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Simple Summary: Tomato pinworm, Tuta absoluta (Meyrick), is the major pest of tomato crops in
Pakistan. To develop a better insecticide resistance management strategy and evaluate the risk of
resistance evolution, a field collected population of tomato pinworm was selected with flubendi-
amide in the laboratory. We investigated the genetics of flubendiamide resistance by selecting a
field strain of tomato pinworm with commercial flubendiamide formulation and dose-response
mortality of flubendiamide-selected generation to other insecticides. The flubendiamide-selected
(Fluben-sel) strain demonstrated a higher concentration-mortality response against chlorantranilip-
role, thiamethoxam, permethrin, abamectin and tebufenozide compared to the unselected population.
The backcross analysis of F x resistant parent suggests that resistance is controlled by more than one
factor. Resistance progression from 38 to 520 folds demonstrated that T. absoluta can develop a higher
level of resistance. These results could be helpful to design resistance management strategies for the

tomato pinworm.

Abstract: Tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the major pest of
tomato crops in Pakistan. Insecticides are commonly used for the management of this insect-pest.
To develop a better insecticide resistance management strategy and evaluate the risk of resistance
evolution, a field collected population of the tomato pinworm was selected with flubendiamide
in the laboratory. We investigated the genetics of flubendiamide resistance and concentration-
mortality response to other insecticides by selecting a field strain of tomato pinworm with commercial
flubendiamide formulation. Tuta absoluta was reciprocally crossed with resistant strain (Fluben-R)
and was selected up to 13 generations, while F; progeny was back-crossed with resistant parent
(Fluben-R). The results of LCsy and Resistance Ratio (RR) demonstrated a higher resistance developed
in field and laboratory-selected strains (G, and Gy3, respectively). Field-collected and laboratory-
selected (Fluben-R) strains demonstrated higher intensity of concentration-mortality response against
chlorantraniliprole, thiamethoxam, permethrin, abamectin and tebufenozide compared to susceptible
ones. Based on the overlapping of 95% FL, it demonstrated significant differences, revealing that it
was not sex linked (autosomal) with no maternal effects. The backcross analysis of the F; x resistant
parent resulting in significant differences at all concentrations suggests that resistance is controlled by
more than one factor; the null hypothesis was rejected and inheritance was under polygenic control.
Resistance progression from 38 to 550 folds demonstrated that T. absoluta can develop a higher
level of resistance to flubendiamide. Concentration-mortality response experiments demonstrated
that the LCsy of some tested insecticides was higher for field-collected and laboratory-selected
strains, suggesting that resistance mechanisms should be studied at a molecular level for better
understanding. These results could be helpful to design resistance management strategies against the
tomato pinworm.
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1. Introduction

Tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is endemic
to tropical and subtropical regions of the Americas [1-3]. From its Peruvian origin [4],
this species remained restricted in South America until the mid-2000s [5]. In addition
to the difficulty of its control and high invasive capacity characteristic of its phenotypic
plasticity [6], it has turned into a truly global pest after expanding its geographic range to
the Europe [3,7] and Africa regions [3,8-14].

Several models have been predicting the high capability of tomato pinworm to invade
new areas [14-16]. By 2017, the tomato pinworm had spread from the western Palearctic to
the Himalayan [14,17-20], and by 2021, it had already reached Western China [21]. This
alarming increase in pinworm infestation poses threats to domestic production as well as
international exports of fresh tomatoes [22,23]. Pakistan usually imports tomato during
the shortage season, which always leads to the spread of tomato pests. In Pakistan, the
first report of tomato pinworms was published in 2016 [24], followed by a second report in
2020 [25] demonstrating the concern over the spread of the pest to Solanaceous crops, such
as eggplant, potato, and tobacco [25,26]. The tomato pinworm exhibits cryptic behavior that
seriously compromises tomato yield depending on the year, season, and pest density [27],
making pest management efforts quite challenging to control this pest [28]. Reviewed by
Biondi and Desneux [29], the invasive pest attacks cost accounts for around 70 billion USD
per year [30]. Sincelower tomato yields are the results of tomato pinworm damage, which
includes leaf mining and fruit infestation [1,3]. Therefore, if no control measures are taken,
tomato pinworm can cause up to 70-80% yield loss in tomato crops and will continue to
remain a threat to greenhouse and open-field tomato production [1].

