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Simple Summary: Costa Rica is near malaria elimination. However, sporadic outbreaks still occur, 

and while control strategies have been focused on delivering efficient treatments for infected pa-

tients, an open question is whether control measures targeting the dominant vector, Anopheles albi-

manus, are appropriately designed given their ecology and distribution. Here, we illustrate the use 

of an ensemble species distribution model (SDM) as a tool to assess the potential exposure to An. 

albimanus in palm and pineapple plantations, and to also assess the potential involvement of this 

mosquito vector in transmission foci where entomological surveillance is not feasible. We found 

that both oil palm and pineapple plantations are very likely to harbor An. albimanus. By contrast, 

environments at the Crucitas open-pit gold mine, the epicenter of malaria transmission in 2018 and 
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2019, have low suitability for this mosquito species. Our results suggest that medium to high reso-

lution SDMs can be used to plan vector control activities. Finally, we discuss the high suitability of 

oil palm and pineapple plantations for An. albimanus in reference to recently developed social sci-

ence theory about the Plantationocene. 

Abstract: In the absence of entomological information, tools for predicting Anopheles spp. presence 

can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species 

distribution models (SDM) could quantify potential dominant vector species presence in malaria 

elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus 

Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 oc-

currence records and 70 model projections. SDM covariates included nine environmental variables 

that were selected based on their importance from an original set of 28 layers that included remotely 

and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness 

of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting 

ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations 

and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive 

of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS 

for An. albimanus at the presumed epicenter of malaria transmission during 2018–2019 in Costa Rica, 

yet this vector was likely present at the two main towns also affected by the epidemic. Our results 

illustrate how ensemble SDMs in malaria elimination settings can provide information that could 

help to improve vector surveillance and control.  

Keywords: gold mining; Costa Rica; Plasmodium; vivax malaria; productive landscapes; oil palms; 

pineapples; plantationocene; Schmalhausen’s law 

 

1. Introduction 

Species distribution models (hereafter SDMs) predict species distribution ranges in a 

space defined by coordinates (hereafter G-space). This concept is commonly confused 

with environmental niche models (hereafter ENMs), which attempt to depict the species 

distribution across a series of environmental gradients, or an environmental space (here-

after E-space) [1,2]. These approaches use georeferenced occurrence points and associated 

environmental information, plus computer algorithms, to generate models of the proba-

bilistic distribution of a species in a E-space that becomes projected into a G-space, while 

reducing errors regarding species distribution [3,4].  

Based on both SDMs and ENMs, populations can be conceived as occupying envi-

ronmental niches that are similar (‘niche similarity’; Peterson et al. [5]) or identical (‘niche 

equivalency’; Graham et al. [6]). While the first is relevant for testing broad biogeographic 

and evolutionary hypotheses, the latter is useful for testing the transferability of niche 

models in space and over relatively short periods of time [7]. In other words, SDMs over-

come the limitations of traditional approaches, such as the widely implemented “Extents 

of Occurrence” [1,8,9], for depicting the spatial range of a species as they are not based on 

opinions but quantitative relations. SDMs and ENMs can help to forecast trends in biodi-

versity loss driven by changing environmental conditions to forecast biological invasions 

and resolve questions about ecological and evolutionary diversification in response to en-

vironmental changes [5,10–14].  

Mosquitoes in the genus Anopheles (Diptera: Culicidae) include several vectors of hu-

man malaria [15]. Successful malaria control efforts have been largely based on vector 

reduction [16]. However, anthropogenic changes to the landscape and vector control ac-

tivities have been accompanied by shifts in major anopheline vector species, which can be 

assessed employing information from SDMs and ENMs. To take several examples, dom-
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inant vector species can adapt and expand into new geographic areas and habitats, be-

come resistant to insecticides, or be displaced by other species, whose genetics and behav-

ior are unknown. Additionally, unidentified anopheline taxa within cryptic species com-

plexes may represent incipient evolutionary units, whose ability to adapt to climate 

change and transmit Plasmodium spp. parasites to humans vary with respect to isolated 

populations of the same species [17]. All of this evolutionary complexity occurs against a 

backdrop of environmental alteration driven by human activity, which in turn influences 

mosquito distribution, species composition and density. The result of these interactions is 

highly focal and often leads to idiosyncratic malaria transmission patterns that are poorly 

characterized, and where standard interventions are not well adapted to reduce transmis-

sion, as has been observed in the Anopheles gambiae complex from Africa [18–20]. Hence, 

there is a critical need to characterize the link between anopheline mosquitoes and the 

environment, especially in malaria endemic areas where SDMs and ENMs can help to 

design and implement precise control activities across the suitable habitat of local malaria 

vectors [21–23]. In Mesoamerica, the dominant vector species across the region is Anophe-

les albimanus Wiedemann [24,25]. An. albimanus primarily occurs below 500 m [24,25], alt-

hough it has been observed at higher elevations [26]. This mosquito species is crepuscular, 

zoophilic and exophagic, with exophilic resting behavior. Larvae and adults have been 

found over a wide variety of ecological contexts [27]. Prior SDMs for An. albimanus in 

Mesoamerica have been performed at relatively coarsely grained spatial scales between 1 

and 8 km [21,27,28], and these efforts have relied on the use of single algorithms, including 

boosted regression trees [27] and MAXENT [21,28], which have not been evaluated as part 

of ensembles, which are known to increase the precision and accuracy of SDMs [29]. 

