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Simple Summary: In the honeybee Apis mellifera, apidermin 2 (APD 2) is known as a cuticular
protein. However, the antimicrobial properties of A. mellifera APD 2 (AmAPD 2) have not been
characterized. Herein, we provide the first demonstration that AmAPD 2 exhibits antibacterial and
antifungal activities. We found that AmAPD 2 induced structural damage by binding to bacterial and
fungal cell walls, indicating that AmAPD 2 has the antimicrobial action of an antimicrobial peptide.
Our findings demonstrate a novel role of AmAPD 2 as an antimicrobial agent in honeybees.

Abstract: Apidermins (APDs) are known as structural cuticular proteins in insects, but their addi-
tional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2
(AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees,
the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced
upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2
gene showed high expression and responded strongly to microbial challenge. Using a recombinant
AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD
2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall
molecules. This binding action ultimately induced structural damage to microbial cell walls, which
resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2
in honeybees.
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1. Introduction

The insect cuticle serves as an exoskeleton with multifunctional biological properties. It
is mainly composed of structural proteins and chitins [1,2]. Cuticular proteins (CPs) consist
of a variety of structural proteins, and the epidermis is the primary site for synthesizing
the CPs [3]. Arthropod CP families have been categorized by whole-genome sequencing
and described based on characteristics and phylogenetic analysis [2].

Among the CP families from honeybees [3–6], genes of the apidermin (APD) family
are known in the honeybee Apis mellifera and are named APD 1, APD 2, and APD 3 [4].
A. mellifera APDs are highly hydrophobic and APD 1 and APD 2 possess an arginine-rich
motif: RERR. The genes encoding APD 2 and APD 3 are expressed in various tissues of A.
mellifera. Specifically, APD 2 is a component of internal flexible cuticles [4], and proteomic
analyses have demonstrated that APD 2 is also detected in the fat body of A. mellifera
worker bees [7] and is an exoskeletal component [8]. Cuticular proteins, including APD
2, showed an increased abundance in summer A. mellifera worker bees in comparison to
winter worker bees [9]. In addition, APD genes have been analyzed through genome-wide
identification in wasps [2,10,11] and bumblebees [12].

Although APDs are known as structural cuticular proteins, the additional roles of
APDs remain largely unknown. A previous study revealed that APD 2 in bumblebees was
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differentially expressed during parasite exposure, and its expression pattern was correlated
with antimicrobial peptides (AMPs) known to exist in bees [13]. This thus suggests that
APD 2 may be a novel AMP [13]. Moreover, our previous study comparing microbiome
and RNA-sequencing analyses of honeybees (Apis cerana) susceptible and resistant to
sacbrood virus disease revealed that the gut microbiome was different between the two
strains [14], and APD 2 was more highly expressed in the resistant than the susceptible
strains. Therefore, we aimed to elucidate the novel role of APD 2 in honeybees and
demonstrate its antimicrobial activity.

Herein, we provide the first demonstration that A. mellifera APD 2 (AmAPD 2) exhibits
antimicrobial activity. Because APD 2 is highly hydrophobic [4,13], which is a common
feature of AMPs [15], we hypothesized that AmAPD 2 serves as an AMP in honeybees.
In addition, we investigate the antimicrobial mechanism of AmAPD 2, and notably, we
demonstrate that AmAPD 2 exhibits antimicrobial action like that of an AMP.

2. Materials and Methods
2.1. Honeybees

Apis mellifera honeybees were obtained from an apiary at Dong-A University, Busan,
Republic of Korea. Newly-emerged, 1-day-old worker bees were marked on the thorax
using a paint marker [16]. The marked A. mellifera worker bees were then placed back into
the hive and maintained until experimentation.

2.2. Peptide Sequence Analysis

To compare AmAPD 2 to the APD 2 proteins previously found in other bee species,
the deduced peptide sequences from the APD 2 genes were aligned using MacVector (ver.
6.5, Oxford Molecular Ltd., Oxford, UK). Apis mellifera APD 2 (GenBank accession no.
NM_001085346), A. cerana APD 2 (GenBank accession no. XM_017050089), and Bombus
terrestris APD 2 (GenBank accession no. XM_003394905) were used in this study.

