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Simple Summary: Nephotettix cincticeps, one of the destructive pests of rice plants, not only directly
damages hosts by sucking, but also indirectly transmits plant viruses in the field. However, the
available resources of olfactory of N. cincticeps are little known, especially information regarding the
odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the first
barriers for receiving and sensing chemical signals. In the present study, the N. cincticeps adults head
and the rest of the body transcriptome were sequenced and analyzed using Illumina sequencing.
Twenty putative OBP and 13 CSP genes were identified. A total of 12 OBP and 10 CSP genes were
detected, and nine OBP and three CSP genes were highly expressed in N. cincticeps antennae with
tissue expression levels analysis. This study will help us understand the molecular mechanism of
N. cincticeps in the detection and recognition of rice volatiles.

Abstract: The insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are involved
in the perception and discrimination of insects to host odor cues. Nephotettix cincticeps, one of the
destructive pests of rice plants, not only directly damages hosts by sucking, but also indirectly
transmits plant viruses in the field. Previous study found that two rice volatiles ((E)-β-caryophyllene
and 2-heptanol) induced by rice dwarf virus (RDV) mediated the olfactory behavior of N. cincticeps,
which may promote virus dispersal. However, the OBPs and CSPs in N. cincticeps are still unknown.
In this study, to identify the OBP and CSP genes in N. cincticeps, transcriptomic analyses were
performed. In total, 46,623 unigenes were obtained. Twenty putative OBP and 13 CSP genes were
discovered and identified. Phylogenetic analyses revealed that five putative OBPs belonged to the
plus-C OBP family, and the other classic OBPs and CSPs were distributed among other orthologous
groups. A total of 12 OBP and 10 CSP genes were detected, and nine OBP and three CSP genes were
highly expressed in N. cincticeps antennae compared with other tissues. This study, for the first time,
provides a valuable resource to well understand the molecular mechanism of N. cincticeps in the
perception and discrimination of the two volatiles induced by RDV infection.

Keywords: Nephotettix cincticeps; transcriptomic analyses; odorant binding proteins; chemosensory
proteins; tissue expression profiles

1. Introduction

Insect chemoreception system plays a pivotal role in many aspects of insect behaviors,
such as foraging, mate recognition, oviposition, and avoiding predators [1,2]. In the insect olfac-
tory perception process, various olfactory proteins containing odorant binding proteins (OBPs),
chemosensory proteins (CSPs), odorant receptors (OR), ionotropic receptors (IR) and odorant
degrading enzymes are involved [3,4]. Among these olfactory proteins, OBPs and CSPs could
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bind with fat-soluble odorant molecules to form complexes, the complexes are transferred to the
olfactory receptors (ORs) through sensillar lymph, and then may activate the olfactory receptor
neurons (ORNs) [3,5–7]. Actually, there is also evidence that OBPs are found in complex with
pheromones, however, it is not sure if the complex OBP-pheromone is interacting with the
ORs [8–12]. As the first barriers for receiving and sensing chemical signals, the OBPs and CSPs
exert a crucial role in odor detection and recognition [13,14].

The insect OBPs are small water-soluble proteins, which are highly abundant in the
sensillum lymph of insects [15,16]. Based on the number of conserved cysteine residues and
their molecular structures, OBPs could be classed into several subfamilies including classic
OBPs (six conserved cysteine residues, paired in three interlocked disulfide bridges), plus-C
OBPs (two additional conserved cysteine and proline residues), minus-C OBPs (losing the
second and fifth cysteines), dimer OBPs (two 6-cysteine signature motifs), and atypical
OBPs (9–10 cysteines) [5,17]. Other physiological functions of OBPs other than acting as
odor carriers have also been reported. For example, the NlugOBP3 is associated with the
nymph survival of Nilaparvata lugens [18]. Some OBPs might be related to insect taste
perception or involved in insecticide resistance [19–24]. CSPs are much smaller and more
conserved than OBPs, which have the four typically conserved cysteine residues forming
two disulphide bridges [6,25,26]. CSPs are present in insect various tissues. Other than
perceiving host odor and sex pheromones [27,28], some CSP functions might be associated
with limb repair, regulation of circadian cycles, growing development, immune responses,
feeding behavior, and insecticide resistance [27,29–34].