In Mesoamerica, malaria is still an important vector-borne disease. However, Costa 

Rica is on the verge of eliminating the disease. This malaria elimination is the result of 

several control efforts, where elimination has been accelerated following changes in the 

treatment coupled with mass drug administration campaigns [30,31] and housing quality 

improvement [32]. Nevertheless, since 2016, malaria cases re-emerged given the trans-

boundary movements of pineapple plantation workers from Nicaragua [30], and illegal 

gold mining in the Crucitas district of San Carlos county [33]. In the malaria elimination 

context, SDMs are of great value as they can help to quickly evaluate the potential pres-

ence of a vector in an area with malaria transmission, but without entomological infor-

mation. For example, in Costa Rica, the most recent malaria outbreaks have been con-

trolled during the dry season [31] when it is difficult to collect vector samples [34,35]. 

Using an SDM, for example, it can be quickly assessed if a dominant vector, such as An. 

albimanus, is, or was, likely to be present in areas with transmission, thus allowing the 

planning of precise control interventions for the rainy season when the mosquito is more 

abundant [35]. Similarly, SDMs can be used to determine whether dominant vector spe-

cies are likely to be present in areas where vulnerable populations migrate for economic 

reasons. From the perspective of vector control operations, however, SDMs even at 1 km 

are limited in their ability to help plan precise control operations. Given the current ca-

pacities in the national vector control program of Costa Rica [36], fine- and ultra-fine-res-

olution SDMs will more effectively guide the identification of larval habitats and/or the 

implementation of insecticide applications following the detection of malaria cases, fol-

lowing current protocols for malaria outbreak mitigation [37]. 

Here, we use mid-resolution spatial data, at 250 m, where we incorporate several 

layers derived from remotely sensed and locally measured environmental variables to 

create an ensemble SDM for An. albimanus. This SDM, which combines predictions from 

an ensemble of several quantitative methodologies, is a robust approximation to the dis-

tribution of this major malaria vector, which we use to retrospectively assess the possibil-

ity that this vector was present in the transmission foci associated with malaria epidemics 

in 2018 and 2019 [31,38] and in landscapes used for pineapple production, where some 

malaria outbreaks have been recurrently observed over recent years. 
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2. Materials and Methods 

2.1. Mosquito Occurrence Records 

We assembled a dataset of An. albimanus occurrences with records from collections 

made largely by the vector control program of the Costa Rican Ministry of Health during 

surveillance and control activities for vector-borne diseases [39]. Additional occurrence 

data were obtained from the Global Biodiversity Information Facility (GBIF—

https://www.gbif.org/ accessed on 20-02-2021) by searching the terms “Anopheles albi-

manus” for species and “Costa Rica” for country. For the GBIF, we did not restrict the time 

frame for the search, which allowed us to consider a larger collection of occurrence points. 

Only occurrences that were georeferenced were selected. We also included records from 

molecular population genetic studies on An. albimanus from southern Mesoamerica, 

which encompassed extensive mosquito sampling across Costa Rica [28,40,41]. Records 

from the genetic studies and the vector control program were collected after 2000. Occur-

rence records used in this study are available online at https://osf.io/acjyg/. 

2.2. Occurrence Data Quality Control 

Occurrence data (Figure 1) were checked for duplicates and records with incomplete 

location information. When found, these records were removed. Surveillance data com-

monly suffer from spatial bias for a variety of reasons, including site accessibility and un-

even sampling efforts. This clustering of occurrence points can result in the overrepresen-

tation of certain areas and, subsequently, model overfit [42]. As such, occurrence records 

occurring within 0.5 km of each other were removed using the spThin function from the R 

package “spThin” [43], which is described in [44]. We started with 227 records and ended 

with 110 occurrence records after thinning the dataset.  

 

Figure 1. Map showing the distribution of Anopheles albimanus record locations; divisions indicate 

the districts of Costa Rica. The inset histogram shows the distribution of elevations from locations 

where An. albimanus has been sampled. The inset legend indicates symbols and color coding for the 

presence of An. albimanus. The vector file for the districts of Costa Rica is from Costa Rica’s National 

Geographical Institute [45]. The map used a public domain map from the US National Park Service 

as its base [46]. An. albimanus has been recorded in all seven provinces of Costa Rica, in 28 out of 83 

counties and in 55 out of 487 districts. 
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2.3. Pseudoabsence Points 

While it is possible to fit species distribution models with presence-only data, using 

presence–absence data has been shown to have superior performance [6]. However, true 

absence points are rare and particularly difficult to confirm for mobile species [47]. With-

out true absence points, we rely on an artificial set of absence points, termed pseudoab-

sence points [47,48]. There are many different strategies for generating these points, so we 

refer to the suggestions by Barbet-Messin et al. [47], who detail the best sampling method 

based on the SDM algorithms used. Pseudoabsences were generated using the “SRE” 

method in the biomod2 package. This method uses a surface range envelope (SRE) model 

to identify a range of suitable environmental conditions [49]. Pseudoabsence points are 

then sampled randomly outside of that area, as they are considered to be environmentally 

dissimilar from the location of presence points. 

2.4. Environmental Data 

We created a multilayer raster that included several variables that have been associ-

ated with the occurrence of An. albimanus. Table 1 shows all the covariates included in the 

multilayer raster, whose sources and processing are described in the Data Sources and Pro-

cessing subsection. 