2.3. RNA Extraction, cDNA Synthesis, and Quantitative Reverse Transcription-PCR (qRT-PCR)

Total RNA was isolated from the epidermis, fat body, and hypopharyngeal glands of
A. mellifera worker bees using RNAiso Plus (TaKaRa Bio, Shiga, Japan). The concentration
and purity of each RNA sample were analyzed using a NanoDrop One (Thermo Fisher
Scientific, Madison, WI, USA). Next, cDNA was synthesized using 2 µg of RNA per
sample with the AccuPower RT PreMix (BIONEER, Daejeon, Korea). Relative expression
of the AmAPD 2 gene was measured using qRT-PCR on a CronoSTARTM 96 real-time
PCR system (Clontech, Palo Alto, CA, USA) with TB Green Premix Ex TaqTM (TaKaRa
Bio) in 25 µL reactions, each containing 80 ng of cDNA and 0.2 nM of primers: forward,
5′–GTTAATCCTCTTCGCCATCGT–3′ and reverse, 5′–GGCAATAGTGGGTGCAAGA–3′.
The PCR protocol consisted of an initial denaturation step at 95 ◦C for 5 min followed by
40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. The gene expression level of AmAPD 2 was
normalized to that of the internal control gene actin (XM_003251416), which was amplified
using the forward primer, 5′–ATGTGTGACGACGAAGTAGCA–3′, and the reverse primer,
5′–TCCTTTTGACCCATACCG–3′. The qRT-PCR experiment was performed with three
biological replicates and analyzed using the 2−∆∆CT method [17].

2.4. Microbial Feeding Experiment

Six-day-old A. mellifera worker bees were treated with heat-killed pathogens as de-
scribed in our previous study [16]. The bee pathogens used in this study were Paenibacillus
larvae and Ascosphaera apis [16,18], each used as separate treatments. The worker bees were
maintained in cages (11.3 × 7.0 × 4.3 cm) in an incubator at 34 ◦C with 80% humidity and
fed a 40% sucrose solution with or without heat-killed P. larvae (2.5 × 102 cells per bee) or
A. apis (5 × 103 cells per bee) over a 24 h period. For each treatment, 40 bees (n = 40) were
used, and the experiment was performed in triplicate.
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2.5. Production and Purification of Recombinant AmAPD 2

Recombinant AmAPD 2 was produced in Spodoptera frugiperda (Sf9) insect cells us-
ing a baculovirus expression vector system [19]. First, total RNA was extracted from
the whole body of A. mellifera worker bees using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). From this, cDNA was synthesized, which was then PCR-amplified. The
primers used for amplification included restriction enzyme sites and a His-tag sequence
in the reverse primer: the forward primer, 5′–AGATCTATGAAATCCCTGTTAATCC–3′,
included a Bgl II restriction enzyme site (double-underlined) and the reverse primer, 5′–
TCTAGATTAATGATGATGATGATGATGCCATGCTTTCCAC–3′, included an Xba I re-
striction enzyme site (double-underlined) and a His-tag sequence (underlined). This PCR
product was inserted into the pBacPAK8 vector (Clontech, Palo Alto, CA, USA). The ex-
pression vector construct (pBacPAK8-AmAPD 2) was co-transfected with the baculoviral
DNA [19] into Sf9 insect cells to produce recombinant baculoviruses expressing recom-
binant AmAPD 2. The cultured medium was incubated for 5 days then harvested and
centrifuged at 10,000× g for 10 min to remove cell debris. The supernatant was precipitated
in 1 M ammonium sulfate and centrifuged at 15,000× g for 20 min. The pelleted proteins
were resuspended in phosphate-buffered saline (PBS: 140 mM NaCl, 27 mM KCl, 8 mM
Na2HPO4, 1.5 mM KH2PO4, pH 7.4). The recombinant AmAPD 2 was purified using the
MagneHisTM Protein Purification System (Promega, Madison, WI, USA) according to the
manufacturer’s instructions and then quantified using a Bio-Rad protein assay kit (Bio-Rad,
Hercules, CA, USA).