Currently, the primary method of controlling tomato pinworm is the quarantine mea-
sures that help in minimizing its entry into new areas. However, once the border inspections
have been crossed, and the pest established itself in the new area, chemical control becomes
the principal tool of controlling tomato pinworms [31,32]. However, an additional phy-
tosanitary concern is that the introduced pest’s phenotype could include inheritable traits
that could impose management difficulties, including insecticides’ resistance [6]. Thus, the
possible presence of resistance alleles and the lack of effective insecticides due to the lack
of records at the place of introduction can facilitate the rapid spread of tomato pinworm.

Following the failure of the initial efforts to control the tomato pinworm through
phytosanitary methods, insecticides end up being the most popular strategy utilized to
contain the tomato pinworm in new areas. There is a tendency for the average number of
insecticide treatments and expenditures related to pest management to increase significantly
due to a lack of preliminary investigations on registered pest-specific insecticides [33].
Consequently, the frequent use of insecticides will invariably lead to the failure to offer
adequate control levels, emphasizing the need for novel insecticides that are specifically
targeted against tomato pinworm. However, new insecticides can become ineffective if
there are no other active ingredients to alternate with them in pest management, which
may promote pest resistance to insecticides [34—40]. Furthermore, even though the studies
are rigorous, they cannot fully cover all potential side effects on non-target organisms [41]
and human health [42].

Diamides have been overused since their launch to the market because tomato pin-
worm populations were initially highly susceptible to them [43]. Consequently, a number
of control failures have quickly emerged in the field with high resistance recently re-
ported [3,44-46]. Diamides were launched to the market with initial registrations for the
management of Plutella xylostella in Southeast Asia [47]. The mode of action of diamides is
that it binds to the insect’s ryanodine receptors; the calcium channels mediating calcium



Insects 2022, 13, 1023

30f13

release from intracellular stores in neuromuscular tissue result in muscle contraction [48].
In Asia, Brazil, and EUA, P. xylostella was the first insect to develop resistance to diamide
insecticides [49,50]. Currently, diamide resistance was already detected in the diverse pop-
ulation of complex Spodoptera, Adoxophyes honmai, and Chilo suppressalis [51-59]. Surveys
after found the first occurrences of diamide resistance in greenhouse and field populations
of tomato pinworm in Brazil [50], Kuwait [60], and Italy [61], also confirming prior reports
of altered target-site resistance [62—-64].

There is a discrepancy between studies on the genetic inheritance of tomato pinworm
to chlorantraniliprole. Tomato pinworm showed the resistance inheritance autosomal,
completely recessive and monofactorial in Brazil. Whereas, in the study by Roditakis et al.,
the tomato pinworm demonstrated a resistance inheritance incompletely recessive and
polygenic [63]. However, both studies agreed that the selection of population was chosen
because of its high level of resistance to chlorantraniliprole. In addition, it demonstrated a
cross-resistance to other diamides such as cyantraniliprole and flubendiamide. Moreover,
the investigation of genetic inheritance resistance to flubendiamide can contribute to accu-
rately elucidate the characteristics of tomato pinworm resistance to diamides. Therefore,
the objective of this study was to (i) elucidate the pattern of inheritance of flubendiamide
resistance in the tomato pinworm; and (ii) determine the cross-resistance spectrum, if
encompassing diamides and even other classes of insecticides. This study could be helpful
to design suitable resistance management strategies for the control of tomato pinworm.