2.5. Data Sources and Processing 

When building our multilayer raster, we used surfaces for the enhanced (EVI) and 

normalized difference vegetation indices (NDVI) from moderate resolution imaging spec-

troradiometer (MODIS) images [50,51] as the basis grid. EVI and NDVI are commonly 

used as vegetation growth proxies [52], with EVI being more appropriate for measuring 

differences in areas with high canopy and dense vegetation [51]. We also included other 

raster layers from MODIS, including data for surface temperature [53], as well as a for-

est/non-forest land use classification based on advanced land observing satellite (ALOS) 

phased arrayed L-band synthetic aperture radar (PALSAR) images [54]. The PALSAR for-

est classification is based on identified forests with an area larger than 0.5 ha, with over 

10% forest coverage in accordance with the Food and Agriculture Organization (FAO) 

definition [54]. We also included data for population density from the Gridded Population 

of the World, Version 4 (GPWv4) with the Population Density Adjusted to Match 2015 

Revision of UN WPP Country Totals dataset [55]. Data from the NASADEM_HGT v001 

digital elevation model were also included [56]. 

All raster data were downloaded from Google Earth Engine (GEE) using javascript 

code available on the GEE website [57]. For MODIS and PALSAR variables that had time 

series of images, we estimated median, standard deviation, kurtosis and maximum and 

minimum composite images using the javascript reducer function in GEE. The down-

loaded data were warped, i.e., re-projected and re-sampled [58], using the bicubic spline 

algorithm and the EVI/NDVI grid as a template, using the command sf_warp from the 

“stars” package of R. We chose the bicubic spline algorithm, given that it has the best 

performance in terms of precision and accuracy when compared with other algorithms 

used to resample raster images [59]. The resulting 250 m digital elevation model was fur-

ther processed to estimate slope, aspect and roughness using the terrain function of the 

“raster” package for R. Slope and aspect were measured in radians. Briefly, slope is the 

rate of elevational change of the landscape measured in the steepest direction at any point, 

while the aspect is the direction in which the slope is measured (where 0 is north, π/2 is 

east, π is south and 3π/2 is west) [60]. Meanwhile, roughness at a given pixel is the largest 

elevation difference within the set of nine pixels composed by that given (‘focal’) pixel 

and its eight surrounding neighbor cells in the rectangular raster grid [61].  

We also included rainfall [62] and temperature [63–65] data from the Costa Rican 

National Meteorological Institute and data about the built environment based on a cou-

pled photogrammetric and cadastral record analysis [45]. These data were vector files 
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[45,62–65], and were rasterized over the 250 m grid of EVI and NDVI raster layers using 

the command sf_rasterize of the R package “stars”. 

All the raster layers were then stacked into a multilayer raster brick with the com-

mands stack and brick from the “raster” package using R. The resulting multilayer raster, 

with a resolution of 250 m, is available online at https://osf.io/acjyg/. 

Table 1. Environmental covariates considered for Anopheles albimanus species distribution modeling 

in Costa Rica. * Geological feature, ** vector files. 

Covariate 

Raster Original Spatial 

Resolution (Covariate 

Units) 

Frequency (Period 

Sampled) 

Derived Layers 

(Abbreviation) 

MODIS—Enhanced Vegetation Index 

(EVI) 
250 m (Adimensional Ratio) 

16 days  

(2000-02-24 to  

2019-12-31) 

Standard Deviation, SD 

(EVSD) 

Kurtosis (EVIK) 

Maximum (EVMA) 

Minimum (EVMI) 

Median (EVI) 

MODIS—Normalized Difference 

Vegetation Index (NDVI) 
250 m (Adimensional Ratio) 

16 days  

(2000-02-24 to  

2019-12-31)  

SD (NVSD) 

Kurtosis (NVIK) 

Maximum (NVMA) 

Minimum (NVMI) 

Median (NDVI) 

MODIS—Land Surface Temperature 1000 m (° Kelvin) 

Daily  

(2000-02-24 to  

2019-12-31) 

SD (TSDM) 

Kurtosis (TKM) 

Maximum (TMAM) 

Minimum (TMIM) 

Range (TRM) 

Median (TMM) 

PALSAR—Forest/Non-Forest  
25 m (1 = Forest, 2 = Non-

forest, 3 = Water) 
Annual (2007–2019)  

Mode (PFC) 

SD (PFSD) 

Kurtosis (PFK) 

NASA—Digital Elevation Model 
30 m (Meters Above Sea 

Level) 
2000 s * 

Elevation (ELEV) 

Aspect (ASP) 

Roughness (ROUG) 

Slope (SLOP) 

GPWv4—Population Density 
1000 m (Population 

Density) 
2015 

Population Density 

(POPD) 

INM—Rainfall 1:5000 (mm) ** 

Annual average based on 

daily records (1963-01-01 

2013-12-31) 

Rainfall (RAIN) 

INM—Temperature  1:5000 (°C) ** 

Annual average based on 

daily records (1963-01-01 

2013-12-31) 

Mean (TMS) 

Minimum (TMIS) 

Maximum (TMAS) 

2.6. Parametric Models, Machine Learning Algorithms and Variable Selection 

We employed a parametric model for SDM, the logistic generalized linear model (L-

GLM), which can predict the presence and absence of a species based on a linear combi-

nation of variables [66]. We also employed the following six machine learning algorithms 

to produce models that estimate habitat suitability: classification and regression tress 