2.6. Sodium Dodecyl Sulfate-Polyacrylamide gel Electrophoresis (SDS-PAGE) and Western
Blot Analysis

Protein samples were analyzed by SDS-PAGE on a 12% gel followed by Western
blot analysis using an enhanced chemiluminescence Western blot system (Amersham
Biosciences, Piscataway, NJ, USA). An anti-His-tag antibody (1:10,000 [v/v]) (Abcam,
Cambridge, UK) was used as a primary antibody, and a horseradish-peroxidase-conjugated
anti-rabbit IgG antibody (1:5000 [v/v]) was used as a secondary antibody. Exposure and
detection procedures were performed according to the manufacturer’s instructions.

2.7. Binding of AmAPD 2 to Carbohydrates

To measure the ability of AmAPD 2 to bind to carbohydrates, a carbohydrate-binding
assay for the recombinant AmAPD 2 was performed using lipopolysaccharide (LPS),
mannan, and N-acetyl-D-glucosamine as described in our previous study [20]. The carbo-
hydrates were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ninety-six-well plates
coated with 0.2 mM/well of LPS, mannan, or N-acetyl-D-glucosamine were incubated
with 0.1 mg/mL bovine serum albumin in 50 mM Tris-HCl buffer (pH 8.0) for 2 h and
then incubated at 25 ◦C for 3 h with 100 µL recombinant AmAPD 2 at concentrations of
0, 100, 200, 300, 400, or 500 nM per well. After washing, the plates were incubated with
the rabbit anti-His-tag antibody (1:10,000 [v/v]) and then with a horseradish-peroxidase-
conjugated goat anti-rabbit IgG antibody (1:5000 [v/v], Enzo Life Sciences, Farmingdale,
NY, USA), each at 25 ◦C for 1 h. Finally, the plates were incubated with 100 µL/well of
3,3′,5,5′-tetramethyl-benzidine substrate solution at 25 ◦C for 10 min, and the reaction was
then stopped using 100 µL/well of 2 M H2SO4. To quantify carbohydrate-bound protein,
absorbance was measured at 450 nm using a microplate reader (Bio-Rad Model 3550).

The thermal stability of recombinant AmAPD 2 was determined at varying tempera-
tures, ranging from 40 ◦C to 70 ◦C, using a peptidoglycan (PG)-binding assay. Recombinant
AmAPD 2 was preincubated at 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C for 1 h, and added to each
well (100 nM per well) of a 96-well plate coated with 0.2 mM/well of PG from Bacillus
subtilis (Sigma-Aldrich). The binding assay was performed as described above.
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2.8. Microbial Binding Assay

A microbial binding assay for the recombinant AmAPD 2 against live bacteria and
fungi was performed with microorganisms used in our previous studies [20–23]. The gram-
negative bacterium Escherichia coli DH5α, gram-positive bacterium Bacillus thuringiensis
656-3, and entomopathogenic fungus Beauveria bassiana SFB-205 were incubated with the
recombinant AmAPD 2 (0.8 µg) at 25 ◦C for 10 min. The microbial samples were centrifuged
at 2500× g for 5 min. The supernatants (free AmAPD 2) and pellets (bound AmAPD 2)
were subjected to SDS-PAGE on a 12% gel followed by Western blot analysis using an
anti-His-tag antibody (1:10,000 [v/v], Abcam, Waltham, MA, USA) as described above.

A similar microbial binding assay using recombinant AmAPD 2 heat treated at 50 ◦C
for 1 h was performed using live B. thuringiensis. The supernatant and pellet samples
were obtained as described above. In addition, pellets were washed with 30 µL of 50 mM
NaCl in PBS and 150 mM NaCl in PBS, sequentially, prior to SDS-PAGE and Western blot
procedures, which were performed as described above but with the supernatant from the
second washing step (150 mM NaCl in PBS) used as a control [24].