The green rice leafhoppers (Nephotettix cincticeps) (Hemiptera: Cicadellidae) are one
of the destructive pests of rice plants and distribute in the temperate regions of East
Asia [35]. N. cincticeps not only directly produce damage by sucking sap from the phloem
and xylem of host plants, but also indirectly affect the health of host plants. In fact, N.
cincticeps transmit plant viruses such as the rice yellow stunt virus (RYSV) and rice dwarf
virus (RDV) as an insect vector, which bring huge economic loss to rice plants [36,37].
Our previous study found that two rice volatiles ((E)-β-caryophyllene and 2-heptanol)
induced by RDV infection influenced the non-viruliferous and viruliferous N. cincticeps
olfactory behavior independently. (E)-β-caryophyllene acted as an attractant towards
non-viruliferous N. cincticeps, mediating their preference for RDV-infected plants. In con-
trast, 2-heptanol acted as a repellent towards viruliferous N. cincticeps, leading them to
prefer RDV-free plants [38]. Although the push-pull strategy formed by the action of two
volatiles on non-viruliferous and viruliferous N. cincticeps would promote the spread of
RDV, the molecular mechanism of N. cincticeps in the perception and discrimination of
the two volatiles is still unknown. To well understand the above molecular mechanism,
identification and annotation of the OBP and CSP genes in N. cincticeps are the first priority.

In this study, the N. cincticeps adults head and the rest of the body transcriptome were
sequenced and analyzed using Illumina sequencing. The putative OBP and CSP genes in the
N. cincticeps transcriptome were discovered and identified. To characterize these molecules,
sequence alignment and phylogenetic analysis were investigated. The expression levels of
OBP and CSP genes in different tissues of N. cincticeps were determined by quantitative
real-time PCR (qRT-PCR). This study will give us a comprehensive characterization of OBPs
and CSPs from N. cincticeps for the first time. Our findings will provide valuable insights
into the design and implementation of novel strategies to control the damage caused by
this rice pest.

2. Materials and Methods
2.1. Insects Rearing and Tissue Collection

The colony of N. cincticeps was obtained from the experimental rice fields of
Zhejiang University, Hangzhou, China. These insects were reared on the susceptible
rice “Taichung Native1” (TN1) seedlings covered with a nylon cage (80-mesh, 45 cm3) for
four generations [39]. Approximately 600 newly emerged insects within 24 h were used for
tissue collection. The different tissues of N. cincticeps including antennae, head, thoraxes,
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abdomen, leg and wing were quickly separated and stored in liquid nitrogen until RNA
extraction. There were four biological replicates for different tissues.

2.2. cDNA Library Construction and Transcriptome Sequencing

Total RNA was independently extracted from the female, male head, and other body parts
of adult N. cincticeps using Trizol reagent (Invitrogen, Waltham, CA, USA) following the manu-
facturer’s procedure. Quantity and purity of the RNA were analyzed with Bioanalyzer 2100
and RNA 1000 Nano LabChip Kit (Agilent, Santa Clara, CA, USA) (RIN number > 7.0). Poly(A)
RNA is purified from total RNA using poly-T oligo-attached magnetic beads with two rounds
of purification. After purification, the mRNA is fragmented into small pieces using divalent
cations under elevated temperatures. Then the cleaved RNA fragments were reverse-transcribed
to create the final cDNA library in accordance with the protocol for the mRNA-Seq sample
preparation kit (Illumina, San Diego, CA, USA), the average insert size for the paired-end li-
braries was 300 bp (±50 bp). Then the paired-end sequencing on an IlluminaHiseq4000 at the
(LC Sciences, Houston, TX, USA) was performed following the vendor’s recommended protocol.

2.3. De Novo Assembly, Unigene Annotation, and Functional Classification

Clean short reads were obtained by removing those containing an adapter or poly-N
(>5%) and of low quality (Q ≤ 20) from the raw reads [40]. De novo assembly of the
transcriptome was performed with Trinity 2.4.0 [41].

