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Simple Summary: Diurnal, monthly, or seasonal temperatures can fluctuate substantially. Daily
temperature amplitudes (DTAs) can significantly impact the traits of insects but there is limited
evidence from the natural environment. Therefore, we studied the acclimation effects of DTA on
the longevity, total fecundity, early fecundity, and thermal tolerance of adult diamondback moths
(Plutella xylostella) under environmental conditions. The longevity, total fecundity, early fecundity,
and heat thermal tolerance of adults significantly changed under different DTAs. These findings
highlight the effects of DTA on the acclimation response in the P. xylostella phenotype, and DTA
should be incorporated into prediction models for assessing insect populations and the effects of
climate change.

Abstract: Daily temperature amplitudes (DTAs) significantly affect the ecological and physiological
traits of insects. Most studies in this field are based on laboratory experiments, while there is
limited research on the effects of changes in DTA on insect phenotypic plasticity under natural
conditions. Therefore, we studied the acclimation effects of DTA on the longevity, total fecundity,
early fecundity, and the thermal tolerance of adult diamondback moths (Plutella xylostella L.) under
naturally occurring environmental conditions. As DTAs increased, male longevity and total fecundity
decreased, and early fecundity increased. An increase in DTA was significantly associated with the
increased heat coma temperature (CTmax) of both males and females, but had no significant effect on
their cold coma temperature (CTmin). Our findings highlight the effects of DTA on the acclimation
response of P. xylostella and emphasize the importance of considering DTA in predicting models for
assessing insect populations and the effects of climate change.

Keywords: thermal acclimation; temperature amplitude; life history trait; thermal tolerance

1. Introduction

Temperature has a significant effect on the physiological metabolism [1], growth
and development [2,3], survival and reproduction [4–6], behavior [7,8], and other core
life activities of organisms. Environmental temperatures not only vary in terms of mean
temperature but also fluctuate daily, monthly, and seasonally [9]. Many researchers have
focused on the effects of climate change on biological phenotypes under different mean
temperatures in recent decades [10,11]. In recent years, the effect of temperature fluctuations
on different organisms have attracted increasing attention [12–14].

Acclimation is a process in which organisms adjust to a change in their environment,
such as atmospheric pressure, temperature, humidity, photoperiod, and pH. Temperature
acclimation has an important effect on various organisms [15] such as mollusks [16], rep-
tiles [17], birds [18], and fish [19], and it also has a significant effect on insects, which have
a short life cycle and high sensitivity to temperature [20]. Temperature acclimation substan-
tially affects the prospects for insect population dynamics and survival [21]. Laboratory
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studies have mainly focused on constant temperatures [22], while fewer studies have inves-
tigated two-step temperature variation [23–25] or only simulated daily high-temperature
changes to investigate the responses of insect life history traits [26], heat tolerance [27],
thermal escape behaviors [28], and fitness [29]. In the field, some studies have explored
the mixed effect of acclimation to the environmental mean and variance in temperature
on insect behavior [30], life-history traits [31], physiological and biochemical traits [32],
temperature tolerance [33], and gene expression [34]. To improve ecological relevance, the
effects of temperature acclimation should pay more attention to temperature amplitudes at
a similar mean temperature. There is a lack of studies investigating thermal tolerance and
the underlying functional transcriptomic responses in relation to insect acclimation to daily
temperature amplitude [35].

Plutella xylostella L. (Lepidoptera: Plutellidae) is a major pest of cruciferous vegetables
and it is distributed worldwide [36]. Studies have shown that temperature has a significant
effect on not only the development [37], survival [38], and reproduction [39] of P. xylostella
but also its migration pattern and regional distribution [40]. Correlation studies between
P. xylostella traits and temperature have mainly focused on the changes in a constant temper-
ature gradient or on a two-step temperature change [41,42]. The amplitude of temperature
change has significant effects on the different developmental stages of P. xylostella in the
laboratory [43–45]. The acclimation effects of natural temperature fluctuations on the
life-history traits and temperature tolerance of P. xylostella need further verification.