(CAT), generalized boosted regression models (GBM) [67], random forests (RF) [68], arti-

ficial neural networks (ANN) [68], the multiple adaptive regression splines (MARS) and 
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MAXENT [1–3]. GBM and RF are based on the use of CAT, which are computational tools 

that iteratively find thresholds and other non-linearities in the association of covariates 

with a response [69]. In the case of GBM, trees are boosted, meaning that simpler trees are 

combined to improve the accuracy of predictions [67]. In RF, trees are built for resampled 

datasets in a fashion similar to the one used for building a bootstrap [68,70]. Meanwhile, 

ANN are models that incorporate non-linearities in the association of variables by using 

nonlinear functions that combine the information from several variables (called ‘inputs’ 

in ANN terminology) in layers of neurons, which become combined (‘activated’) to gen-

erate a prediction (‘output’) [68]. MARS is a technique that uses spline fitting to find piece-

wise linear basis functions that accommodate non-linear relationships between the envi-

ronmental covariates and presence probability of a species [71]. Finally, MAXENT max-

imizes an entropy function that separates the distribution of environmental variables from 

pixels where the species has been recorded from the background distribution of the same 

variables where the studied species has not been sampled, taking into account the con-

straints derived from environmental conditions [3]. 

For variable selection, we generated 10 sets of 110 pseudoabsence points, as the pro-

cess of data cleaning left us with 110 occurrences and machine learning algorithms work 

best with symmetric datasets [47,68], i.e., with the same number of occurrence and pseu-

doabsences in this case. Pseudoabsence points were generated using the surface range 

envelope algorithm described in Section 2.3, where points are chosen at random from ar-

eas considered to be environmentally dissimilar from the locations of presence points [47]. 

We then ran each one of the seven methods mentioned above three times, and each of the 

three times, we included 100 permutations for each covariate at a time to estimate variable 

importance, a measurement of the drop in explained variance or prediction accuracy. 

Based on this preliminary analysis, we chose all variables whose importance was above 

5%. Once a reduced number of covariates was selected, we generated an additional pseu-

doabsence dataset of 110 locations, which was run ten times with each one of the seven 

models, including 100 permutations for each covariate to assess their importance. We used 

the resulting values to generate an ensemble SDM map that weighted all the resulting 70 

projected predictions for An. albimanus habitat suitability, using the ROC value from each 

individual model. 

Evaluation strip plots were employed to visualize the probability of occurrence re-

sponse curve for each covariate in the final model. The strip plots are generated by pro-

ducing a prediction from a model using a new dataset in which only one variable is al-

lowed to vary in a sequence between the minimum and maximum, while the other varia-

bles are fixed at their median values [72]. 

All analyses were completed using the biomod2 package [49,73] for R [74]. This pack-

age was selected for its ability to incorporate several techniques and for its reproducibility. 

Five folds were created with 10 repetitions, and each data partition contained approxi-

mately the same number of presence points. The BIOMOD_Modeling function was used 

for model generation, and a total of 280 individual models were fit for variable selection, 

and 70 additional models were fit to generate the SDM map. As mentioned above, models 

were evaluated using k-fold cross-validation, and the evaluation statistics returned were 

area under the curve (AUC) and the true skill statistic (TSS). The AUC statistic estimates 

the model’s likelihood to correctly differentiate between presence and absence locations, 

with a value of 0.5 suggesting that model performance is no better than random chance. 

The TSS statistic works similarly and is equal to the sum of model sensitivity and speci-

ficity minus one. A final ensemble model was fit to include all models with an AUC score 

of 0.7 or higher, and each model was weighted proportionally to its AUC score. We only 

consider AUC scores of 0.7 and above, as they are considered to demonstrate high model 

performance [75].  
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2.7. Applications for SDMs in the Context of Malaria Elimination 

We used the resulting ensemble SDM for An. albimanus to investigate its probable 

presence in the productive landscapes of Costa Rica, i.e., areas with plantations of com-

modity crops for export. We also retrospectively evaluated if An. albimanus was likely to 

be present in the 2018–2019 malaria outbreak associated with open-pit gold mining in 

Crucitas [31]. 

2.7.1. Background Information about Productive Landscapes in Costa Rica 

In Costa Rica, oil palm has been a major commodity crop for export since the 1940s, 

with the country producing around 190,000 metric tons of crude oil per year [76,77]. As of 

2019, Costa Rica has 73,900 hectares in oil palm plantations [78]. Another common com-

modity crop is pineapple. An interesting feature of pineapple plantations in Costa Rica is 

that their total area has been increasing in recent years, rising from approximately 13,300 

ha in 2000 to 65,400 ha in 2019 [79]. This substantial shift in land use, central to the devel-

opment of the northern border in the country, has occurred as pineapple has become a 

major commodity crop for markets in Europe and North America [80]. Currently, Costa 

Rica is the main global producer of pineapples, reporting revenues close to USD one bil-

lion per year [81]. Figure 2 shows the location and extent of palm oil (Figure 2A) and 

pineapple (Figure 2B), which are present, respectively, in 80 and 51 districts out of 487 

districts in the country, according to estimates for 2019. 

 

Figure 2. Major plantation landscapes of Costa Rica for (A) oil palm and (B) pineapple. In both 

panels, the inset legends indicate the location of the plantations, and districts are colored according 

to the presence of plantations. Estimates are for 2019 and based on estimates from the PRIAS lab at 

the Centro Nacional de Alta Tecnología, CENAT [78,79]. 