All assembled unigenes were aligned against the non-redundant (Nr) protein database
(https://www.ncbi.nlm.nih.gov/ (accessed on 5 January 2021)), Gene ontology (GO)
(http://geneontology.org/ (accessed on 5 January 2021)), SwissProt (http://www.expasy.
ch/sprot/ (accessed on 5 January 2021)), Kyoto Encyclopedia of Genes and Genomes
(KEGG) (http://www.genome.jp/kegg/ (accessed on 5 January 2021)) and eggNOG
(http://eggnogdb.embl.de/ (accessed on 5 January 2021)) databases using DIAMOND [42]
with a threshold of E-value < 0.00001.

2.4. Identification of OBP and CSP Genes

The head and other body transcriptome dataset of N. cincticeps was constructed in
our laboratory using the Illumina platform. Putative NcinOBP and NcinCSP genes were
identified by searching the keywords (odorant binding protein and chemosensory protein)
in the annotated unigenes. In addition, we obtained the putative OBP and CSP genes
from the genome dataset of N. cincticeps (provided by Professor Li Yi of Peking university).
Then all the candidate OBP and CSP genes of N. cincticeps were confirmed by compar-
ing the sequence against the NCBI non-redundant (nr) protein database using BLASTX.
The conserved domains of these putative OBPs and CSPs were predicted by NCBI online
tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi? (accessed on 28 January
2021). The open reading frame (ORF) of each candidate unigene was predicted using the
ORF finder tool (https://www.ncbi.nlm.nih.gov/orffinder/ (accessed on 28 January 2021).
The signal peptides of putative NcinOBP and NcinCSP proteins were predicted by the
SignalP V 5.0 program (https://services.healthtech.dtu.dk/service.php?SignalP-5.0
(accessed on 28 January 2021).

2.5. Sequence Alignment and Phylogenetic Analysis

The amino acid sequences of candidate OBP and CSP of N. cincticeps (without signal
peptide sequences) were aligned with their orthologs from other Hemipteran insect species
by Clustal W [43]. A total of 161 OBP protein sequences from 9 Hemipteran species were used
to construct the phylogenetic tree including 20 OBPs of N. cincticeps discovered in the present
study, 44 OBPs of Empoasca onukii, 8 OBPs of Bemisia tabaci, 8 OBPs of N. lugens, 10 OBPs of
Sogatella furcifera, 8 OBPs of Laodelphax striatella, 36 OBPs of Apolygus lucorum, 16 OBPs of
Adelphocoris lineolatus, and 11 OBPs of Acyrthosiphon pisum (Sequences of OBPs are listed in
Table S1). In addition, 103 CSP protein sequences from nine Hemipteran species were se-
lected for the phylogenetic analysis including 13 CSPs of N. cincticeps identified in this study,
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22 CSPs of E. onukii, 13 CSPs of B. tabaci, 10 CSPs of N. lugens, 9 CSPs of S. furcifera, 12 CSPs
of L. striatella, 8 CSPs of A. lucorum, 8 CSPs of A. lineolatus and 8 CSPs of Aphis gossypii
(Sequences of OBPs are listed in Table S2). These insect OBP and CSP sequences other
than N. cincticeps were obtained from Zhao [44]. The OBP and CSP phylogenetic trees
were constructed by MEGA 6.0 software (Mega Limited, Auckland, New Zealand) with the
neighbor-joining method using the Poisson correction distance and 1000 bootstrap replica-
tions [45]. The final phylogenetic trees were optimized and visualized by an online tool, iTOL
(https://itol.embl.de/ (accessed on 12 March 2021).

2.6. Tissue Expression Profile Analysis

The expression profiles for different tissues (female and male adults) of these can-
didate OBPs and CSPs were evaluated by qRT-PCR. The total RNA of different tissue
of N. cincticeps including antennae, heads, thoraxes, abdomens, legs, and wings were ex-
tracted and reversely transcribed into cDNA as described previously [46]. The β-actin
as a reference gene was used for normalizing target gene expression and to correct for
sample-to-sample variation. The specific primers used for qRT-PCR analysis were de-
signed with Primer 3.0 (http://bioinfo.ut.ee/primer3-0.4.0/ (accessed on 18 March 2021)
(Table S3). cDNA templates and primer sets were mixed with SYBR® Premix Ex TaqTM

II (Tli RNaseH Plus; Takara, Shiga, Japan) and real-time PCR was performed on the CFX
ConnectTM Real-Time Detection System (Bio-Rad, Hercules, CA, USA). Negative controls
were non-template reactions (replacing cDNA with sterile H2O). Four biological replicates
were conducted for each experiment. The relative quantification was calculated using the
comparative 2−∆∆Ct method [47].