2. Materials and Methods
2.1. Insect Collection

Both insect groups, the resistant (collected from the flubendiamide-sprayed tomato
field) and susceptible strains (collected from the unsprayed field over years and no tomato
crop was sown in the vicinity) were collected during 2018, 2019, and 2020 from four different
districts (Lahore, Faisalabad, Multan, and Sahiwal) of Punjab, Pakistan, to know the field
scenario of the tomato pinworm resistance and susceptibility. Laboratory conditions were
maintained at 27 & 2 °C of temperature, with 65% RH, and a 14:10 h L:D photoperiod.

For inheritance and cross resistance studies, four thousand (n = 4000) larvae were
collected from tomato fields sprayed with flubendiamide in the Faisalabad district, were
brought to the laboratory and were kept in separate cages of growth chambers with a tem-
perature of 27 & 2 °C, 65% relative humidity, and 14:10 h L:D photoperiod. The field popu-
lation was kept until the second generation (G,) on tomato sprayed with flubendiamide.
To obtain the selected population under the laboratory, the field-collected population was
selected with flubendiamide for 13 generations, while the designated susceptible strain
(collected from an un-sprayed tomato field over years) was kept on non-sprayed tomato
for a year.

2.2. Insecticides Formulations and Flubendiamide Selection of Insects

Commercially available insecticides including flubendiamide (Belt 480 SC), chlo-
rantraniliprole (Coragen 20 SC), thiamethoxam (Actara 25% WG), permethrin (Adpex 25%
EC), abamectin (Proclaim 19 EC), and tebufenozide (Topgun 200 g a.i./L SC) were used for
bioassays. Resistant strains of third instar larvae were reared on flubendiamide sprayed
tomatoes for 13th generations. From the 1st generation, the selection was performed at
different concentrations and a large number of larvae were maintained to obtain further
generations of selection. Each generation was reared on a subsequent increased concentra-
tion of flubendiamide. The designated susceptible strain was kept on tomato without spray
for one year. For a concentration-mortality response to a different insecticide experiment,
larvae were taken from resistant (G13) and susceptible colonies.

2.3. Bioassay of Larvae

Tomatoes were used for resistance and cross-resistance experiments. In these ex-
periments, six serial dilutions with three replications for each were used. For colonies,



Insects 2022, 13, 1023

40f13

insecticide sprayed on diet with concentration of 0 to 15 ug a.i./mL for susceptible and
45 to 400 pg a.i./mL was sprayed on a diet of resistant insects during G; to G13. For one
replication thirty (n = 30) larvae were used and fresh tomatoes, dipped in insecticides and
air dried for 10 min, were replaced every day.

2.4. Genetic Reciprocal and Back Crosses

The resistant strain was collected from a sprayed tomato field, while the susceptible
strain maintained in the laboratory without insecticide exposure was collected from tomato
fields, where no spray was used over the years. To determine resistance patterns against
flubendiamide in T. absoluta, susceptible and resistant strains were assumed to be homoge-
nously susceptible and resistant. Reciprocal crosses were conducted by non-mated males
for 6 h in plastic jars. Non-mated adults were immediately separated on a basis of sex and
were added in other jars as pair. In this way, two types of reciprocal crosses of Resistant &

x Susceptible @ and Resistant @ x Susceptible @ were conducted. F; progeny was further
back crossed with a resistant parent in a reciprocal way. Each time 300 pairs were taken
and were kept in separate cages for further bioassays.

2.5. Maternal Effects and Sex Linkage

Maternal effects and sex linkages of resistance from slope and fiducial limit (FL) of
LCs for F; progeny (which was already obtained from the reciprocal crosses of resistant and
susceptible strains) were determined. LCsy values were considered significantly different if
there was no overlap of 95% FL.

2.6. Degree of Dominance

The dominance values were determined using formula [65,66].
D = (2XF — XRR — XSS)/(XRR — XSS)

XE XRR, XSS are LCsgvalues of Fy, Fluben-Sel and Susceptible populations, respec-
tively, of reciprocal progeny.

