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Simple Summary: Communication in a colony of social insects, such as the honeybee, is possible
thanks to the pheromones secreted by all individuals. Pheromones are produced and secreted by the
glands. Examples of such structures are Nasonov and tergal glands. Nasonov glands are characteristic
of worker bees, while tergal glands are primarily found in queens. There are situations in the colony
in which the queen and her pheromones are missing. In these instances, the larvae develop into
rebels, which are reproductive workers. We therefore assumed that the rebels would have a reduced
Nasonov gland and developed tergal glands. Our assumption turned out to be correct. These
discoveries bring us closer to explaining the evolutionary formation of different castes of honeybees.

Abstract: Social insect societies are characterized by a high level of organization. This is made
possible through a remarkably complex array of pheromonal signals produced by all members of the
colony. The queen’s pheromones signal the presence of a fertile female and induce daughter workers
to remain sterile. However, the lack of the queen mandibular pheromone leads to the emergence of
rebels, i.e., workers with increased reproductive potential. We suggested that the rebels would have
developed tergal glands and reduced Nasonov glands, much like the queen but contrary to normal
workers. Our guess turned out to be correct and may suggest that the rebels are more queen-like than
previously thought. The tergal gland cells found in the rebels were numerous but they did not adhere
as closely to one another as they did in queens. In the rebels, the number of Nasonov gland cells was
very limited (from 38 to 53) and there were fat body trophocytes between the glandular cells. The
diameters of the Nasonov gland cell nuclei were smaller in the rebels than in the normal workers.
These results are important for understanding the formation of the different castes of Apis mellifera
females, as well as the division of labor in social insect societies.

Keywords: Apis mellifera; cells; Nasonov gland; pheromones; queen; rebels; tergal gland; workers

1. Introduction

Social insect societies are characterized by a high level of organization. This is exem-
plified by the division of labor in reproductive bees and worker bees based on their life
expectancies. This order is mediated through a remarkably complex array of pheromonal
signals produced by all members of the colony and regulated by social contexts [1,2].
Pheromone signals in honeybees are often enhanced by synergy and the context in which
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they are deployed and mediated through both temporal and spatial distribution [3–6].
Nowadays, around 50 chemical substances are known to be essential to the functioning of
the society [3,7].

Evolutionary changes in chemical production have been instrumental to the emergence
of interactions both within and between species, with behaviors as diverse as chemical
defense, pheromonal communication and parental care relying on the transmission of
information or resources embedded in chemical secretions [8]. Queen pheromones, which
signal the presence of a fertile female and induce daughter workers to remain sterile,
are considered to play a key role in regulating the reproductive division of labor in insect
societies. Although queen pheromones were long thought to be highly taxon-specific, recent
studies have shown that structurally related long-chain hydrocarbons act as conserved
queen signals across several independently evolved lineages of social insects. These results
imply that social insect queen pheromones are ancient and are likely derived from an
ancestral signaling system that was present in their common solitary ancestors [9]. It is
unclear whether this conservative character only applies to the compounds that comprise
pheromones, or if it also applies to the morphology of the cells in which pheromones
are produced and secreted. Raguso et al. [10], Tittiger [11], and Brückner and Parker [8]
emphasized that knowledge of cytology, morphology and molecular mechanisms, as well
as an understanding of the chemical release mechanisms of cells (the identities of molecular
components that regulate subcellular exchange and secretion of chemical signals) is absent
for the majority of gland cell types. Our research may help to fill this gap in our knowledge.