Therefore, in this study, we examined the influence of temperature amplitudes under
environmental conditions on the phenotype of P. xylostella, including adult longevity, total
fecundity, early fecundity, and heat and cold tolerance. We addressed the two following
questions: (1) what are the acclimation effects of natural temperature amplitudes on
longevity, total fecundity, early fecundity, and other traits? (2) Do natural temperature
amplitudes affect temperature tolerance?

2. Materials and Methods
2.1. Insect Rearing

Plutella xylostella individuals were collected from Wuhan, China (30.62◦ N, 114.13◦ E),
and were raised indoors on an artificial diet (Southland Products, Inc., Lake Village, AK,
USA) at a constant temperature of 25 ± 1 ◦C, relative humidity (RH) of 50–70%, and a daily
cycle of 15 h of light and 9 h of darkness [45].

A 24-well orifice plate was sterilized by irradiation with ultraviolet light for 30 min.
Thereafter, 1.7 mL of the artificial feed was injected into each well to feed P. xylostella. New
eggs (laid within the last 4 h) were transferred to each well (one egg per well) using a
paintbrush. The perforated plates were covered with a fine (200 mesh) nylon mesh for
ventilation and placed outside at an ambient temperature. The artificial feed was replaced
with fresh feed once daily. The development and survival of P. xylostella individuals were
recorded at 08:00 h every day. Within 4 h of pupal emergence, the adults were moved
indoors to mate and breed. Newly paired adults were moved to a glass tube (3 cm × 12 cm)
for mating and spawning. A nylon mesh (200 mesh) was attached to both ends of the glass
tube, and cotton balls (immersed in 10% honey water) were placed in the tubes for feeding.
From 15:00 to 16:00 h, the egg cards (3 cm × 4 cm sealing film soaked in cabbage juice)
were placed in each glass tube for egg laying. The glass tubes, egg cards, and cotton balls
were replaced at 08:00 h every day until the adults died. The total number of eggs laid per
day was recorded.

2.2. Experimental Protocol

Four batches of new eggs produced within 4 h (approximately 200 eggs per batch)
were placed outside the lab to be exposed to different ambient temperatures in Fanshi
County, a major cruciferous vegetable planting area in Shanxi Province, China. Here, the
mean monthly temperature does not significantly change in summer when vegetables
are usually planted; however, the monthly temperature amplitudes change significantly
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(Table 1 and Figure 1). Batches 1–4 were placed outdoors from 24 May to 17 June, 30 June to
18 July, 22 July to 10 August, and 14 August to 30 August 2011, respectively, and exposed
to different daily temperature amplitudes.

Table 1. Actual recorded ambient temperatures (mean ± SD) in different treatment groups.

Group Duration
Actual Recorded Temperature

DMT 1 (◦C) DTA (±◦C) DHT (◦C) DLT (◦C)

1 5/24–6/17 20.8 ± 1.8 b 7.3 ± 1.7 a 27.6 ± 2.3 a 14.2 ± 2.6 b
2 6/30–7/18 22.6 ± 1.5 a 5.2 ± 1.6 ab 28.0 ± 2.6 a 17.3 ± 1.9 a
3 7/22–8/10 22.8 ± 1.6 a 6.1 ± 1.2 ab 29.3 ± 2.4 a 17.3 ± 1.9 a
4 8/14–8/30 20.2 ± 2.3 b 4.1 ± 1.4 b 25.4 ± 2.7 b 16.0 ± 3.0 ab

df 3.25 3.19 3.20 3.17
MS 33.012 38.271 47.493 51.252
F 9.809 16.893 7.658 9.120
p <0.001 <0.001 <0.001 <0.001

1 DMT, DTA, DHT, and DLT represent the daily mean temperature, daily mean temperature amplitude, daily
mean high temperature, and daily mean low temperature, respectively. Different letters indicate significant
differences (p < 0.05) among the treatments with Tukey HSD test.
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Figure 1. Daily mean temperature (DMT) (solid black line) and daily mean temperature amplitude (DTA)
(grey area) experienced by cruciferous vegetable species grown in fields from 24 May to 30 August 2011
in Fanshi County, Shanxi Province, China.