2.7. Statistical Analysis

All data were performed with SPSS 20.0 software(IBM, Armonk, NY, USA). The
comparative analysis of each OBP and CSP genes among various tissues was determined
using a one-way tested analysis of variance (ANOVA), followed by Tukey’s multiple range
test (p < 0.05). The values were presented as the mean ± standard error.

3. Results
3.1. Overview of the Head and Rest of the Body Transcriptomes

Three mixed adult head and the rest of the body (10 females and 10 males) cDNA libraries
were constructed and sequenced respectively using the IlluminaHiseq4000 platform. After
filtering, a total of 55,049,478, 53,867,286, 54,310,996 (head samples) and 56,650,118, 55,478,556,
54,656,850 (rest of the body samples) clean data were generated with a Q20 scores (98.98%,
98.95%, 98.74% head samples; 98.89%, 98.98%, 98.50% rest of the body samples) (Table S4).
Subsequently, all the clean reads were assembled together and obtained 46,623 unigenes with
lengths ranging from 201 to 16,461 bp, with a mean length of 456 bp (Table S5).

3.2. Homology Searches and Functional Annotation

The database of NR, eggNOG, Swissprot, Pfam, KEGG, and GO were selected to annotate
and verify the assembled sequences. Results showed that 16,495 (35.38%) unigenes were
aligned in NR, 16,406 (35.19%) in eggNOG, 12,443 (26.69%) in Swissprot, 13,543 (29.05%) in
Pfam, 12,142 (26.04%) in KEGG, and 13,891 (29.79%) in GO database respectively (Table S6).

All the unigenes were blasted against the nr sequence database in NCBI, with a thresh-
old of E-value < 0.00001. Results suggested that the protein sequences of N. cincticeps
were orthologs of proteins in L. striatella (13.34%) and N. lugens (13.10%) (Hemiptera),
Cimex lectularius (4.73%) and B. tabaci (4.24%) (Hemiptera), and Cryptotermes secundus (9.54%)
and Zootermopsis nevadensis (7.25%) (Isoptera) (Figure S1).

Only 13,891 (29.79%) assembled unigenes were annotated in three different functional
groups (biological process, cellular component, and molecular function) with the GO
category analysis (Figure S2). In the biological process category, the terms oxidation-
reduction process and biological process were the most abundant. In the cellular component

https://itol.embl.de/
http://bioinfo.ut.ee/primer3-0.4.0/


Insects 2022, 13, 1024 5 of 16

category, the cytoplasm and nucleus were most represented. In the molecular function
category, the protein and ATP binding were the most abundant.

In KEGG annotation, 12,142 assembled transcripts were divided into six classes including
organismal systems, metabolism, human diseases, genetic information processing, environ-
mental information processing, and cellular process (Figure S3). In all pathways, several major
ones in each class were identified containing transport and catabolism, signal transduction,
translation, infectious diseases, carbohydrate metabolism, and the immune system.

3.3. Identification of Candidate OBP and CSP Genes in N. cincticeps

Based on the transcriptome and genome data, a total of 20 putative OBP genes were
identified with the verification by BLASTX and BLASTN online tools (Table 1). The size of
these OBP genes ranged from 118 to 296 amino acids. Most of the annotated OBP genes
contained a signal peptide at their N-terminal part (other than NcinOBP4, 6, 11, 12, 15,
and 17), which is a signature of secretory proteins. Based on the numbers and locations of
the conserved cysteines, the candidate NcinOBP1, OBP6, OBP8, OBP12, and OBP13 genes
belonged to the plus-C OBP family, while the other OBP genes were divided into the classic
OBP family (Figure 1).
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Similarly, 13 transcripts encoding putative CSPs were obtained in transcriptome and 
genome data (Table 2). Most of the CSP sequences contained the complete ORFs with the 
size ranging from 109 to 207 amino acids (except for CSP2, 8, 12), and all the sequences 
had a signal peptide. All the annotated CSP proteins had four conserved cysteines (Cys-
X6-8-Cys-X18-19-Cys-X2-Cys) [48] (Figure 2). 