The degree of dominance values ranged from —1 (completely recessive) to 1 (com-
pletely dominant resistance) [65,67,68].

2.7. Number of Loci Influencing the Inheritance

Reciprocal crosses of F; and back-crossed progeny was conducted to determine the
number of loci influencing the inheritance. To test the null hypothesis, if resistance was
controlled by one locus with two alleles; Resistant I and susceptible (S), then the parental R
is 100% RR and F progeny is 100% RS. The back cross of RS x RR will produce 50% RS and
50% RR. The concentration of x for RR x RS backcross can be calculated as of [69]:

Yx = (Mgs + MRrg)/2

While Mgs and MRgp are mortalities of the presumed RS and RR genotypes at concen-
tration x, the chi-squared values were calculated as follows [70].

x* = (F; — pn)*/pqn

F;1 = observed mortality of backcross at concentration x, n = number of total progenies
exposed to concentration, p = expected mortality, and q = 1 — p. Then, the sum of x? is
at each concentration compared with the chi-squared with one degree of freedom. The
inheritance of resistance will be considered as fit for the monofactorial model if df = 1.

2.8. Statistical Analysis

POLO program [71] was used for probit analysis [72] based on the concentration
response from each Mendalian cross. LCsy demonstrated 50% larval mortality with a 95%
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Fiducial Limit (FL). LCsq for reciprocal crosses was considered significant when the Fiducial
Limit (FL) did not overlap [73]. Probability calculation was based on (x?) Chi-square. The
Resistance Ratio (RR) with 95% FL was calculated using the method of Robertson and
Preisler, and considered significant if it did not include 1 [74].

3. Results
3.1. Field Strains’ Resistance Evaluation

In Table 1, it is evident that 3 consecutive years (2018, 2019, and 2020) of the data
of flubendiamide resistant field-collected strains demonstrated a higher resistance ratio
(RR) in four districts (Lahore; Faisalabad; Multan; Shahiwal) of Punjab, Pakistan (Table 1).
For the Lahore district-collected population, LCsy was 49.57, 51.76, and 50.56 ug a.i./mL
and RR was 51.10, 43.13, 44.35 folds during 2018, 2019, and 2020, respectively. For the
Faisalabad district-collected population, LCsy was 52.35, 51.49, and 50.69 pg a.i./mL and
RR was 44.74, 55.96, 44.07 folds during 2018, 2019, and 2020, respectively. The Multan
district-collected population LCsy was 54.38, 55.09, and 52.67 ug a.i./mL and RR was 46.87,
59.88, and 49.68 folds during 2018, 2019, and 2020, respectively (Table 1). The Sahiwal
district-collected population LCsg was 56.48, 50.58, and 54.72 ug a.i./mL and was 45.54,
46.40, and 55.83 folds in the 3 consecutive years (Table 1).

Table 1. Resistance levels of Tuta absoluta field populations to flubendiamide.