P. xylostella were developed outside under the different daily temperature amplitudes
from the egg stage to the pupal stage. During this time, the larvae were artificially fed.
Then, the newly emerged adults (within 4 h of emergence) were moved indoors (at a
constant temperature of 25 ± 1 ◦C and a moderate RH of 50–70%) and divided into
two groups.

In the first group, after pupal emergence, the new females were paired with males in
4 h. The numbers of new pairs for the different temperature amplitudes were as follows:
±4.1 ◦C: 10; ±5.2 ◦C: 10; ±6.1 ◦C: 11; ±7.3 ◦C: 11. The new pairs were transferred to
the glass tubes for mating and oviposition. Then, the longevity (number of days from
emergence to death), total fecundity (total number of eggs), and early fecundity (percentage
of eggs laid during the first three days of the oviposition period relative to the total number
of eggs) were measured.

In the second group, the heat and cold tolerance of each adult was measured using
Huber (Peter Huber Kältemaschinenbau AG, Offenburg, Germany). To measure heat
tolerance, adults were placed in a closed and transparent reaction kettle (Huber external
equipment). The ambient temperature in the reaction kettle was increased from 22 to 45 ◦C
at a rate of 0.1 ◦C/min. During this period, we recorded heat coma temperature (CTmax)
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as the temperature at which the last movement of an individual’s foot or tentacle was
observed. Sixty adults were used for each treatment with a sex ratio of 1:1. To measure
the cold tolerance, adults were placed in the same equipment. The ambient temperature
in the reaction kettle was decreased from 22 ◦C to 15 ◦C at a rate of 0.5 ◦C/min, followed
by a decrease to 0 ◦C at a rate of 0.1 ◦C/min, and the individuals were maintained at
this temperature for 5 min. During this period, we recorded cold coma or chill coma
temperature (CTmin) as the temperature at which the last movement of an adult’s foot or
tentacle was observed. Sixty adults per treatment were used with a sex ratio of 1:1.

2.3. Statistical Analysis

All data were analyzed using SPSS 21.0 (SPSS Inc., Chicago, IL, USA). All data were
evaluated for normality and homoscedasticity and, if needed, were arcsine-, square root-,
or log-transformed. The CTmin and CTmax of males and CTmax of females were square
root-transformed, whereas the longevity of males and females was transformed using
log10 (x + 1) before analysis. Pearson correlation coefficient [46] and stepwise multiple
regression [47] was performed to determine how the main temperature-related factors,
such as the daily mean temperature, daily temperature amplitude, daily high temperature,
and daily low temperature, affected different traits of P. xylostella. The data were subjected
to one-way analysis of variance (ANOVA) to assess the effects of different DTAs on the
longevity of females and males, total fecundity, early fecundity, CTmin, and CTmax. Means
were separated using Tukey’s honestly significant difference (HSD) test (one-way ANOVA)
when significant differences were found at p < 0.05, and they are shown as mean ± standard
deviation (SD).

3. Results
3.1. Correlation Analysis among P. xylostella Traits and Temperature Factors

Pearson correlation analysis was performed to explore the possible association among
temperature factors and P. xylostella traits. The daily mean temperature, daily high temperature,
and daily low temperature were not correlated with P. xylostella traits. The daily temperature
amplitude was highly correlated with most of the traits of P. xylostella (r2 > 0.7) (Table 2). The
stepwise multiple regression analysis revealed that the daily mean temperature did not
affect P. xylostella traits. Daily high temperature, and daily low temperature affected female
CTmax (y4 = 5.962 x1 − 5.102 x2 + 4.433 x3; F = 41.917; df = 3.120; p < 0.001) (Table 3). Daily
temperature amplitude significantly affected the male longevity (y1 = −0.441 x1; F = 9.658;
df = 1.42; p = 0.003), total fecundity (y2 = −0.479 x1; F = 11.902; df = 1.42; p = 0.001), early
fecundity (y3 = −0.497 x1; F = 12.140; df = 1.42; p = 0.001), female CTmax (y4 = 5.962 x1 −
5.102 x2 + 4.433 x3; F = 41.917; df = 3.120; p < 0.001), and male CTmax (y5 = 0.658 x1; F = 89.926;
df = 1.120; p < 0.001) (Table 3). Through these analyses, the most important factor in P. xylostella
traits was assigned to the daily temperature amplitude.

