genome copies was determined by the absolute quantification
method. The standard curve was established by plotting seven 10-fold dilutions of DWV-A
insert in TOPO ®TA Cloning® plasmid (Invitrogen, Carlsbad, CA, USA). The qRT-PCR
was performed on BioRad iQTM 5 (Bio-Rad Crop., Hercules, CA, USA), using SensiFAST
SYBRR® No-ROX Kit master mix (Bioline, Alexandria, NSW, Australia). The amplification
was performed in a 20 µL reaction volume using SensiFAST SYBR® No-ROX Mix, consisting
of 10 µL of 2x SensiFAST SYBR® No-ROX Mix, 0.8 µL of each 10 µM primer, 1 µL of 10-fold
diluted cDNA and nuclease-free water to adjust the volume to 20 µL. For amplification
step with the following profile was used: 50 ◦C for 30 min and 95 ◦C for 10 min, followed
by 40 cycles of 95 ◦C for 30 s, 55 ◦C for 1 min, and 72 ◦C for 30 s. The melting curve was
generated from 55 ◦C to 95 ◦C in 0.5 ◦C/s increments. The sequence of DWV-A [53], and
housekeeping genes [54,55] primers is described in Table S1.

Relative quantification in real-time PCR was determined in antimicrobial peptides
(AMPs), and apoptosis-related genes [50,56]. Ribosomal protein subunit 5 (RPS5) and
β-actin were used as housekeeping genes for all primers shown in Table S1. qRT-PCR was
performed as described above. All reactions were carried out using a thermal program of
95 ◦C for 30 s followed by 40 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 1 min. The
final qRT-PCR amplification was confirmed by the analysis of the melting curve generated
from 55 ◦C to 95 ◦C in 0.5 ◦C/s increments. Each experiment was performed in triplicate,
and negative controls (no template) were included in each reaction. Gene expression was
calculated as 2−∆∆CT [57].

2.8. Statistical Analysis

The survival of white-eyed pupae and newly emerged adult honey bees were es-
tablished using Kaplan–Meier survival statistics with the log-rank test. Log-transformed
DWV-A loads and gene transcripts were analyzed using one-way ANOVA (Welch ANOVA
in cases of unequal variance) followed by the Games-Howell post-hoc t-test. The data were
analyzed using generalized linear models (GLMs) to evaluate significant variations among
treatments and genes, with treatments and genes as fixed factors, and the interaction was
included. p-values less than 0.05 were noted as significant. All statistical analyses were
tested using the SPSS v 25 program (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Effects of Thiamethoxam on Survival of Larvae to White-Eyed Pupae

The cumulative survival curves of A. mellifera white-eyed pupae were significantly
different between the C group (thiamethoxam-untreated) and thiamethoxam-treated groups
after 12 days post feed (Kaplan–Meier log-rank test, x2 = 170.826, p < 0.0001; Figures 1 and S1).
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The survival rate of the C group (90%) was not significantly different compared to the
LT group (70%) (log-rank test, p = 0.059). In addition, the survival rates between MT
(39%) and HT (22%) groups were not significantly different (log-rank test, p = 0.128;
Figures 1 and S1 and Table S2). Honey bees fed with the highest thiamethoxam dose
(14.3 ng/µL; HT group) showed a significantly lower survival rate than the C group (log-
rank test, p < 0.0001), and honey bees fed with 0.001 (LT group), 1.4 (MT group) ng/µL of
thiamethoxam (log-rank test, p = 0.013 and 0.028, respectively) (Figure 1 and Table S2).
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Figure 1. Kaplan–Meier survival curve of white-eyed pupae that were treated with three concen-
trations of thiamethoxam (0.001, 1.4, and 14.3 ng/µL) and control (untreated thiamethoxam) in the
larval stage.