Fit for Probit Line
Field Area Strains Year n? LCsp (95%FL) (ug/mL) RR 2
Slope + SE X2 (df = 8)
Lahore Fluben-S 2018 810 0.97 (0.69-1.33) 1.67 +0.32 1.26 1
2019 780 1.20 (0.89-1.57) 2.37 £ 0.46 141 1
2020 832 1.14 (0.79-1.48) 1.43 £+ 0.52 1.23 1
Fluben-R 2018 835 49.57 (23.51-69.84) 2.37 +0.82 2.29 51.10
2019 704 51.76 (34.65-80.47) 1.86 = 0.62 2.30 43.13
2020 785 50.56 (32.31-74.69) 2.62 +0.89 1.76 44.35
Faisalabad Fluben-S 2018 843 1.17(0.89-1.62) 259 +1.14 2.14 1
2019 827 0.92 (0.59-1.46) 1.89 £ 0.59 1.57 1
2020 794 1.15 (0.79-1.69) 1.62 +£0.72 2.54 1
Fluben-R 2018 806 52.35 (33.46-71.23) 2.60 £+ 0.41 2.32 44.74
2019 813 51.49 (38.47-71.42) 2.34 +1.03 2.50 55.96
2020 789 50.69 (31.37-76.64) 1.54 +£0.72 1.07 44.07
Multan Fluben-S 2018 816 1.16 (0.79-1.54) 2.33 + 0.65 0.97 1
2019 819 0.92 (0.57-1.49) 1.47 +0.53 1.75 1
2020 779 1.06 (0.72-1.70) 2.39 £ 0.81 141 1
Fluben-R 2018 819 54.38 (31.26-91.34) 2.86 + 0.93 2.92 46.87
2019 788 55.09 (29.65-88.45) 1.29 + 0.69 1.89 59.88
2020 830 52.67 (31.04-89.75) 2.37 £ 1.09 1.73 49.68
Sahiwal Fluben-S 2018 817 1.24 (0.69-1.67) 2.10 + 0.80 2.56 1
2019 790 1.09 (0.74-1.51) 1.35 +0.82 1.74 1
2020 809 0.98 (0.48-1.52) 2.12 £0.21 2.58 1
Fluben-R 2018 832 56.48 (31.37-98.60) 2.63 +1.20 1.53 45.54
2019 821 50.58 (27.24-93.46) 1.28 £ 0.76 2.49 46.40
2020 798 54.72 (29.45-87.65) 237 +£1.14 2.52 55.83

3.2. Laboratory Selection of Resistance to Flubendiamide

The tomato pinworm population was selected until 13 generations and mortality
decreased gradually with an increase in generations, as is inversely proportional. The
concentrations’ range of flubendiamide was 80 to 1000 pug a.i./mL, resulting in mortality
from percentages from 66.6% to 0.19% (Table 2). The selection with flubendiamide until
13 generations resulted in an increase in LCsy ranging from 49.50 to 709.81 ug a.i./mL
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(Table 3). Meanwhile, the RR increased from 38.37 to 520.24 folds as compared to the
susceptible (Table 3).

Table 2. History of generations selected with flubendiamide and percent mortalities of Tuta absoluta.

Generation Concentration No. of Larvae No. of Larvae Mortality
(ug/mL) Exposed Dead (%)
Gl 80 1800 1200 66.60
G2 120 1000 100 10.00
G3 170 1100 30 2.72
G4 250 1050 28 2.54
G5 300 950 20 2.10
G6 450 1050 14 1.33
G7 500 920 19 2.06
G8 600 1100 11 1.00
G9 700 950 6 0.63
G10 800 1100 5 0.45
G11 900 1000 3 0.30
G12 1000 950 2 0.21
G13 1000 1050 2 0.19

Table 3. The resistance levels of Tuta absoluta to flubendiamide during the selection process.

Selection LCsg (95% FL) (ug/mL) Slope + SE x? df RR
Susceptible 1.29 (0.88-1.79) 2.81 £0.34 19.45 8 1
Flubendiamide-sel (G1) 49.50 (32.03-63.52) 430+ 0.28 16.62 8 38.37
Flubendiamide-sel (G2) 67.32 (48.28-81.05) 3.69 £ 0.53 18.72 8 52.18
Flubendiamide-sel (G3) 94.35 (56.46-171.24) 3.52 +£0.35 13.52 8 73.13
Flubendiamide-sel (G4) 157.51 (123.61-195.74) 2.60 £+ 0.52 14.19 8 122.10
Flubendiamide-sel (G5) 213.73 (186.36-262.52) 3.45 +0.46 9.52 8 165.68
Flubendiamide-sel (G6) 302.67 (282.46-353.62) 4.68 £+ 0.36 39.46 8 234.62
Flubendiamide-sel (G7) 389.54 (348.55-434.56) 2.89 +0.42 33.57 8 301.96
Flubendiamide-sel (G8) 446.61 (409.24-476.34) 3.59 £ 048 28.58 8 346.20
Flubendiamide-sel (G9) 496.26 (451.91-534.64) 3.73 £0.28 8.75 8 384.69
Flubendiamide-sel (G10) 562.72 (539.63-598.74) 2.84 + 047 7.46 8 436.21
Flubendiamide-sel (G11) 613.44 (588.36-648.76) 3.57 +0.53 9.45 8 475.53
Flubendiamide-sel (G12) 658.77 (632.42-691.46) 3.64 £+ 0.56 12.70 8 510.67
Flubendiamide-sel (G13) 709.81 (684.54-742.83) 475 + 0.61 8.79 8 520.24