Table 2. List of identified CSP genes of N. cincticeps. 

Gene ID Gene 
Name ORF  SP   Best Blastx Match 

  (aa) (aa) Species Gene  
Name Acc. No  Score E-Value Identity 

(%) 
TRINITY_DN19371_c0_g5 CSP1 123 18 Empoasca onukii CSP9 AWC68028.1 202 1 × 10−64 77.69 
TRINITY_DN20809_c0_g2 CSP2 128 17 Empoasca onukii CSP13 AWC68032.1 143 2 × 10−41 57.89 
TRINITY_DN19425_c1_g3 CSP3 137 24 Empoasca onukii CSP14 AWC68033.1 166 4 × 10−50 60.47 

Figure 1. Sequence alignment of N. cincticeps OBPs. Sequences were aligned using the MEGA 6.0 and
were presented using GeneDoc software (LynnonBiosoft, San Ramon, CA, USA). * indicates positions
which have a single, fully conserved residue. Conserved amino acid residues are indicated by red
letters. The six conserved Cys was indicated at the bottom of the alignment with a blue frame. The
top 15 in order belonged to the “classic OBP family”, while sort the last five belonged to the “Plus-C
OBP family”.
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Table 1. List of identified OBP genes of N. cincticeps.

Gene ID Gene Name ORF SP Best Blastx Match

(aa) (aa) Species Gene Name Acc. No Score E-Value Identity
(%)

evm.model.scaffold644.6 OBP1 187 17 Empoasca onukii OBP6 AWC68015.1 97.6 8 × 10−22 28.26
TRINITY_DN14345_c0_g1 OBP2 210 33 Empoasca onukii OBP16 AWC67989.1 258 1 × 10−84 64.43
TRINITY_DN20712_c0_g1 OBP3 146 16 Empoasca onukii OBP12 AWC67992.1 145 1 × 10−41 50.41
TRINITY_DN17302_c1_g2 OBP4 140 No Empoasca onukii OBP8 AWC67990.1 125 6 × 10−34 42.96
TRINITY_DN20407_c2_g4 OBP5 144 19 Empoasca onukii OBP42 AWC67997.1 165 2 × 10−49 61.54
evm.model.scaffold232.48 OBP6 296 No Empoasca onukii OBP13 AWC68014.1 286 3 × 10−93 60.73
evm.model.scaffold64.23 OBP7 169 44 Empoasca onukii OBP12 AWC67992.1 176 2 × 10−53 58.57
TRINITY_DN19892_c0_g6 OBP8 210 19 Empoasca onukii OBP22 AWC68011.1 165 8 × 10−48 46.46
evm.model.scaffold64.19 OBP9 149 24 Subpsaltria yangi OBP2 AXY87861.1 125 7 × 10−34 42.22
evm.model.scaffold94.54 OBP10 118 26 Empoasca onukii OBP11 AWC67987.1 124 1 × 10−33 49.55
TRINITY_DN16837_c1_g7 OBP11 200 No Ctenocephalides felis GOBP 19d-like XP_026482103.1 62.0 2 × 10−8 30.91
TRINITY_DN16837_c1_g7 OBP12 236 No Empoasca onukii OBP22 AWC68011.1 165 8 × 10−48 46.46
TRINITY_DN16837_c1_g7 OBP13 143 21 Empoasca onukii OBP46 AWC68013.1 121 7 × 10−31 36.02
evm.model.scaffold64.25 OBP14 156 23 Empoasca onukii OBP38 AWC68002.1 180 4 × 10−55 64.12
evm.model.scaffold371.21 OBP15 135 No Empoasca onukii OBP49 AWC68018.1 99.0 2 × 10−13 38.28
TRINITY_DN21214_c0_g2 OBP16 135 17 Empoasca onukii OBP2 AWC67994.1 188 3 × 10−58 72.95
TRINITY_DN20748_c1_g13 OBP17 171 No Empoasca onukii OBP42 AWC67997.1 159 2 × 10−47 58.96
TRINITY_DN2151_c0_g1 OBP18 135 16 Empoasca onukii OBP42 AWC67997.1 112 1 × 10−28 45.97
TRINITY_DN17208_c0_g2 OBP19 147 20 Empoasca onukii OBP5 AWC67993.1 84.3 1 × 10−17 35.00
TRINITY_DN20849_c1_g2 OBP20 267 17 Subpsaltria yangi OBP1 AXY87860.1 59.3 5 × 10−7 27.97