2.9. Immunofluorescent Staining

For immunofluorescent staining, microbial samples of E. coli DH5α, B. thuringiensis
656-3, and B. bassiana SFB-205 were treated with recombinant AmAPD 2, as described in
the binding assay, and then incubated with the rabbit anti-His-tag antibody (1:500 [v/v])
at 25 ◦C for 1 h. After washing, the microbial samples were probed with a secondary
fluorescein-conjugated goat anti-rabbit antibody (1:400 [v/v]; Santa Cruz Biotech, Inc.,
Santa Cruz, CA, USA) at 25 ◦C for 1 h. Images were obtained using a confocal microscope
(Carl Zeiss LSM 510, Zeiss, Jena, Germany).

2.10. Scanning Electron Microscopy (SEM)

For SEM, microbial samples were incubated with or without 0.8 µg/well of recombi-
nant AmAPD 2 in 96-well plates. Escherichia coli and B. thuringiensis cells were incubated at
37 ◦C and B. bassiana conidia were incubated at 22 ◦C, all for 24 h with shaking at 220 rpm.
After fixation with 2.5% glutaraldehyde (Sigma-Aldrich) at 25 ◦C for 15 min, the samples
were dehydrated and coated with gold. Images were obtained using SEM (Hitachi S-530
SEM, Hitachi, Japan).

2.11. Antimicrobial Activity Assay

The antimicrobial activity assay for the recombinant AmAPD 2 was evaluated ac-
cording to the liquid growth inhibition method described in our previous studies [20–23].
Microbial samples were incubated with 0.8 µg/well of recombinant AmAPD 2 in 96-well
plates. Incubation conditions differed between organisms: E. coli (2 × 103 cells per well)
and B. thuringiensis (2 × 103 cells per well) cells were incubated at 37 ◦C for 24 h and B.
bassiana conidia (1 × 103 conidia per well) were incubated at 22 ◦C for 48 h, all shaken at
220 rpm. The growth inhibition of microorganisms was measured using a microplate reader
with absorbance at 595 nm. The antimicrobial activity of the recombinant AmAPD 2 was
assessed using the minimal inhibitory concentration (MIC50) of 50% growth inhibition (E.
coli and B. thuringiensis) and the half-maximal concentration (IC50) of 50% growth inhibition
(B. bassiana). Experiments were performed with three independent replicates, and data are
presented as the mean ± standard deviation (SD).

2.12. Statistical Analysis

The data was analyzed using independent unpaired 2-tailed Student’s t-tests compar-
ing treatments to controls (Statistical software SPSS PASW 22.0 package for Windows, IBM,
Chicago, IL, USA). An alpha level of α = 0.05 was used to test statistical significance, which
is presented using asterisks: ** p < 0.01 and * p < 0.05.
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3. Results
3.1. Expression Profile of AmAPD 2 in A. mellifera Worker Bees

While characterizing transcriptome profiles of honeybees (A. cerana) susceptible and
resistant against sacbrood virus disease [14], we obtained an APD 2 gene with a relatively
high-fold increase in expression in resistant A. cerana worker bees. Based on the differential
expression of this A. cerana APD 2 gene, we cloned a cDNA encoding A. mellifera APD 2
(AmAPD 2) for further investigation. Peptide sequence analysis revealed that AmAPD 2
exhibits high similarity to the A. cerana APD 2 (90% peptide sequence identity) and the
bumblebee B. terrestris APD 2 (65% peptide sequence identity) (Figure 1A). Considering
this high similarity, and the known properties of APD 2, we focused on the antimicrobial
role of AmAPD 2 in this study.
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Figure 1. The amino acid sequence and tissue distribution of Apis mellifera apidermin 2 (AmAPD
2). (A) Alignment of the amino acid sequences of bee apidermin 2 (APD 2). The predicted signal
sequences are boxed [4,13]. The conserved arginine-rich motifs and hydrophobic tetra peptides are
shown by asterisks and solid circles, respectively [4]. The GenBank accession numbers of the aligned
sequences are AmAPD 2 (NM_001085346), A. cerana APD 2 (XM_017050089), and B. terrestris APD 2
(XM_003394905). The identity/similarity (Id/Si) values were obtained using the AmAPD 2 sequence
as a reference. (B) Expression of AmAPD 2 in the epidermis, fat body, and hypopharyngeal glands of
A. mellifera worker bees, as assessed via quantitative reverse transcription-PCR (qRT-PCR) (n = 20).