3.2. Effects of Co-Exposure of Thiamethoxam and DWV-A on the Survival of White-Eyed Pupae to
Newly Emerged Adult Honey Bees

The cumulative survival curves of A. mellifera newly emerged adult honey bees were
significantly different between the control and treated groups 8 days post injection (Kaplan–
Meier log-rank test, x2 = 131.182, p < 0.0001; Figure 2). There was no significant difference
in cumulative survival rates among the C group (thiamethoxam-untreated with no DWV-A
injection) (89%), NC (thiamethoxam-untreated with PBS injection) (87%), LT/V- (91%),
LT/NC (86%), MT/V- (85%), and MT/NC (83%) (log-rank test, p > 0.05). However, these
treatment groups showed higher cumulative survival rates when compared to groups
injected with DWV-A. The injection with DWV-A-untreated thiamethoxam group (PC
group) and LT/V+, MT/V+, and HT/V+ groups showed survival rates of 61%, 47%, 50%,
and 13%, respectively. The HT/V- and HT/NC groups resulted in survival rates of 13%
and 14%, respectively (at p < 0.05, Figures 2 and S2, and Table S3). Moreover, PC groups
showed higher cumulative survival rate than LT/V+, MT/V+, and HT/V+ groups at
p-value = 0.012, <0.0001, and <0.0001, respectively (Figure 2). A significant effect of
interaction between thiamethoxam and DWV-A on mortality was found in all co-exposure
groups when compared with DWV-A alone or thiamethoxam alone, except for the high
dose thiamethoxam groups (HT/V- and HT/NC).
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Figure 2. Kaplan–Meier survival curve of newly emerged adult honey bees treated with three
concentrations of thiamethoxam (0.001, 1.4, and 14.3 ng/µL) in the larval stage that were injected with
DWV-A, PBS, and control (not treated with thiamethoxam and uninfected group) in the white-eyed
pupal stage.

3.3. Effects of Co-Exposure of Thiamethoxam and DWV-A on Wing Characteristics of Newly
Emerged Adult Honey Bees

All newly emerged adult honey bees showed normal wings in the C group (100%)
and the NC group (96%). Newly emerged adult honey bees that were not treated with
thiamethoxam and injected with DWV-A (PC group) showed both normal and deformed
wings at 5% and 95%, respectively. All thiamethoxam-treated groups were investigated for
the crippled wings. The groups that were subject to 0.001 ng/µL of thiamethoxam (LT/V-
group) and 0.001 ng/µL of thiamethoxam with PBS (LT/NC group) showed normal wing
at 65% and 74%, respectively. The groups that were subject to 1.4 ng/µL of thiamethoxam
(MT/V- group) and 1.4 ng/µL of thiamethoxam with PBS (MT/NC group) showed nor-
mal wing at 73% and 50%, respectively. The results showed that all concentrations of
thiamethoxam treatments that were injected with DWV-A resulted in crippled wings in
newly emerged adult honey bees (100%) (Figure 3). The survival rate of the HT/V+, HT/V-,
and HT/NC groups was very low, and, therefore, the wing characteristic analysis was
not performed.

3.4. DWV-A Loads in Newly Emerged Adult Honey Bees

Low DWV-A loads were detected in C and NC groups in newly emerged adult
honey bees (2.9 × 104 ± 8.0 × 103 and 3.8 × 104 ± 1.6 × 104 copy numbers/honey bee,
respectively). The DWV-A levels of the MT/V- group showed a statistically significant
difference in DWV-A levels compared to the C group (p = 0.031). The PC groups had higher
DWV-A levels compared to the C group and all treatment groups at a p-value less than
0.05, except LT/V+ and MT/V+ groups (Figure 4 and Table S4). Crippled wings honey
bees in the PC, LT/V+, and MT/V+ groups showed DWV-A loads of 1.2 × 108 ± 1.4 × 107,
1.1 × 108 ± 1.1 × 107, and 1.2 × 108 ± 1.9 × 107 copy numbers/honey bee, respectively,
and there was no statistically significant difference in DWV-A loads between each other
(p > 0.05). The interaction between thiamethoxam and DWV-A did not result in a significant
modulation of DWV-A loads.
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Figure 3. Percentages of the normal and crippled wings of newly emerged adult honey bees after
being treated with thiamethoxam at 0.001 and 1.4 ng/µL in the larval stage and injected with DWV-A
and PBS in the white-eyed pupal stage. The untreated and uninjected larvae were used as controls.
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Figure 4. DWV-A loads in newly emerged adult honey bees treated with thiamethoxam at 0.001
and 1.4 ng/µL in the larval stage and injected with DWV-A and PBS in the white-eyed pupal stage.
The control group was not treated with thiamethoxam and not injected. Vertical bars represent
means ± SEM. One-way ANOVA with Games–Howell post-hoc test was used. The lowercase letters
indicate significant differences at p-values less than 0.05.
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3.5. Immune- and Apoptosis-Related Gene Expression in Newly Emerged Adult Honey Bees