Similarly, 13 transcripts encoding putative CSPs were obtained in transcriptome and
genome data (Table 2). Most of the CSP sequences contained the complete ORFs with
the size ranging from 109 to 207 amino acids (except for CSP2, 8, 12), and all the se-
quences had a signal peptide. All the annotated CSP proteins had four conserved cysteines
(Cys-X6-8-Cys-X18-19-Cys-X2-Cys) [48] (Figure 2).
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OBP proteins were in the classic OBP family, indicating that these five genes have differ-
ent evolutionary relationships with the other 15 OBP genes. The putative OBP proteins of 
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Figure 2. Sequence alignment of N. cincticeps CSPs. Sequences were aligned using the MEGA 6.0 and
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residue. Conserved amino acid residues are indicated by red letters. The four conserved Cys was
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Table 2. List of identified CSP genes of N. cincticeps.

Gene ID Gene Name ORF SP Best Blastx Match

(aa) (aa) Species Gene
Name Acc. No Score E-Value Identity

(%)

TRINITY_DN19371_c0_g5 CSP1 123 18 Empoasca onukii CSP9 AWC68028.1 202 1 × 10−64 77.69
TRINITY_DN20809_c0_g2 CSP2 128 17 Empoasca onukii CSP13 AWC68032.1 143 2 × 10−41 57.89
TRINITY_DN19425_c1_g3 CSP3 137 24 Empoasca onukii CSP14 AWC68033.1 166 4 × 10−50 60.47
TRINITY_DN18965_c0_g5 CSP4 130 19 Nilaparvata lugens putative CSP8 ACJ64054.1 152 6 × 10−45 52.31
TRINITY_DN20331_c0_g1 CSP5 132 21 Empoasca onukii CSP17 AWC68036.1 166 3 × 10−50 72.22
TRINITY_DN18304_c1_g6 CSP6 130 15 Empoasca onukii CSP8 AWC68026.1 194 8 × 10−61 67.97
evm.model.scaffold1081.12 CSP7 119 19 Empoasca onukii CSP4 AWC68023.1 147 3 × 10−43 56.90
TRINITY_DN21169_c0_g11 CSP8 124 18 Empoasca onukii CSP2 AWC68021.1 124 7 × 10−34 47.93
TRINITY_DN16691_c0_g1 CSP9 126 15 Empoasca onukii CSP5 AWC68022.1 167 7 × 10−71 67.77
TRINITY_DN15719_c0_g3 CSP10 267 17 Nezara viridula CSP6 AWC68037.1 158 4 × 10−45 59.13
TRINITY_DN13577_c0_g1 CSP11 109 20 Lygus hesperus putative CSP1 APB88037.1 161 6 × 10−9 68.18
TRINITY_DN20737_c0_g2 CSP12 123 18 Empoasca onukii CSP27 AWC68029.1 178 4 × 10−55 83.84
evm.model.scaffold312.53 CSP13 127 17 Empoasca onukii CSP13 AWC68032.1 162 1 × 10−48 64.41

3.4. Phylogenetic Analysis of N. cincticeps OBP and CSP Genes

Due to E. onukii and N. cincticeps belonging to Cicadellidae, L. striatella, S. furcifera,
N. lugens, and N. cincticeps having the same habitats, and the OBP/CSP of the other
four insects being well annotated, thus we chose these species to construct the phylo-
genetic analysis. A phylogenetic tree containing of nine insect species of 161OBPs protein
sequences in Hemiptera was constructed (Figure 3). These candidate OBP proteins were
segmented into two classes of OBP sub-family (Plus-C and classic OBP family). NcinOBP1,
OBP6, OBP8, OBP12, and OBP13 proteins were clustered into the Plus-C family, while
the other OBP proteins were in the classic OBP family, indicating that these five genes
have different evolutionary relationships with the other 15 OBP genes. The putative OBP
proteins of N. cincticeps clustered into a different branch, but most sequences were gathered
with the OBP proteins of E. onukii. In addition, NcinOBP4 was clustered with AlucOBP28
and AlinOBP10. NcinOBP9 was clustered with SfurOBP10 and LstrOBP1, while NcinOBP11
was clustered with BtabOBP1, implying that these genes may have similar functions.