RR = LCs;¢ of Resistant selected strain/susceptible strain.

3.3. Maternal Effects

From Tables 4 and 5, LCs( of F; progeny having reciprocal cross of susceptible and
resistant strains (50.32 and 51.74) showed an overlapping of 95% FL, which exhibit that
there was non-significant difference (Table 4), proving that it was not sex linked (autosomal)
and having no maternal effects. Further LCsg of back-crosses with resistant parent showed
68.63, 65.40, 63.67, and 61.91 (ug/mL). Resistance Ratio (RR) values for the back-cross were
46, 43,42, and 40 folds (Table 5).
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Table 4. Maternal sex linkage to determine the heredity involvement in Tuta absoluta.

Strain LCsg (95% FL) (ug/mL) Slope + SE X2 (df = 8)
Susceptible 1.43 (0.81-1.97) 431£0.73 12.31
Flubendiamide-sel (G13) 709.81 (684.54-742.83) 4.75 £0.61 8.79
Flubendiamide-sel® x 52 50.32 (42.35-61.32) 3.84 +0.27 10.43
5@ x Flubendiamide-sel® 51.74 (40.51-61.86) 452 £ 0.59 12.60

Resistance will be considered significantly different if LCsy will not overlap on 95% Fiducial Limit and non-

significant if LCsy will overlap on 95% Fiducial Limit. @ and (551 represent female and male T. absoluta, respectively.
The same as followed.

Table 5. F; progeny backcross with resistant parents of Tuta absoluta.

Strain LC50(95% FL) (ug/mL) Slope x> RR

Susceptible 1.53 (0.96-2.07) 453 +0.26 11.32 1

7@ (5@ x Flubendiamide-sel@) x RR2642 68.63 (47.29-83.13) 3.96 + 0.44 9.27 46
F,&F (SCF x Flubendiamide-sd@) % RR® 65.40 (46.27-79.20) 445+ 0.53 8.83 43
RR® x F,& (S x Flubendiamide-sel®)®) 63.67 (49.88-75.80) 3.49 +0.34 11.52 42
RRE x ;R 59 x Flubendiamide-sel )& 61.91 (42.36-74.69) 332 +£0.72 8.96 40

3.4. Loci Influencing Inheritance for Monogenic Fit Test

Actual and expected mortality for determining the mode of resistance involved in
the tomato pinworm using the chi-square fit [70] for the Mendalian single gene model
of resistance was conducted. The results demonstrated that significant differences at all
concentrations occurred and actual mortality was higher than the expected mortality for all
concentrations in all crosses (p < 0.0001), demonstrating that multiple factors controlling
the resistance to flubendiamide in tomato pinworm; the null hypothesis was rejected and
the inheritance was under polygenic control (Table 6).

Table 6. Monogenic model for actual and expected mortality of Tuta absoluta.