White-eyed honey bee pupae treated with 0.001 and 1.4 ng/µL thiamethoxam and
control (thiamethoxam-untreated) in the larval stage were injected with PBS and DWV-A.
Three immune (defensin, abaecin, and hymenoptaecin) and five apoptosis-related genes (buffy,
apaf1, caspase3-like, caspase8-like, and caspase9-like) were investigated at the newly emerged
adult honey bee stage. The results showed no significant differences in the expressions of
buffy and apaf1 (Welch ANOVA, p = 0.062 and 0.095, respectively) in all experimental groups.
In contrast, there were statistically significant differences in the expressions of six genes,
including defensin, abaecin, hymenoptaecin, caspase3-like, caspase8-like, and caspase9-like (Welch
ANOVA, all genes, p < 0.01). PC group showed an upregulation in three immune genes,
including defensin, abaecin, and hymenoptaecin, compared to the C group (Games-Howell,
p = 0.003, 0.034, and 0.011, respectively) (Figure 5 and Tables S5–S7). The expressions of two
immune genes (defensin and abaecin) were lower in all groups treated with thiamethoxam
and DWV-A injection than in the PC group, though not significantly different. Only the
hymenoptaecin gene showed slightly higher upregulation in LT/V+ and MT/V+ groups
than in the C group (Games–Howell, p = 0.005 and 0.006, respectively) (Figure 5 and
Table S7). Honey bees that were treated with 1.4 ng/µL thiamethoxam and with DWV-A
injection (MT/V+ group) showed an upregulation of the caspase3-like gene (Games-Howell,
p = 0.008) compared to the PC group (Figure 5 and Table S8). The caspase8-like and caspase9-
like genes showed the highest upregulation in the PC group, but only caspase9-like was
significantly different compared to the control at p = 0.018 (Figure 5 and Tables S9 and S10).
Moreover, the mRNA levels of the two genes were significantly suppressed in LT/V+ and
MT/V+ groups compared to the PC group (Games-Howell, caspase8-like p = 0.046 and 0.031,
respectively, and caspase9-like p = 0.014 and 0.026, respectively).

Gene expression was significantly influenced by treatments and genes, and the interaction
was also significant (GLMs: p < 0.001 for treatments; p < 0.001 for genes; and p < 0.001 for
the interaction).
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4. Discussion

Our study provides an insight into the effects on survival, DWV-A loads, wing charac-
teristic, and expression of immune and apoptosis genes of Apis mellifera after exposure to
different doses of thiamethoxam and DWV-A infection in newly emerged adult honey bees.
Our results are consistent with previous reports, as we found that honey bees exposed to
thiamethoxam in the larval stage had a significantly reduced survival rate in the white-eyed
pupal stage [13,39]. Moreover, the combined effect of thiamethoxam and DWV-A further
decreased the survival rate of newly emerged adult honey bees. Coulon et al. [45] also
reported that a high dosage of thiamethoxam decreased the survival rate of honey bees after
being injected with DWV. In this study, we showed that treatment with a low concentration
of thiamethoxam (environmental dose in the colony) induces increased crippled wings
in newly emerged adult honey bees. Nevertheless, there are limitations in this study that
could be addressed in future research. The study used two high concentrations (1.4 and
14.3 ng/µL) that are not environmentally relevant. These concentrations not only induced
high mortality but also resulted in an uneven number of individual tested.