The neighbor-joining tree of 103 CSPs with nine insect species in Hemiptera was
established (Figure 4). In this phylogenetic tree, all the putative CSPs could cluster
with at least one hemipteran ortholog. Similarly, most of the NcinCSP proteins were
clustered with the CSP proteins of E. onukii, because the two insects are members of
Cicadellidae. Moreover, AgosCSP4 and NcinCSP3 were gathered with EonuCSP14, and Nc-
inCSP11 was clustered with BtabCSP7, which suggests that these CSP genes maybe showed
common functions.

3.5. Tissue Expression Levels of Candidate OBP and CSP Genes

The expression levels of these identified OBP and CSP genes in the antennas, heads, tho-
raxes, abdomens, legs, and wings of N. cincticeps were measured by qRT-PCR. Nine candidate
OBP genes (NcinOBP1–9) were mostly expressed in antennas, with 53 to 1042 times higher
than in wings (Figure 5). While NcinOBP12 and NcinOBP14 exhibited a relative expression
level of 493 and 116 times higher in heads than in wings respectively. The expression level
of NcinOBP13 was higher in antennas and heads than in other tissues. The other eight puta-
tive OBP genes (NcinOBP10–11, 15–20) were not detected by qRT-RCR, maybe due to their
expression levels being too low to detect.
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L. striatella, B. tabaci, A. lucorum, A. lineolatus, A. pisum and N. cincticeps. The OBP phylogenetic
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Figure 5. Relative expression levels of OBPs in different tissues of N. cincticeps analyzed by qRT-PCR.
Four biological replicates were conducted for each experiment. The relative quantification was
calculated using the comparative 2−∆∆Ct method. The comparative analysis of each OBP genes
among various tissues was determined using a one-way tested analysis of variance (ANOVA),
followed by Tukey’s multiple range test (p < 0.05). Different lowercase letters indicate significant
differences between different tissues. The values were presented as the mean ± standard error.

For CSPs, four CSPs (NcinCSP2, 3, 4, 6) were specifically expressed in antennas, with
31 to 63 times higher than in wings (Figure 6). NcinCSP1 and NcinCSP5 were comparatively
highly expressed in the abdomen and leg respectively, compared with the expression levels
of other tissues. The expression level of NcinCSP7 was higher in the wing than that in other
tissues. NcinCSP8 was comparatively highly expressed in the head and abdomen than that
in other tissues, while NcinCSP11 was highly expressed in antennae, head, and leg than
that in the thorax, abdomen, and wing. NcinCSP9 was more highly expressed in the head
than that in the thorax. Due to the undetectable expression levels (Ct value > 35), the other
three CSP genes (NcinCSP10, 12, 13) were not detected by qRT-RCR.
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Figure 6. Relative expression levels of CSPs in different tissues of N. cincticeps analyzed by qRT-PCR.
Four biological replicates were conducted for each experiment. The relative quantification was
calculated using the comparative 2−∆∆Ct method. The comparative analysis of each CSP genes among
various tissues were determined using one-way tested analysis of variance (ANOVA), followed by
Tukey’s multiple range test (p < 0.05). Different lowercase letters indicate significant differences
between different tissues. The values were presented as the mean ± standard error.