In a honeybee Apis mellifera colony, the secretion of one pheromone stimulates the reac-
tion and secretion of another in individuals of the same or another caste. The pheromones
of mandibular (QMP) and tergal glands in queens, as well as the secretion of workers’
Nasonov glands, are an example of such caste actions [12,13]. Tergal gland (Renner and
Baumann glands, located on tergites II–IV) pheromones support QMP functions [14–16].
Secretions from the queen’s mandibular and tergal glands evoke the retinue behavior
of workers, as well as the effect of ovarian development inhibition in workers [17–19].
Moreover, the secretions from these three glands have a cohesive effect in instances of
swarm clustering [20,21]. After swarming, when the old queen leaves the nest accompa-
nied by a group of workers to establish a new colony, the remaining workers in the old
nest care for the eggs, the larvae of younger workers and developing sister queens [22].
Woyciechowski et al. [23] suggested that information regarding the absence of the queen
and her pheromones is transmitted via trophallaxis to worker larvae, which can then
change their developmental strategy. As a result, rebels develop from the worker larvae.
In contrast to the normal sterile workers, the rebels are primed to reproduce rather than
participate in the rearing of the next generation of sister-queen offspring [24]. They have
more ovarioles in their ovaries, as well as better developed mandibular glands and un-
derdeveloped hypopharyngeal glands. Moreover, their ovaries are activated regardless
of whether they live in queen-less or queen-right colonies [24–27]. Since the rebels are so
anatomically and behaviorally different from the normal workers and more queen-like, the
following questions arise: How do their gland cells function, and are they morphologically
similar to the gland cells of queens or workers? Since the tergite glands are characteristic
of A. mellifera queens and the Nasonov glands of workers, disturbances in these systems
lead to an imbalance in reproductive dominance in the colony [28–30]. To answer these
questions, we dissected cells from the tergal glands of rebels and compared them with
those of queens and normal workers. We also dissected cells from the Nasonov glands of
rebels and compared them with those of normal workers.

2. Materials and Methods

This study was performed at the apiary of the University of Life Sciences in Lublin,
Poland (51.224039 N–22.634649 E). We used four colonies of A. m. carnica honeybees; three
of them—the source colonies—were used to obtain larvae of known ages to rear normal
workers and rebels and one (colony 4) was used for rearing queens.
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2.1. Experimental Design

The queens were taken from each of the three unrelated source colonies, each of which
populated two-box hives (Dadant Blatt; 20 frames; 435 × 150 mm2). They were caged
within a queen-excluder comb-cage containing two empty combs (C1 and C2) for 24 h, with
the purpose of laying eggs. On the third day after the end of egg laying, 50 one-day-old
(12–24-h-old) larvae from C1 and C2 were grafted into queen cell cups suspended vertically
in the colony (No. 4, according to Büchler et al.’s [31] method). After the larvae were
grafted, C1 and C2 were restored to their source colonies with the remaining larvae. Next,
each of the source colonies was divided into two equal parts with each in a separate box,
according to Woyciechowski and Kuszewska’s [24] procedure. The first part (top box),
containing the queen, workers, brood and C1, was used for rearing normal (non-rebel)
workers, whereas the other part (bottom box), without a queen but with workers, brood
and C2, served for rearing rebels. After sealing the larval cells in C1 and C2, the two
boxes were put together again, respectively, to restore each of the three source colonies.
After 15 days from the moment the eggs were laid, sealed queen cells were placed in an
incubator (temperature 34.5 ◦C, relative humidity 60%). Soon after, the one-day-old queens
were placed in mini-hives with about 200 nursing workers. The seven-day-old queens
were used for the morphological analyses. After 18 days, brood combs C1 and C2 were
also placed in the incubator. Freshly emerged rebels and normal workers, marked with
different colors on the thorax, returned to their colonies. For the morphological analyses,
20 seven-day-old rebels and 20 seven-day-old normal workers were captured from each of
the three source colonies.

2.2. Morphological Analyses of the Gland Cells

The Nasonov glands were dissected (Stereo Zoom Microscope Olympus SZX16; Cam-
era: Olympus DP72; Warsaw, Poland) from each of the 60 rebels and 60 normal workers.
The tergal glands from the third, fourth and fifth tergites were dissected from each of the
60 queens, as well as from each of the 60 rebels and 60 normal workers (the same as those
used in the Nasonov gland preparation). Each of the glands was placed on glass slides in
0.6% natrium chloratum (pro inj.) and covered with cover-glasses. The gland cells were
observed and photographed with an Olympus DP 72 camera (Microscope Olympus BX61;
magnification × 40) with a DIC attachment. This method enables the undistorted visualiza-
tion of living tissues (see [32]). The diameters of the gland cell nuclei were measured using
the Olympus software.