Previous studies have shown that thiamethoxam caused changes in honey bee physi-
ology [19,20]. Honey bees exposed to pesticides in the larval stage developed deformed
physical characteristics in the adult stage, such as wing malformation, stunted bodies,
and crippled legs [58]. Our study demonstrated that the effects of treatment with only
thiamethoxam induce increased wing deformity in newly emerged adult honey bees. More-
over, numerous studies have also demonstrated that DWV is also the cause of crippled
wings in honey bees [56,59]. Our result showed that honey bees exposed to thiamethoxam
and DWV-A stressors had a high percentage of crippled wings as newly emerged adult
honey bees. As a consequence, exposure to pesticides and DWV-A in honey bee colonies
may impact the ability of adult honey bees to perform duties and forage effectively, leading
to a decreased rate of colony survival.

In the present study, DWV-A levels of honey bees co-exposed to DWV-A and thi-
amethoxam were significantly higher than in treated groups, except for the PC group. Thus,
the combination of neonicotinoid insecticides and DWV infection induced significantly
higher DWV viral loads in honey bees [42]. These results coincide with the low survival
rate of honey bees co-exposed to DWV-A and thiamethoxam, suggesting the effect between
thiamethoxam and DWV-A infection on honey bee survival.

The immune-related gene expressions of honey bees co-exposed to thiamethoxam and
DWV-A were upregulated in newly emerged adult honey bees. However, only the hymenop-
taecin gene was significantly upregulated compared to the control group. The hymenoptaecin
gene is one of the antimicrobial peptides that have been identified in honey bees to be active
against microorganisms [60]. AMPs play a crucial role in the insect immune system and
contribute to individual and social immunity [50,61,62]. Previous studies have indicated
that the expressions of AMP genes in honey bees were upregulated after the invasion of
pathogens, including microsporidian Nosema [63], Paenibacillus larvae [64], viruses [56], and
ectoparasitic mites [65]. Viral infection within the host via viral entry, replication, and
spreading can induce the antiviral innate immune responses [66]. Upregulation of several
AMP genes, including abaecin, hymenoptaecin, and defensin, was also shown in other studies
where honey bees were infected with DWV-A [56]. Treatment with thiamethoxam led
to the downregulation of abaecin and defensin genes in crippled wings adult honey bees.
Interestingly, honey bees exposed to thiamethoxam and DWV-A injection were also found
to downregulate abaecin and defensin genes, implying immunological toxicity.

We found that co-exposure to thiamethoxam and DWV-A decreased the expression of
apoptosis-related genes and significantly down-regulated caspases8-like and caspases9-like genes.
The caspases gene is known to be related to programmed cell death and is associated with the
final proteases in apoptosis [67]. Apoptosis is an important component of various processes,
including normal cell development, embryonic development, function of the immune system,
hormone-dependent atrophy, and chemical-induced cell death [68,69]. Evidence from previous
studies suggested that virus infection induced apoptosis in insects and that the infection
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was mitigated by the elimination of the infected cells [70–72]. Honey bees injected with
DWV had suppressed the expression of caspases in the pupal stage, which likely promoted
the virus survival in hosts [56]. Honey bee co-exposure groups showed a strong alteration
of immune gene expressions and downregulation of two apoptosis genes. Further studies
are needed to investigate in greater detail the mechanisms for the viruses and pesticides
that destroy immune pathways and the ability of viral replication in honey bee hosts.

5. Conclusions

This study showed the combined effect of DWV-A and thiamethoxam on A. mellifera,
resulting in an increased mortality rate, crippled wings, and increased DWV-A loads. Our
finding showed that honey bees exposed to thiamethoxam and DWV-A could intensify
DWV-A infection, which could result in long-term physical deformity and decreased
honey bees’ life span. Data from our investigation revealed that gene expression patterns
changed in each treatment group. The effect of both thiamethoxam and DWV-A results
in the transcriptome imbalance, which may also have an effect on stress recovery and,
subsequently, on honey bees’ survival rate. Therefore, the results of our study could be
explained by a negative interaction between thiamethoxam and DWV-A on honey bee
lifespan in laboratory conditions. Future studies should be undertaken to examine the
effects of pesticide exposure and viral infection occurring under field conditions.
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