Strain Actual Mortality (%) Expected Mortality (%) x>
F1@ (S@ X Flubendiamide—sel@?) x RREF
20 8.73 0.5 1
40 28.56 12.31 0.49
80 74.32 17.69 0.54
100 100 35.43 0.26
F,@ (5@ x Flubendiamide-sel®) x RR®
20 7.94 0.5 1
40 26.24 10.58 0.40
80 73.04 19.08 0.64
100 100 30.25 0.35
RR@ X Fl@_‘l (S(:}_“ X Flubendiamide—sel@)
20 7.13 1.54 0.063
40 27.03 11.32 0.21
80 75.50 18.41 0.34
100 100 30.31 0.52
RR& x Fl@ (S@ X Flubendiamide—sel@?)
20 8.62 1.61 28.32
40 27.93 11.91 0.24
80 76.37 24.72 0.62
100 100 31.40 0.39

Probability values were considered significantly different at p < 0.05.
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3.5. Degree of Dominance

Dominance results demonstrated that the percent survival was decreased when fluben-
diamide concentration was increased (0.5-70 pg/mL). The Dvalue demonstrates that resis-
tance was expressed as a complete dominant at 1 (Table 7).

Table 7. Dose dependent effective dominance of flubendiamide-sel population of Tuta absoluta.

Concentration Strain Survival % Fitness D
Susceptible 53.08 0.4
0.5 Flubendiamide-sel 100 1 1
F1 100 1 Complete dominant
Susceptible 217 0.72
25 Flubendiamide-sel 100 1 0.72
F1 100 1 In-complete dominant
Susceptible 0 0
35 Flubendiamide-sel 51.32 1 0.62
F1 21.23 0.62 Co-dominant
Susceptible 0 0
70 Flubendiamide-sel 13.41 1 0.31
F1 0.41 0.31 Incomplete recessive
Effective dominance will be completely recessive at 0.
3.6. Concentration Mortality Response of Different Insecticides
Laboratory-selected strains LCsy values were 132.67, 188.46, 171.69, 175.89, and
152.30 ug a.i./mL for chlorantraniliprole; thiamethoxam; permethrin; abamectin; tebufenozide,
respectively (Table 8). The laboratory-selected resistant strains demonstrated the high-
est decrease in susceptibility to thiamethoxam. While in cases of abamectin; permethrin;
tebufenozide; chlorantraniliprole, it demonstrated a decreasing trend in susceptibility
(Table 8).
Table 8. Concentration mortality response of flubendiamide-sel (Gy3) Tuta absoluta population to
different insecticides.
Strain Insecticide LCsp (ug/mL) Slope e Df
Susceptible Flubendiamide 1.19 (0.74-1.89) 1.81 £0.71 941 8
Flubendiamide-sel (Gy3)  Chlorantraniliprole 132.67 (85.58-213.69) 347 £0.78 23.56 8
Thiamethoxam 188.46 (125.76-246.79) 3.94 + 146 21.46 8
Permethrin 171.69 (134.57-260.48) 2.70 4+ 0.63 17.31 8
Abamectin 175.89 (123.81-278.70) 2514+ 174 21.69 8
Tebufenozide 152.30 (92.60-215.72) 347 £1.26 16.75 8

4. Discussion

Effective management strategies for controlling insects that are detrimental to field
crops can be developed by understanding the resistance development and mode of inher-
itance. Our investigation on the efficacy of flubendiamide against the tomato pinworm
indicated that T. absoluta exhibited high levels of resistance to diamides as well as dose
response mortality to several chemical insecticide groups. The D value dominance of resis-
tance reduced from 1 to 0.31 with a higher concentration. According to our findings, the
mode shifts from complete dominant to incomplete recessive as the concentration increases.
However, the tomato pinworm can develop a high level of resistance when receiving
continuous treatment in the laboratory, as evidenced by the i value of 0.31 at the highest
concentration in thel3th selected generations of flubendiamide. Furthermore, due to differ-
ent selection histories, different genetic basis occur in insect populations. According to a
prior study, the increase in insecticide concentration can alter the degree of dominance [75].
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These findings suggest that with the increased concentration of flubendiamide, resistant
alleles may increase in frequency under laboratory conditions. Although the level of domi-
nance for a particular character is a fixed parameter, environmental conditions or genetic
background may also influence the dominance level [76,77]. Sometimes dominance level
may undergo evolution because of the selection of insecticide, and selection may favor
resistant alleles conferring more dominant phenotypes through allele replacement [78]. Sim-
ilarly, the rate of insecticide resistance development could also be affected by the degree of
dominance; resistance evolves more rapidly when conferred by dominant or incompletely
dominant genes than when regulated by recessive genes. Resistant genotypes including
heterozygotes have higher survival ability after pesticide application in the field and can
multiply faster than susceptible.