2.3. Examination of Anatomical Parameters

In order to confirm whether the emerging bees were normal workers or rebels and ver-
ify the queen status, Woyciechowski and Kuszewska’s [24] method was used to determine
the number of ovarioles (ovarian tubules) in both ovaries.

The highest number of tubes was found in all the dissected queens (199.6 ± 25.4). The
normal workers had fewer ovarioles (5.1 ± 1.1) than the rebels (12.4 ± 1.8). Significant
differences between these results allowed us to continue our research and compare the
glands in three different groups of females.

2.4. Statistical Analysis

The results were analyzed using Statistica, version 13.3 (2017) for Windows, StatSoft
Inc., USA. The mixed-model two-way ANOVA followed by the post hoc Tukey HSD test
were used to compare the number of ovarioles and the diameters of the Nasonov gland
cell nuclei between the rebel and normal workers, as well as the queens. The fixed effect
was the phenotype of the female (queen, rebel workers, and normal workers). In order to
compare the gland-cell nuclei of the tergal gland, the mixed-model three-way ANOVA was
used, followed by the post hoc Tukey HSD test. The fixed effect was the phenotype of the
female (queen and rebel workers) and the location of the tergal gland (GIII—tergal glands
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from the third tergites; GIV—tergal glands from the fourth tergites; GV—tergal glands
from the fifth tergites).

3. Results
3.1. The Morphology of the Nasonov Gland

The Nasonov gland, located just below the intersegmental membrane between the 6th
and 7th tergite of the abdomen (Figure S1), forms cells whose exit ducts are located in the
duct region (Figures 1–3). In normal workers, the package of these cells was stretched to
a length of about 1500–2000 µm (Figure 1a); the cells were large with a centrally located
nucleus (Figures 1c, 2a and 3). Many cells (from 160 to 277) closely adhered to one another
and the ducts departed from each of them (Figure 2c). On the other hand, in the rebels,
the number of glandular cells was very limited (from 38 to 53), with a strand length of
about 800–1000 µm (Figure 1b). Additionally, there were fat body trophocytes between the
glandular cells (Figures 1d and 2b,d). The diameters of the cell nuclei were smaller in the
rebels than in the normal workers (Figure 4).
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Figure 1. Nasonov glands in normal workers (a,c) and rebels (b,d) (gland cells marked in red).
Fb—fat body; gc—gland cells.

3.2. The Morphology of the Tergal Glands

Packages of tergal gland cells located underneath the abdominal tergites III to V (Figure 5a)
were stretched on a length of about 2500–4500 µm in the queens (Figure 5d) and about
1500–3000 µm in the rebels. Normal workers were observed to have 1–3 tergal gland cells,
which were very delicate and quickly burst, making it impossible to register their images.
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Figure 4. Diameters of the cell nuclei in the Nasonov and tergal glands. The small letters indicate
significant differences (p ≤ 0.05) between the rebels and normal workers in their Nasonov glands
(two-way ANOVA with Tukey multiple comparison colony: F2,114 = 0.51, p = 0.664; phenotype:
F1,2 = 248.1, p = 0.004; colony * phenotype F2,114 = 8.09, p < 0.001) and between the rebels and queens
in their tergal glands (three-way ANOVA with Tukey multiple comparison: colony: F2,342 = 5.2,
p = 0.006; location of tergal gland: F2,4 = 9157.7, p < 0.001; phenotype: F1,2 = 18,074.3, p < 0.001; colony
* location of tergal gland: F4,342 = 0.1, p = 0.995; colony * phenotype: F2,342 = 0.7, p = 0.517; phenotype
* location of tergal gland: F2,342 = 8053.3, p < 0.001; phenotype * location of tergal gland * colony:
F2,342 = 3.7, p = 0.005). GIII—tergal glands from the third tergites; GIV—tergal glands from the fourth
tergites; GV—tergal glands from the fifth tergites.
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The queens were found to have a lot of cells (there were 25–32 glandular cells on the
200 µm2 tissue surface) that closely adhered to one another, with a centrally located nucleus
(Figure 5b). From each cell departed the outlet ducts (Figure 5c,d), from which pheromones
were emitted with pulsating movements (Video 1). No differences were observed in the
morphological images between the glands from various tergites (III, IV and V), but these
glandular cells differed in their nucleus diameters—the largest nuclei were found in the
third tergite and the smallest ones in the fifth (Figure 4).