Table 2. Results of the Pearson correlation coefficient among Plutella xylostella traits and temperature
factors.

Trait DMT (◦C) DTA (±◦C) DHT (◦C) DLT (◦C)

Female longevity −0.12 −0.22 −0.35 −0.09
Male longevity −0.07 −0.96 *1 −0.56 +0.52
Total fecundity +0.07 −0.97 * −0.43 +0.66
Early fecundity −0.39 +0.79 +0.02 −0.88
Female CTmax −0.20 +0.92 +0.30 −0.71
Male CTmax −0.13 +0.96 * +0.51 −0.46

Female CTmin −0.32 +0.70 +0.01 −0.80
Male CTmin +0.24 +0.90 +0.54 −0.42

1 Significant p-values are indicated in a bold typeface. * represents a significant difference at p < 0.05.
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Table 3. Stepwise multiple regression with Plutella xylostella traits as the dependent variable and
temperature factors as independent variables.

Mode df MS F p

y1
1 = −0.441 x1

2 1.42 36.823 9.658 0.003 3

y2 = −0.479 x1 1.42 7751.408 11.902 0.001
y3 = −0.497 x1 1.42 0.027 12.140 0.001

y4 = 5.962 x1 − 5.102 x2 + 4.433 x3 3.120 24.755 41.917 <0.001
y5 = 0.658 x1 1.120 62.018 89.926 <0.001

1 y1, y2, y3, y4, and y5 represent, respectively, male longevity, total fecundity, early fecundity, female CTmax, and
male CTmax. 2 x1, x2, and x3 represent, respectively, daily temperature amplitude, daily high temperature, and
daily low temperature. 3 Significant p-values are indicated in a bold typeface.

3.2. Influence of Temperature Amplitude on the Longevity and Fecundity

The temperature amplitudes had no significant effect on the longevity of females
(F = 1.081; df = 3, 42; p = 0.369), but significantly increased the longevity of males
(F = 4.309; df = 3, 42; p = 0.010) (Table 4 and Figure 2). There were significant differences in
the longevity of males among the amplitude temperatures of ±4.1, ±5.2, and ±7.3 ◦C. The
longevity of males was reduced by 0.3, 1.7, and 2.4 days at temperature amplitudes of ±5.2,
±6.1, and ±7.3 ◦C, respectively, compared with that at the amplitude temperature of ±4.1 ◦C.

Table 4. Effects of the daily temperature amplitude (DTA) on female and male Plutella xylostella traits
as determined by ANOVA.

Trait df MS F p

Female longevity 3.42 0.071 1.081 0.369
Male longevity 3.42 0.118 4.309 0.010 1

Total fecundity 3.42 2752.413 4.094 0.013
Early fecundity 3.42 116.564 6.033 0.002
Female CTmax 3.120 0.165 44.374 <0.001
Male CTmax 3.120 30.194 53.481 <0.001