4. Discussion

N. cincticeps is one of the serious insect pests affecting rice production in East Asia [36].
RDV transmitted by N. cincticeps threatens rice crop yield and leads to enormous economic
losses [49]. Two rice plant volatiles ((E)-β-caryophyllene and 2-heptanol) induced by RDV
infection influenced the olfactory behavior of N. cincticeps independently [38]. The relevant
OBP and CSP gene information will show a promising starting point to understand the
molecular mechanism of N. cincticeps in the detection and recognition of the two volatiles.
According to the transcriptomic analyses, 20 OBP genes and 13 CSP genes were identified.
As well, nine of the OBP genes and three of the CSP genes were highly expressed in
N. cincticeps antennae compared with other tissues. This information could be helpful for
developing new prevention and control strategies with the two volatiles.
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The number of OBP genes in N. cincticeps is more than in some other Hemipteran insect
species. For examples, 15 OBP genes in A pisum [50], 8 OBP genes in B. tabaci [51], 8 OBP genes
in N. lugens [52] and 16 OBP genes in A. suturalis [53] were reported. But it is significantly lower
than in E. onukii (44 OBP genes) and in A. lucorum (38 OBP genes), respectively [44,54]. The
number of N. cincticeps CSP genes, it is approximately close to L. striatella and S. furcifera [55],
but it is markedly lower than in E. onukii (28 CSP genes) [44]. Different Hemipteran insect
species have different numbers of OBP and CSP genes, which might be associated with insect
habits or other environmental factors. For example, E. onukii had more OBP and CPS genes
compared to other insects, which may be due to the wide range of host plants and complicated
environment [56,57]. The internal mechanisms of different Hemipteran insect species with a
different number of OBP and CSP genes need to be further investigated.

The evolutionary analysis will provide new insights into the evolution and function
of N. cincticeps OBP and CSP genes with other Hemipteran species. In this study, most
OBP and CSP genes of N. cincticeps were clustered into the OBP and CSP genes of E. onukii,
indicating that the two insects had high homology relations. But the N. cincticeps OBPs
are in different little branches, and the OBP sequences consistency is low, implying that
the functions of these OBPs are differentiation. The OBP genes were divided into two
classes of OBP sub-family (Plus-C and classic OBP family) (Figure 3). The plus-C NcinOBP
genes were subsequently clustered into two independent orthologous groups. NcinOBP6
was in one orthologous group, and NcinOBP1, OBP8, OBP12, and OBP13 were in another
orthologous group, suggesting that the two plus-C OBP genes orthologous groups were
perhaps derived from common ancestors and then diverged before speciation [58]. The
NcinCSP genes were clustered with different hemipteran ortholog groups, indicating that
the CSP genes have an earlier origin and are more conserved compared with the OBP
genes [59,60]. L. striatella, S. furcifera, N. lugens, and N. cincticeps have the same habitats
(feeding host plants of Poaceae, such as rice and maize). Previous studies showed that
(E)-β-caryophyllene had attractions to S. furcifera and N. cincticeps [38,61]. The phylogenetic
tree suggested that NcinOBP9 was clustered with SfurOBP10. Thus, we speculated that the
two OBP genes might have similar functions.

Different locations of OBP and CSP genes in insect tissues might have different func-
tions [62–66]. Therefore, investigation of the tissue expression patterns of OBP and CSP
genes in N. cincticeps might help to predict their physiological functions. Herein, we found
that most OBP genes (9 of 12) were significantly expressed in N. cincticeps antennae com-
pared with other tissues, which is consistent with other Hemipteran species (e.g., [55,59,66]).
Insect antennae are thought to be a mainly olfactory organs to perceive the host plant
volatiles, alarm pheromones, and sex pheromones [67–70]. Thus, we speculate that the
nine OBPs and three CSPs, which are highly expressed in N. cincticeps antennae, might be
involved in the perception and discrimination of the two rice volatiles induced by RDV
infection. In addition, two OBP (NcinOBP12, OBP14) and two CSP genes (NcinCSP1,
CSP5, CSP7, CSP8) are markedly expressed in N. cincticeps head and leg compared with
antennae respectively, which may play other functions, for instance, carriers of visual
pigments, regeneration and development, anti-inflammatory action, nutrition or insecticide
resistance [4,24,71]. The specific functions of these OBP and CSP genes will be studied in
the next step.

5. Conclusions

In summary, a total of 20 putative OBP and 13 CSP genes are identified from the
N. cincticeps transcriptome. Twelve OBP and 10 CSP genes are detected by qRT-PCR and,
nine OBP and three CSP genes are highly expressed in N. cincticeps antennae compared
with other tissues. Further study needs to analyze the effects of RDV infection on the
expression of these OBP and CSP genes, which could be selected as the potential target
proteins. Then the molecular mechanism of non-viruliferous and viruliferous N. cincticeps
perception of the two volatiles induced by RDV would be analyzed respectively, which will
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provide a theoretical basis and technical support for the ecological prevention and control
of plant diseases transmitted by insect vectors.
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