The glandular cells in the rebels were numerous (there were 15–21 glandular cells on
the 200 µm tissue surface) but they did not adhere as closely to one another (Figure 6a–c).
Their cell nuclei were centrally located (Figure 6d) and their diameters did not differ
between the third and fourth tergites. The diameters of the cell nuclei in the rebels were
smaller in comparison with those in the third and fourth tergites of the queens (Figure 4).
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4. Discussion

The lack of queen pheromones during the larval development of workers has far-
reaching effects, not only on their anatomy [23] and behavior [27,33–36] but also on the
morphology of the emerged rebels (Figures 1–6). Rebels are focused on their own reproduc-
tion [24]. Hence, at the stage of preimaginal development, there must already have been
changes in their epigenome [37,38] which lead to the development of tergal glands and the
reduction in Nasonov glands (Figures 1–6). It can be concluded that the rebels changed their
life strategy in order to become as queen-like as possible and achieve personal reproductive
success by avoiding worker policing [39].

Billen et al. [15] and Wossler et al. [16] reported that some workers may have tergite
glands, but the number of these cells in workers was smaller than in queens. In our
experiment, we also observed 1–3 tergal gland cells in normal workers. The morphological
structure of these cells was similar to that of the queens. These cells were very fragile,
they quickly broke and their measurement and visualization were not possible, contrary
to what was observed in the A. m. carnica queens (Figure 5). A. m. scutellata workers also
possessed very few gland cells (mean ± SD; 0.9 ± 0.6), ranging in size from 255 µm2 to
1327 µm2, whereas A. m. capensis workers had on average ten times more cells (9.3 ± 1.7),
ranging in size from 723 µm2 to 2200 µm2 [16]. It can be calculated that the diameters
of these cells ranged from 18.02 to 41.11 µm and from 30.34 to 52.93 µm, respectively. In
our experiment, we analyzed the diameters of the glandular cell nuclei as a measure of
their metabolic activity. This gland assumed considerable sizes in workers with increased
reproductive potential, such as rebels (Figure 6), and consisted of numerous active cells, as
indicated by the diameter of the cell nuclei (Figure 4) at a mean of 11.61 µm (± 0.78; SD). It
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is, however, worth emphasizing that the diameters of the nuclei in the rebels did not differ
between the third and fourth tergites. The largest nuclei in the queens were observed in the
third tergites (32.7 ± 0.8 µm), and the smallest in the fifth tergites (10.5 ± 0.6 µm; Figure 4).
This may indicate the functional adaptation and secretory specialization of these cells in
queens. Most likely, not all cells in each tergite are simultaneously activated and the cycles
of their metabolic activities are probably rotational. Our research shows that the higher the
reproductive potential of the female, the greater the specialization and organization of these
glands, depending on the segment in which they are located (Figure 4). It is surprising
that the rebels had larger cell nuclei in the fifth tergite than the queens. This observation
requires further research and explanation. Okosun et al. [40,41] suggested that the workers’
tergal gland secretions included the three ethyl esters (ethyl palmitate, ethyl oleate and
ethyl stearate) which have both primer and releaser effects. Due to the presence of esters,
the pheromone mixture is attractive for other bees and regulates reproduction, whether it
is emitted by the queen [18,42,43] or by workers [41]. The queen-like glandular secretions
of reproductively dominant workers allow for the determination of their reproductive
dominance [28,41,44]. In queens, this dominance is very strong, due to the gland size as
well as the number and types of compounds (long-chain fatty acids, long-chain esters and
a series of unsaturated and saturated hydrocarbons as components); [18,43]). Since the
number of components in worker pheromones is limited [41], this may explain the lack of
differences in nucleus diameters between the third and fourth tergites in the rebels (Figure 4).
Thus, tergal gland secretions act synergistically with mandibular gland secretions, which
are more developed in the rebels in comparison to normal workers. Moreover, the rebels
have underdeveloped hypopharyngeal glands [24], which suggests low production of
brood food [45] and restricted nursing activity [46].