Female CTmin 3.120 0.015 0.502 0.682
Male CTmin 3.120 0.341 0.374 0.772

1 Significant p-values are indicated in a bold typeface.
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Figure 2. Box plot of the longevity of females and males of Plutella xylostella developed under four 
daily temperature amplitudes, with a similar mean temperature. The upper and lower boundaries 
Figure 2. Box plot of the longevity of females and males of Plutella xylostella developed under four
daily temperature amplitudes, with a similar mean temperature. The upper and lower boundaries of
the box indicate the 75th percentile and 25th percentile of the data set. The black horizontal line and
black square within the box represent the median and mean values, respectively. Error bars above
and below the box indicate the minimum and maximum values, respectively. Different letters above
each box indicate significant differences (p < 0.05) among the treatments.
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The temperature amplitudes significantly decreased the total fecundity (F = 4.094;
df = 3, 42; p = 0.013) (Table 4 and Figure 3). The total fecundity was significantly differ-
ent among females exposed to the temperature amplitudes of ±4.1, ±5.2, and ±7.3 ◦C.
Compared to the temperature amplitude of ±7.3 ◦C, the total fecundity was increased by
36.0 and 31.9 eggs per female at temperature amplitudes of ±4.1 and ±5.2 ◦C, respectively.
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The temperature amplitudes induced a significant increase in early fecundity
(F = 6.033; df = 3, 42; p = 0.0021) (Table 4 and Figure 3). The early fecundity increased
by 7.0%, 6.2%, and 7.1%, in the temperature amplitudes of ±4.1, ±5.2, and ±6.1 ◦C,
respectively, compared with that of females exposed to the temperature amplitude of
±7.3 ◦C (70.8%).

3.3. Influence of Temperature Amplitude on the Thermal Tolerance

The temperature amplitudes significantly increased the CTmax of females (F = 44.374;
df = 3, 120; p < 0.001) (Table 4 and Figure 4). The CTmax of females was reduced by 2.1, 1.7,
and 1.6 ◦C at temperature amplitudes of ±4.1, ±5.2, and ±6.1 ◦C, respectively, compared
with the widest temperature amplitude of ±7.3 ◦C. The temperature amplitudes also had a
significant increase in the CTmax of males (F = 53.481; df = 3, 120; p < 0.001) (Table 3). The
CTmax of male was significantly different between the temperature amplitudes of ±7.3 and
±6.1 ◦C, but not between the temperature amplitudes of ±5.2 and ±4.1 ◦C. Compared
with the temperature amplitude of ±7.3 ◦C, the temperature amplitudes of ±4.1, ±5.2, and
±6.1 ◦C caused the CTmax of males to decrease by 2.2, 2.0, and 1.3 ◦C, respectively. The
temperature amplitudes had no significant effect on the CTmin of females (F = 0.502; df = 3,
120; p = 0.682) or males (F = 0.374; df = 3, 120; p = 0.772) (Table 4 and Figure 5).
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4. Discussion
4.1. Influence of Temperature Amplitudes on Longevity and Fecundity

Temperature amplitudes had differential effects on the longevity of adult P. xylostella.
The amplitudes did not affect the longevity of females, but the longevity of males was
significantly reduced with the increase in temperature amplitudes. This difference can be
attributed to a higher heat tolerance in females than in males [48]. In addition, with an
increase in the temperature amplitudes, when the daily high temperature was close to or
exceeded 30 ◦C, male longevity gradually shortened. This suggests that temperature did
not inhibit male longevity above 30 ◦C. This result differed from that which was previously
reported. For example, at constant temperatures, male longevity was 8.9 days at 20 ◦C;
at 27.5 ◦C, it reached its lowest value (6.7 days), but it was significantly increased up to
9.2 days at 30 ◦C [49]. This indicates that male longevity was significantly prolonged at 30
◦C. This difference could be because when P. xylostella individuals are exposed to high daily
temperatures, their metabolic rates for the synthesis of heat shock proteins and polyhydroxy
compounds increase, and so does their heat resistance [50]. When an adult is exposed
to a high temperature during the day, an appropriate recovery temperature at night can
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slow down the metabolic rate and reduce energy loss, allowing the insect to accumulate
sufficient energy and resist the adverse effects of the next high-temperature period. Thus,
after exposure to daily high temperatures, the appropriate recovery temperature at night
plays a role in the repair of the cellular or protein structural recovery of insect [51].