2.7.2. Anopheles albimanus in Productive Landscapes of Costa Rica 

Oil palm plantations (Figure 2A) are common throughout Costa Rica, but have not 

been associated with malaria outbreaks. A major characteristic of oil palm plantations is 

the use of residues as compost, which is managed in a way that reduces the abundance of 

Anopheles spp. mosquitoes [82,83]. By contrast, a common feature of many recent malaria 
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outbreaks in Costa Rica has been their apparent association with pineapple plantations 

[38]. In the context of malaria elimination, it is important to understand the entomological 

risk associated with the landscapes used to grow these two major commodity crops. As a 

proof of concept, we compared An. albimanus habitat suitability, measured as a probabil-

ity, in land used for palm (Figure 2A) and pineapple (Figure 2B) plantations with that of 

the remaining land in the plantation districts. Based on estimates for An. albimanus disper-

sal, which has been recorded as occurring in distances of up to 3 km [84,85], we also com-

pared the suitability in the plantations plus buffers of 1, 2 and 3 km with that of the re-

maining plantation-surrounding land in the plantation districts (Figure 3). 

 

Figure 3. Plantation districts (in white) and plantations (in orange), and the different spatial buffers, 

1 km (yellow), 2 km (blue) and 3 km (red), used for comparing Anopheles albimanus habitat suitability 

between plantations and surrounding land in plantation districts. As indicated by the inset titles, 

the left panel shows the spatial buffers for oil palm plantations, and the right panel shows those for 

pineapple plantations. 

2.7.3. Anopheles albimanus in the Crucitas Outbreak of 2018–2019 

We also used the resulting An. albimanus ensemble distribution model to investigate 

if the 2018–2019 malaria outbreak observed in locations within the Cutris and Pocosol 

districts of San Carlos county (Canton San Carlos in Spanish) [31] occurred in areas with 

high suitability for An. albimanus. We evaluated the suitability of An. albimanus in circular 

areas of 3, 5 and 7 km from the population center in the Crucitas open-pit gold mine and 

the towns of Llano Verde and Boca Arenal. 

3. Results 

We obtained 227 occurrence points for An. albimanus. Following data cleaning, 110 

records remained, most of which were generally located around the perimeter of Costa 

Rica (Figure 1). Figure 4 shows the correlations of the different covariates at the pixels 

with points where An. albimanus has been collected.  
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Figure 4. Pairwise Pearson’s correlation between environmental variables at the occurrence points 

for Anopheles albimanus in Costa Rica. Correlations have been clustered to ease the visualization of 

groups of highly correlated variables. 

Pearson’s correlation matrix (Figure 4) reveals clusters of high correlations (absolute 

value of Pearson’s r > 0.6). Particularly for the MODIS-based temperature variables, sta-

tion-based temperature, EVI and NDVI, measures of variability (kurtosis and standard 

deviation), as well as minimum, maximum and average values. These patterns of associ-

ation called for a process of variable selection based on variable importance, whose results 

are presented in Figure 5. Of the twenty-eight environmental variables initially investi-

gated, only nine were selected for inclusion in the final ensemble model. During model 

selection, variable importance was over 5% for only nine environmental covariates (Figure 

5A). Elevation and standard deviation of NDVI were the two most important variables, 

being prescribed 29% and 16% variable importance, respectively. Of the nine remaining, 

the most important environmental covariates were elevation, minimum temperature and 

standard deviation of NDVI (Figure 5B). Using seven different algorithms, a total of 70 

models were generated to estimate habitat suitability. AUC and TSS scores for each algo-

rithm, reported in Table 2, indicate universally strong model performance. 
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Figure 5. Variable importance in species distribution models of Anopheles albimanus (A) used for 

model selection (the dashed line indicates the 5% importance threshold) and (B) in the models used 

for the final ensemble prediction. 

Table 2. Mean area under curve (AUC) and true skill statistic (TSS) values, with standard deviation 

(±SD), based on the 10 model repetitions per algorithm that were used to build the ensemble distri-

bution model for Anopheles albimanus in Costa Rica. Abbreviations: L-GLM, logistic generalized lin-

ear model; MARS, multiple adaptive regression spline; CAT, classification and regression trees; RF, 

random forest; GBM, generalized boosting model; ANN, artificial neural networks; MAXENT, max-

imum entropy. 

Algorithm AUC TSS 

L-GLM 0.91 ± 0.05 0.75 ± 0.11 

MARS 0.89 ± 0.04 0.68 ± 0.09 

CAT 0.79 ± 0.07 0.58 ± 0.13 

RF 0.92 ± 0.04 0.76 ± 0.10 

GBM 0.91 ± 0.05 0.72 ± 0.10 

ANN 0.85 ± 0.07 0.63 ± 0.12 

MAXENT 0.92 ± 0.04 0.76 ± 0.10 

RF and MAXENT demonstrated the strongest performance with AUC scores of 0.92 

± 0.04 and TSS scores of 0.76 ± 0.10. Classification and regression trees demonstrated good 

performance, but comparatively were the worst performing algorithm (AUC = 0.79 ± 0.07, 
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TSS = 0.58 ± 0.13). From the 70 models created, a single final weighted ensemble model 

was created (Figure 6). 

 

Figure 6. Ensemble distribution model for Anopheles albimanus in Costa Rica. Color indicates habitat 

suitability measured as a probability from 0 to 1 as presented in the legend; the Y axis is the latitude, 

and the X axis is the longitude. The AUC (mean ± SD) for this ensemble model was 0.983 ± 0.001 and 

the TSS (mean ± SD) was 0.833 ± 0.007, outperforming all individual models presented in Table 2. 