In turn, the reduction in the number of Nasonov gland cells, overgrowing with tropho-
cytes and the reduction in the diameter of cell nuclei (Figures 1, 2 and 4) in rebels most
likely affects the composition and number of released pheromones. This may suggest a
disturbance in the correct orientation of the bees. Thus, intraspecific reproductive para-
sitism in the rebels is perhaps not only the result of a high reproductive potential and their
reproductive strategy, as suggested by Kuszewska et al. [27], but also arises from morpho-
logical and functional changes in their Nasonov glands. The limited engagement of the
rebels in raising the next generation of bees could result in the reduction in their Nasonov
glands (Figures 1 and 2) and pheromone concentrations, as suggested by Al-Kahtani and
Bienefeld [21]. Moreover, Bortolotti and Costa [12] stated that the release of the Nasonov
pheromone is only stimulated by sugar concentrations. This suggests that the Nasonov
pheromone is mainly used to attract workers toward water sources and is involved in
nectar source location. This may explain why the rebels display a delayed onset of foraging
and a stronger tendency to collect nectar in comparison to normal workers [35]. In other
words, by investing in their own egg laying and living a longer life [26] the rebels delay
risky tasks, such as foraging [33,47–49]. Moreover, dysfunction of the Nasonov glands
in rebels can lead to functional disorders related to social immunity (e.g., the removal of
dummies) [50]. These mechanisms are controlled by the juvenile hormone and vitellogenin,
the concentrations of which in rebels are much higher than in normal workers [51].

All the above-mentioned facts regarding the morphology and anatomy of the rebels
are important to clarify the evolutionary strategy of reproduction in workers, which results
from the assumption of kin selection theory [52,53] and can also explain the altruistic
strategies of colony members [54,55], as well as certain conflicts and behaviors between
individuals in a nest [39,56].

Additionally, we wish to draw the reader’s attention to the fact that the main difficulty
in analyzing glandular cells, especially those from invertebrates, is their short survival rate.
In most studies, such cells are fixed immediately after dissection and only then viewed
under a microscope. Our work presents a pioneering approach in imaging glandular cells
that can be viewed, measured, and even observed for their release of chemical compounds
while maintaining their viability (detailed protocols are described in the Materials and
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Methods section). By using this method, we have expanded the knowledge of the morphol-
ogy of the Nasonov and tergal glands in workers with increased reproductive potential,
such as the rebels, which in this respect are more like queens than normal workers.

5. Conclusions

In order to become as queen-like as possible, rebel honeybees have developed ter-
gal glands and reduced Nasonov glands. Developed tergal glands in rebels, from which
pheromones are secreted, are one of the reasons for their temporary reproductive domi-
nation in the colony. Moreover, the higher the reproductive potential of the female, the
greater the specialization and organization of these glands, depending on the segment in
which they are located. The reduction in the number of Nasonov gland cells, overgrowing
with trophocytes and the reduction in the diameter of cell nuclei most likely affect the
composition and number of released pheromones and suggest a disturbance in the correct
orientation of the rebels. Therefore, rebel honeybees are focused on personal reproductive
success instead of performing tasks for the colony.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects13050401/s1. Figure S1: Nasonov gland in normal workers observed under SEM
(according to Ptaszyńska et al.’s [57] method).
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