The temperature amplitude of ±7.3 ◦C significantly inhibited the total fecundity of
P. xylostella. Insects subjected to various environmental stresses, such as malnutrition [52],
temperature stress [45,53], and oxygen stress [54], at a certain developmental stage can
experience direct negative effects on survival, development, and reproduction. These
outcomes can be attributed to no significant change in the number of cells in the body after
an organism experiences environmental stress at a certain developmental stage [55], but
they have a significant effect on energy distribution in the body [56]. When the P. xylostella
individual was subjected to a temperature amplitude of ±7.3 ◦C (daily high temperature
up to 30 ◦C), it led to a higher expression of heat shock proteins (HSPs) [57]. This process
increases energy consumption [58], which may cause a significant reduction in the total
fecundity [59].

We also found that early fecundity by adults significantly increased after exposure
to a temperature amplitude of ±7.3 ◦C. The early fecundity significantly increased (up
to 71%) at the temperature amplitude of ±7.3 ◦C, compared with 64% of females at the
temperature amplitude of ±4.1 ◦C. Environmental stress can induce adults to lay eggs as
early as possible to avoid adverse effects later in life [45,60]. In our study, the variation in
early fecundity, caused by a daily high temperature (30 ◦C) with a temperature amplitude
of ±7.3 ◦C, may have been a response to temperature stress, causing accelerated spawning
under adverse conditions to maximize fitness before further deterioration and to prevent
further damage later in the life cycle, or may be a trade-off of temperature acclimation at
the expense of fecundity.

4.2. Influence of Temperature Amplitude on Thermal Tolerance

There was a significant difference in the heat tolerance of adults after a change in
the temperature amplitudes. However, the cold tolerance of adults was not affected.
There are two hypotheses on the relationship between cold tolerance and heat tolerance
in insects. One hypothesis suggests that heat and cold tolerances in insects are relatively
independent of each other [61], the other hypothesis suggests that there is a positive
correlation between heat and cold tolerances in insects [62]. Our results showed that the heat
and cold tolerances (CTmax and CTmin) of P. xylostella adults were relatively independent of
their responses to hot and cold periods in a fluctuating-temperature experiment, suggesting
that different regulatory mechanisms or pathways might be involved [13]. We also showed
that even when the mean temperature in the natural environment was suitable for the
survival and development of P. xylostella, its heat tolerance significantly improved when
individuals experienced wide temperature amplitudes. This finding is not consistent with
previous studies on the heat tolerance of P. xylostella. In particular, after feeding at constant
temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, no significant differences were observed in the heat
tolerance of P. xylostella adults [63]. Insects exposed to a high temperature approaching or
reaching the heat tolerance limit during a short period produced more heat shock proteins
than those exposed to constant temperatures. Wide temperature amplitudes could have
beneficial effects on the heat tolerance of insects [64].

4.3. Implications for Pest Population Modeling

To understand the effects of environmental conditions on insect population dynam-
ics and distribution, the degree-day model based on the mean temperature was widely
used [65–67]. However, the effects of daily temperature amplitude at similar mean temper-
atures are often overlooked. We found that the longevity, total fecundity, early fecundity,
and thermal tolerance of P. xylostella significantly changed under DTAs. These temperature
amplitude patterns during the day and night under similar mean temperatures should
be incorporated into prediction models for insect populations to simulate the effects of
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complex temperature patterns in nature on the ecology of P. xylostella populations and to
predict the occurrence of this pest in the field.

5. Conclusions

In summary, this study provides an overview of the longevity, total fecundity, early
fecundity, and thermal tolerance of P. xylostella under temperature fluctuations in a field
setting. It is imperative to employ temperature fluctuations corresponding to the field
conditions experienced by P. xylostella from the egg stage to the pupal stage. Our findings
highlight the effects of DTAs on the phenotype and acclimation response of P. xylostella,
thus emphasizing the importance of considering DTA when predicting models for assessing
insect populations and the effects of climate change.
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