We examined the expression profile of AmAPD 2 in A. mellifera worker bees using
qRT-PCR (Figure 1B). In addition to the tissues known to exhibit APD 2 expression in
honeybees, we selected tissues involved in antimicrobial actions because we hypothesized
that AmAPD 2 serves a role as an AMP in honeybees. We found that AmAPD 2 was
expressed in the epidermis, hypopharyngeal glands, and fat body of A. mellifera worker
bees. The expression level of AmAPD 2 was particularly high in the epidermis.

Because APD 2 possesses AMP-like properties [13], we assessed whether AmAPD 2
expression is induced in the tissues of A. mellifera worker bees upon microbial challenge. We
examined the AmAPD 2 transcription patterns in the epidermis, hypopharyngeal glands,
and fat body of bees following microbial ingestion of the heat-killed bee pathogens P. larvae
and A. apis. Notably, gene expression analysis showed that AmAPD 2 expression was
significantly increased in all the tested tissues, most distinctively the epidermis (Figure 2).



Insects 2022, 13, 958 6 of 10

Insects 2022, 13, x FOR PEER REVIEW 6 of 12 
 

 

aligned sequences are AmAPD 2 (NM_001085346), A. cerana APD 2 (XM_017050089), and B. ter-
restris APD 2 (XM_003394905). The identity/similarity (Id/Si) values were obtained using the 
AmAPD 2 sequence as a reference. (B) Expression of AmAPD 2 in the epidermis, fat body, and 
hypopharyngeal glands of A. mellifera worker bees, as assessed via quantitative reverse transcrip-
tion-PCR (qRT-PCR) (n = 20). 

Because APD 2 possesses AMP-like properties [13], we assessed whether AmAPD 2 
expression is induced in the tissues of A. mellifera worker bees upon microbial challenge. 
We examined the AmAPD 2 transcription patterns in the epidermis, hypopharyngeal 
glands, and fat body of bees following microbial ingestion of the heat-killed bee patho-
gens P. larvae and A. apis. Notably, gene expression analysis showed that AmAPD 2 ex-
pression was significantly increased in all the tested tissues, most distinctively the epi-
dermis (Figure 2). 

 
Figure 2. Transcription pattern of Apis mellifera apidermin 2 (AmAPD 2) in A. mellifera worker bees 
upon microbial ingestion. The transcription pattern of AmAPD 2 was analyzed in A. mellifera 
worker bees fed A. apis or P. larvae over 24 h. Untreated A. mellifera worker bees were used as con-
trols. Total RNA was extracted from the epidermis, fat body, and hypopharyngeal glands of A. 
mellifera worker bees (n = 40). AmAPD 2 transcription was analyzed using quantitative reverse 
transcription-PCR (qRT-PCR). Data are represented as the mean ± standard deviation (SD) of three 
replicates (* p < 0.05 and ** p < 0.01). 

3.2. Antimicrobial Activity of Recombinant AmAPD 2 
To investigate the antimicrobial activity of AmAPD 2, we produced a recombinant 

AmAPD 2 peptide (Figure 3A) in baculovirus-infected insect cells, which secrete the 
mature peptide after signal sequence cleavage [25]. Using the recombinant AmAPD 2, we 
determined whether AmAPD 2 binds to the carbohydrates LPS, mannan, and 
N-acetyl-D-glucosamine, all of which are known from microbial cell walls. The carbo-
hydrate-binding assay revealed that AmAPD 2 recognizes and binds to these carbohy-
drates (Figure 3B). 

In addition, the thermal stability of recombinant AmAPD 2 was determined by 
binding heat-treated AmAPD 2 to PG. The result of the PG-binding assay revealed that 
recombinant AmAPD 2 was stable at heats ranging from 40 °C to 70 °C for 1 h (Figure 
3C). 