These raster results are available at https://osf.io/acjyg/. 

Habitat suitability ranged across Costa Rica from 0 to 1, with a score of 1 representing 

a habitat where An. albimanus should be present. There is some variation in the classifica-

tion of these scores, but we consider scores ranging from 0 to 0.3 to have poor suitability, 

0.3 to 0.5 to be moderately suitable, 0.5 to 0.7 to have good habitat suitability and 0.7 to 1 

to be a highly suitable environment [75]. The ensemble model estimates the lowest suita-

bility for An. albimanus to be across the central mountain range of the country, the Cordil-

lera Central, with areas of higher suitability patchily distributed throughout the country 

lowlands and concentrated along the perimeter of the country (Figure 6). Areas of partic-

ularly high suitability (probability > 0.7) include a patch in the southeastern portion of the 

country in the Pacific basin, including regions bordering with Panamá, two strips along 

the southern border and a patch just below the middle of the northern border; all these 

patches are concentrated in the Atlantic basin of Costa Rica. The contribution of the dif-

ferent environmental variables in shaping the ensemble SDM for An. albimanus can be seen 

in Figure 7. 



Insects 2022, 13, 221 13 of 22 
 

 

 

Figure 7. Strip plots of the predicted probability of Anopheles albimanus occurrence as function of the 

covariates considered in the ensemble of best models. In the plots, each line represents the mean for 

the replicated runs of each model. Model methodologies are color-coded (see bottom of the figure). 

Covariates included (A) elevation, (B) NDVI, (C) maximum NDVI, (D) SD of NDVI, (E) population 

density per km2, (F) rainfall measured in mm, (G) landscape roughness, (H) MODIS-based temper-

ature kurtosis and (I) MODIS-based minimum temperature in °C. 

The probability of occurrence decreases as elevation increases, but drops dramati-

cally once elevation exceeds 1000 m according to all the algorithms studied (Figure 7A). 

The probability of occurrence is not largely affected by NDVI (Figure 7B) or maximum 

NDVI (Figure 7C), with probabilities just decreasing for extreme large values. For most 

model types, a standard deviation of NDVI (Figure 7D) is negatively correlated with prob-

ability of occurrence, especially once the value is greater than 0.2. However, very little 

correlation is observed when the ANN and classification trees algorithms were used. Suit-

ability only changed with population density (Figure 7E) for the L-GLM, where it de-

creased for extremely high densities. Rain (Figure 7F) did not have an impact on suitability 

for most models, the only exception being the L-GLM and MAXENT, where suitability 

monotonically decreased as rainfall increased. Meanwhile a non-monotonic decrease in 

habitat suitability was observed with ANN as rainfall increased. Roughness increases 
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(Figure 7G) where mainly associated with a monotonic decrease in An. albimanus suitabil-

ity, according to MAXENT. The kurtosis of MODIS-based land surface temperature (Fig-

ure 7H) suggests that more platykurtic environments, i.e., those with low kurtosis, in-

creased habitat suitability for An. albimanus, with the exception of ANN and RF, which 

where insensitive to changes in kurtosis. Generally, minimum temperature (Figure 7I) has 

a positive correlation with the probability of occurrence. However, when temperatures 

begin to increase past 30 degrees, the correlation becomes negative. Only when these var-

iables reach the upper values of their distribution, do we tend to see a decline in the prob-

ability of occurrence 

A comparison between the presence of plantations (Figure 2) and habitat suitability 

for An. albimamus (Figure 6) suggests that there is a strong relationship between the two. 

This correlation is further confirmed by a comparison of habitat suitability in plantations 

and non-plantation landscapes (Figure 8).  

 

Figure 8. Boxplots comparing Anopheles albimanus habitat suitability in plantations and non-planta-

tion landscapes from plantation districts for oil palms (A) without a spatial buffer, t = 170.01, df = 

13,879, p-value < 2.2 × 10−16, (B) with a 1 km spatial buffer, t = 200.54, df = 99,252, p-value < 2.2 × 10−16, 

(C) with a 2 km spatial buffer, t = 204.02, df = 209,115, p-value < 2.2 × 10−16 and (D) with a 3 km spatial 

buffer, t = 210.34, df = 298,572, p-value < 2.2 × 10−16; and for pineapples (E) without a spatial buffer, t 

= 177.12, df = 14,391, p-value < 2.2 × 10−16, (F) with a 1 km spatial buffer, t = 242.18, df = 107,952, p-

value < 2.2 × 10−16, (G) with a 2 km spatial buffer, t = 262.72, df = 172,789, p-value < 2.2 × 10−16  and 

(H) with a 3 km spatial buffer, t = 278.23, df = 208,638, p-value < 2.2 × 10−16. In all panels, the boxplots 

show the median for the distribution of pixel values, while the boxes represent the 25th and 75th 

percentiles of the data. For each boxplot comparison, we report t values for two-sample Welch’s t 

tests, a statistic used to compare means between two groups, in this case plantation vs. non-planta-

tion pixels. We chose Welch’s t test for the comparison because it accounts for heterogeneous vari-

ances in the compared groups [86]. 

For both oil palm (Figure 8A–D) and pineapple plantations (Figure 8E–H), the habitat 

suitability is significantly greater compared to non-plantation areas in plantation districts. 