Flubendiamide resistant field population of tomato pinworm has demonstrated dose-
response mortality to chlorantraniliprole, thiamethoxam, permethrin, abamectin, and
tebufenozide. Flubendiamide is the first diamide that belongs to the phthalic acid deriva-
tives and has same mode of action as chlorantraniliprole [79-81]. Previous studies with
Plutella xylostella and Adoxophyes honmai demonstrate resistance to flubendiamide [51] and
chlorantraniliprole [52], respectively. In addition, high cross-resistance between flubendi-
amide and chlorantraniliprole has also been reported under field conditions [61,82]. In con-
trast to a previous study, which found limited susceptibility to abamectin and permethrin
against tomato pinworm [83], our concentration-mortality response data demonstrated
increased LCs) for abamectin and permethrin.

Long-term sustainability of a single method of controlling tomato pinworms is im-
possible. Therefore, it is highly advised to adopt the integrated techniques of control to
maximize results while avoiding environmental problems [3,84]. In addition, a long-term
strategy should be developed combining biological control, plant resistant, and selec-
tive insecticides [1,7]. This notion was reinforced with current study findings that the
aforementioned pesticides should not be sprayed after flubendiamide in tomato fields.

The reciprocal crosses of susceptible and resistant strains and the back cross of F1
progeny with a resistant parent, resulting in the 2nd generation, demonstrated no significant
difference, suggesting an autosomal inheritance to flubendiamide [85]. Previous research on
the genetic basis of tomato pinworm resistance to spinosyns indicated autosomal resistance
to spinosad with cross-resistance to spinetoram. [6]. These reciprocal and backcrosses
in our experiments demonstrated a many folds resistance ratio [63,64], suggesting that
marginal effects may occur due to the bioassay rather than maternal sex linkage. The results
of inheritance demonstrated that resistance was incomplete recessive, not sex linked and
autosomal in nature. Furthermore, resistance could be controlled by several factors [63,64],
as demonstrated by the discovery that chlorantraniliprole exhibits a resistance influenced
by multiple traits.

Insect populations may confer monogenic or polygenic resistance to insecticides
under high selection pressure, and polygenic resistance is more likely to happen in this
situation [86]. Resistance to flubendiamide was polygenic-controlled by more than one
factor. Based on the monofactorial model, when the number of genes gives greater value
than 1, it means multiple factors are involved in the flubendiamide resistance in the tomato
pinworm. A higher chi-square value often demonstrates that the monogenic model is
rejected, and resistance is controlled by more than one gene. Field evolved laboratory
selected populations revealed polygenic behavior due to variations in natural selection.
Meanwhile, monogenic resistance occurs in natural populations of the field in the same
vicinity [76,87,88]. Polygenic resistance may occur due to the difference in selection history
with a separate mechanism of resistance, as of the insect species [89]. Our results of
polygenic resistance with the dominance mode are in accordance with studies on Plutella
xylostella demonstrating a similar trend against abamectin [90].

In conclusion, the resistance of flubendiamide against T, absoluta found an autosomal,
is completely dominant and is controlled by more than one factor, suggesting that T, absoluta
has a considerable potential to develop a higher level of resistance against flubendiamide.
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Dose-response mortality against chlorantraniliprole, thiamethoxam, permethrin, abamectin
and tebufenozide suggests that these insecticides should be avoided in rotation with
flubendiamide in pest management programs, and this strategy could be helpful to reduce
the selection pressure and resistance development in T, absoluta.
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