Figure 2. Transcription pattern of Apis mellifera apidermin 2 (AmAPD 2) in A. mellifera worker bees
upon microbial ingestion. The transcription pattern of AmAPD 2 was analyzed in A. mellifera worker
bees fed A. apis or P. larvae over 24 h. Untreated A. mellifera worker bees were used as controls. Total
RNA was extracted from the epidermis, fat body, and hypopharyngeal glands of A. mellifera worker
bees (n = 40). AmAPD 2 transcription was analyzed using quantitative reverse transcription-PCR
(qRT-PCR). Data are represented as the mean ± standard deviation (SD) of three replicates (* p < 0.05
and ** p < 0.01).

3.2. Antimicrobial Activity of Recombinant AmAPD 2

To investigate the antimicrobial activity of AmAPD 2, we produced a recombinant
AmAPD 2 peptide (Figure 3A) in baculovirus-infected insect cells, which secrete the ma-
ture peptide after signal sequence cleavage [25]. Using the recombinant AmAPD 2, we
determined whether AmAPD 2 binds to the carbohydrates LPS, mannan, and N-acetyl-D-
glucosamine, all of which are known from microbial cell walls. The carbohydrate-binding
assay revealed that AmAPD 2 recognizes and binds to these carbohydrates (Figure 3B).
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Figure 3. Carbohydrate-binding of recombinant Apis mellifera apidermin 2 (AmAPD 2). (A) Produc-
tion of recombinant AmAPD 2 in baculovirus-infected Sf9 insect cells. The purified recombinant
AmAPD 2 was verified via 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE, left), followed by western blot analysis using an anti-His-tag antibody (right). The molecular
weight standard and recombinant AmAPD 2 are indicated. (B) Binding of recombinant AmAPD 2 to
lipopolysaccharide (LPS), mannan, and N-acetyl-D-glucosamine (n = 3). (C) Binding of heat-treated
recombinant AmAPD 2 to peptidoglycan (PG) (n = 3). Recombinant AmAPD 2 was preincubated at
40 ◦C–70 ◦C for 1 h.



Insects 2022, 13, 958 7 of 10

In addition, the thermal stability of recombinant AmAPD 2 was determined by binding
heat-treated AmAPD 2 to PG. The result of the PG-binding assay revealed that recombinant
AmAPD 2 was stable at heats ranging from 40 ◦C to 70 ◦C for 1 h (Figure 3C).

We performed a microbial binding assay using the recombinant AmAPD 2 against
the live bacteria and fungi used in several of our previous studies [20–23]. The microbial
binding assay using western blot analysis revealed that the recombinant AmAPD 2 binds to
E. coli, B. thuringiensis, and B. bassiana (Figure 4A). We also found that recombinant AmAPD
2 heat treated at 50 ◦C for 1 h still bound to B. thuringiensis (Figure 4A). Moreover, we
observed the localization of the recombinant AmAPD 2 on the microbial surfaces using
immunofluorescent staining (Figure 4B).
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Figure 4. The binding ability of recombinant Apis mellifera apidermin 2 (AmAPD 2) to microbial cell
walls. (A) Western blot analysis of the binding of recombinant AmAPD 2 to microbial cell walls.
Live E. coli, B. thuringiensis, or B. bassiana cells were treated with the recombinant AmAPD 2 for
10 min. The pellet (P) and supernatant (S) represent AmAPD 2 bound to the microbial pellet and
free AmAPD 2 in the supernatant, respectively (Left panel). Live B. thuringiensis cells were treated
with the recombinant AmAPD 2 that had been preincubated at 50 ◦C for 1 h (Right panel). As a
control in the heat-pretreatment experiment, the wash sample (W) used was the supernatant in the
second washing step of the pellet. Western blotting was performed using an anti-His-tag antibody.
(B) Immunofluorescence staining of E. coli, B. thuringiensis, or B. bassiana cells showing the binding of
recombinant AmAPD 2 (green) to the microorganisms’ cell walls. Staining was performed using an
anti-His-tag antibody. For a negative control, E. coli cells pre-incubated without recombinant AmAPD
2 were used (E. coli-AmAPD 2). Merged confocal images are shown in which scale bars = 5 µm.