The addition of spatial buffers decreases the difference in habitat suitability between plan-

tation and non-plantation landscapes, but at all spatial buffers, habitat suitability is still 

overwhelmingly greater around both oil palm and pineapple plantations. 
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When considering the relationship between habitat suitability and the 2018–2019 ma-

laria outbreak, areas with a suitability over 0.7 are seen in the two outbreak districts ex-

amined (Figure 9A). The majority of Crucitas has low habitat suitability, but near the 

southwestern portion of the district, there is a small region of moderate-to-high suitability 

(Figure 9B). Suitability is very low, around 10% at 3km, and increases as the radius of the 

area considered increases from the center of the open-pit gold mine, up to 17% at 7 km 

(Table 3). Ranges of habitat distribution in Llano Verde are patchy (Figure 9C); however, 

suitability was slightly above 30% across the buffer (Table 3). Boca Arenal has the most 

consistently high habitat suitability (Figure 9D), with 70% suitability at 3 km, a value that 

slightly decreased as the buffer radius increased (Table 3).  

 

Figure 9. Ensemble distribution model for Anopheles albimanus in (A) Cutris and Pocosol districts, 

where symbols indicate the locations associated with the 2018–2019 Crucitas malaria outbreak (for 

details, refer to the inset legend), and in (B) Crucitas, (C) Llano Verde and (D) Boca Arenal. In all 

panels, color indicates habitat suitability quantified by probabilities from 0 to 1, as presented in the 

legend of panel (A). In all panels, the Y axis is the latitude and the X axis is the longitude. In all 

panels, each pixel is a 250 m square, and in panels B, C and D, the circular areas have a 7 km radius. 
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Table 3. Anopheles albimanus mean habitat suitability (HS) probability around the three locations of 

the 2018–2019 malaria outbreak associated with illegal open-pit gold mining in Crucitas, Costa Rica. 

Location 
Spatial Buffer Radius (HS Mean ± S.D.) 

3 km 5 km 7 km 

Crucitas 0.10 ± 0.04 0.12 ± 0.09 0.17 ± 0.15 

Llano Verde 0.33 ± 0.18 0.33 ± 0.19 0.31 ± 0.19 

Boca Arenal 0.70 ± 0.05 0.69 ± 0.06 0.67 ± 0.09 

4. Discussion 

Our results suggest that mid-to-high spatial resolution SDMs could become an es-

sential part of the toolkit used in routine vector control program operations. The first in-

teresting feature of our ensemble model was that seven out of the nine variables employed 

as covariates to produce the SDMs were from remotely sensed data, which has the poten-

tial to streamline SDMs that automatically update predictions as new data become avail-

able. All the remotely sensed variables that were in the models used for the ensemble have 

been reported to be associated with An. albimanus presence and abundance. The most im-

portant variable was elevation, accounting for 25 to 30% of variability in the SDMs, which 

had a robust pattern across the different models, with all models suggesting that habitat 

suitability decreased as elevation increased. This pattern can reflect two things. Firstly, it 

reflects the known association between elevation and temperature, where the latter in-

creases and the former decreases [20]. Secondly, it could also be related to landscape fea-

tures, as lowlands have concentrations of wetlands and other habitats that are known to 

harbor large densities of An. albimanus [87–90]. This suggestion is also supported by the 

decrease in suitability with roughness for a subset of the models and increasing minimum 

temperature. An. albimanus population dynamics studies have shown a negative relation-

ship between increased rainfall and abundance [34,35], which could in turn translate into 

those areas consistently receiving more rainfall as being less likely to be suitable for An. 

albimanus, as observed in the models where rainfall was an important covariate. Similarly, 

suitability decreases at very high NDVI values and reflects the ecology of An. albimanus, 

as the species prefers sunlit habitats [27,87], and similar patterns of occurrence, where the 

mosquito is not present in land with near-saturation NDVI values or the dense vegetation 

cover it is associated with, have been observed elsewhere in Mesoamerica [88,91–95]. In-

creasing population density per km2 was only associated with a decrease in suitability for 

L-GLM models, and this result could reflect the lack of larval habitats for An. albimanus in 

more urbanized landscapes, while also highlighting the importance of making SDMs with 

ensembles of models, since the possibility to incorporate information from different co-

variates increases, as they can be incorporated with different functional forms [29,73]. 

A novel result from our study is the association of habitat suitability with measures 

of higher order of variability in the environmental variables. Across most models, habitat 

suitability decreased as the variance of NDVI increased, suggesting that An. albimanus oc-

currence is associated with landscapes that are relatively stable in terms of vegetation 

change. However, the association with MODIS-based temperature kurtosis indicates that 

habitats with low kurtosis, i.e., having platykurtic distributions, are where covariates are 

relatively more variable towards the mean than the extremes [96,97]. A significant associ-

ation with kurtosis and the SD of environmental variables illustrates how An. albimanus 

distribution is sensitive both to average environmental conditions and their patterns of 

variability, following Schmalhausen’s law [98], the ecological principle that indicates that 

sensitivity to different environmental variables could increase as the limits of tolerance to 

any environmental variable are reached, and that organisms are, therefore, sensitive to 

changes in the different statistical moments of environmental factors shaping their abun-

dance and distribution [20]. 

The resulting ensemble SDM has an increased resolution when compared with pre-

vious efforts that have generated SDMs for the territory of Costa Rica, and ranged between 



Insects 2022, 13, 221 17 of 22 
 

 

1 and 8 km [21,27,28]. This increased resolution, at 250 m, could potentially help optimize 

field activities by highlighting areas needing entomological surveillance. We illustrate this 

with the two applications that we developed in this study. 

In the first application, we compared the An. albimanus habitat suitability in planta-

tions of two major commodity crops in Costa Rica. One has been long established, as is 

the case for oil palms, and the other is an emerging global commodity crop, where Costa 

Rica is the main global producer [81], as is the case with pineapples. Interestingly, in both 

cases, the suitability was increased in the plantations when compared with surrounding 

areas in districts where plantations are located, a result robust to different assumptions 

about the area of influence of a plantation, assuming a maximum 3 km dispersal for An. 

albimanus [84]. The environmental homogenization driven by monocultures [99,100] such 

as oil palm and pineapple plantations provides new habitats for An. albimanus to thrive in 

Costa Rica’s lowlands. An open canopy for sunlit man-made irrigation habitats, ground 

wheel tracks created by vehicles used in commodity crop production and transportation 

and microclimatic conditions that could enhance mosquito reproduction and survival are 

a few examples of conditions that can enhance the fitness of An. albimanus in light of what 

we know about its life history and ecology [87]. Nevertheless, little research has been con-

ducted into An. albimanus in oil palm and pineapple plantations as a malaria transmission 

risk factor.  

Furthermore, some recent malaria outbreaks have been associated with pineapple 

plantations [30,31], and we are not aware of entomological studies in such plantations. In 

contrast, for oil palm plantations, a few entomological studies have shown that such plan-

tations lead to decreases in anopheline abundance when compared with the previous veg-

etation type [82,83]. These studies suggest that decreases in anopheline mosquitoes might 

be related to water management practices that reduce the likelihood of Anopheles spp. lar-

val habitats [82,83]. Although some ecological conditions are present for the development 

of An. albimanus, little malaria has been observed in the area of Costa Rica dominated by 

oil palm plantations, and part of that could be related to a decrease in the entomological 

risk of transmission. However, part of the difference could also be related to historical 

patterns in the social development of southwestern Costa Rica. This area, where oil palm 

plantations are concentrated, has historically seen low malaria transmission [32,38]. The 

development and settlement of oil palm plantations occurred when the Costa Rican state 

was engaged in the development of a social welfare state where plantation workers had 

access to decent housing, i.e., housing built of materials, and with characteristics, that re-

duce exposure to mosquito bites [32] and access to basic healthcare and other services 

[101], which seems privileged when compared with current working conditions at pine-

apple plantations in northern Costa Rica, which have been promoted by a neoliberal eco-

nomic context [80] whose tendencies to impose austerity in public health investment have 

been associated with the emergence and re-emergence of vector-borne diseases globally 

[99]. This possibility is further re-enforced when looking at historical malaria patterns in 

Costa Rica. The disease used to be concentrated in the Caribbean basin when the United 

Fruit Company (UFCo) started a commodity crop economy with banana plantations [38] 

that imposed extremely detrimental working and living conditions for the workers, as 

exposed in the literary work of Carlos Luis Fallas [102] and Joaquin Gutiérrez [103], who 

vividly described the heavy toll of tropical diseases on plantation workers. Beyond these 

literary depictions, the large numbers of cases and deaths were even recorded by the 

UFCo itself [104]. Recent developments in social scientific theories have described this 

association between plantations and depauperated social, environmental and health con-

ditions as the Plantationocene [105]. Our results suggest that incorporating the model of 

social and economic relations imposed by the Plantationocene might be key to under-

standing the differences between oil palm and pineapple plantations in terms of the gen-

eration of malaria outbreaks in Costa Rica. Beyond this study, examining the role of the 
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Plantationocene in generating spatial patterns in diseases is an important research ques-

tion to prevent the emergence of infectious diseases beyond the need of ecological re-

search on mosquito abundance and infection in both types of plantations. 

Our second application asked if habitat suitability for An. albimanus implied that this 

was the main vector during the 2018–2019 malaria outbreak associated with illegal open 

pit-gold mining in Crucitas [31]. Our results suggest that the likelihood of Anopheles albi-

manus being present at the mine itself was very low, with a suitability of only 10%. And 

this result unlikely reflects “out of date” land cover data, as we considered environmental 

information that overlapped with the time of the Crucitas malaria outbreak, having our-

selves processed a time series of satellite-derived images that included images taken as 

the outbreak was happening. However, the mosquito was likely present at the two main 

towns also affected by the epidemic. This result highlights that as malaria cases become 

rarer following elimination efforts, additional secondary vector species of Anopheles could 

be responsible for transmission. In principle, this calls for improved entomological sur-

veillance in the field. In that sense, we think that SDMs could be extremely useful to pri-

oritize areas needing entomological surveillance following malaria outbreaks, especially 

as An. albimanus has been observed in mining areas of Colombia [24], but our model does 

not indicate that the Crucitas environment is suitable for its development. This notwith-

standing, other vector species might be potentially present in the Crucitas open-pit gold 

mine, with possibilities including Anopheles vestitipennis Dyar & Knab and Anopheles punc-

timacula Dyar & Knab, as these species thrive in recently disturbed environments and 

commonly co-occur with An. albimanus in Mesoamerica [106,107]. Similarly, Anopheles dar-

lingi Root, has been predicted to be present in the area with SDMs [108] and has been 

reported in Panamá [109], but has not yet been detected in Costa Rica. 

Finally, this study clearly shows the advantages of developing finely grained SDMs 

for vectors, as they produce information that could help guide research, surveillance and 

control efforts for vector-borne diseases as part of efforts for more precise [110,111] public 

health practice. 
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