To determine whether the microbial cell wall binding of the recombinant AmAPD 2
leads to antimicrobial activity due to structural damage, we treated live microorganisms
with the recombinant AmAPD 2 and observed their cell walls using SEM. The result showed
that the recombinant AmAPD 2 induced structural damage (Figure 5), which resulted in
antimicrobial activity (Table 1).

Table 1. Antimicrobial activity of recombinant Apis mellifera apidermin 2 (AmAPD 2) against bacteria
and fungi.

Microorganism MIC50 (µM)

Gram-positive bacterium B. thuringiensis 9.59 ± 0.24
Gram-negative bacterium E. coli 7.90 ± 0.12

IC50 (µM)

Entomopathogenic fungus B. bassiana 23.8 ± 0.35
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Figure 5. Scanning electron microscopy (SEM) observation of recombinant Apis mellifera apidermin 2
(AmAPD 2)-induced structural damage to microbial cell walls. The control column shows untreated E.
coli, B. thuringiensis, or B. bassiana samples next to two AmAPD 2 columns showing treated microbial
samples. Scale bars = 1 µm.

4. Discussion

In one of our previous studies, we found differences between the gut microbiomes of
A. cerana strains susceptible to and resistant against sacbrood virus disease [14] and that
APD 2 expression increased in resistant A. cerana worker bees. Furthermore, the differential
expression of APD 2 in parasite-exposed B. terrestris was strongly correlated with the
expression of AMPs [13]. We also know that APD 2 is highly hydrophobic [4,13], which,
again, is a trait seen with AMPs [15]. These results suggest that APD 2 may function as an
antimicrobial agent in bees. Here, we found that AmAPD 2 indeed exhibited microbicidal
activities against both bacteria and fungi.

In bees, APD 2 is a cuticular protein that is expressed primarily in the trachea and
gut [4]. Proteomic analysis revealed that APD 2 is detected also in the cuticle, epidermis,
and fat body of adult A. mellifera workers [7]. In this study, we found that AmAPD 2
is expressed in the epidermis and fat body of A. mellifera worker bees, but also in the
hypopharyngeal glands, and with a particularly high expression levels in the epidermis.
Considering that the epidermis is the primary expression tissue of CPs [3,8] and that AMPs
are expressed in the fat body and hypopharyngeal glands of A. mellifera worker bees [16],
our results suggest that AmAPD 2 may function as both an antimicrobial agent as well as a
CP in bees.

From these results, we hypothesized that AmAPD 2 is involved in responses to micro-
bial challenges in A. mellifera worker bees. In the present study, AmAPD 2 gene expression
increased in the epidermis, hypopharyngeal glands, and fat body following microbial
ingestion. Notably, this suggests that AmAPD 2 is involved in the innate immune response
of A. mellifera worker bees.

Because of this increased expression, we also hypothesized that AmAPD 2 acts as an
antimicrobial agent. In insects, AMPs and AMP-like peptides with antimicrobial functions
induce structural damage by binding to microbial cell walls [20–23,26–28]. Therefore,
we tested whether AmAPD 2 would exhibit similar antimicrobial action. We found that
AmAPD 2 exhibits antibacterial and antifungal activities, and that this antimicrobial activity
was indeed due to the structural damage caused by microbial binding. Moreover, our
PG-binding assay of heat-treated recombinant AmAPD 2 revealed that it was stable at high
temperatures, another trait seen with AMPs [29–32]. In bees, AMP-like peptides—such as
serine protease inhibitors [20,22], secapins [21], and major royal jelly proteins [18,22,28]—
show an additional antimicrobial role as AMPs. These peptides apparently behave as
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broad-spectrum antimicrobial agents in bees. In this study, we assayed the antimicrobial
activity of AmAPD 2 using the recombinant AmAPD 2 with 6× His-tag residues at the
C-terminus. Our previous studies revealed that His-tag residues in the recombinant peptide
do not affect antimicrobial activity [20–23,33]. Thus, our data demonstrates that AmAPD 2
can function as an antimicrobial peptide.

In addition, APD 2 expression in B. terrestris is potentially a direct defense or a response
to repair the gut damage caused by parasites [13]. An interesting aspect of AmAPD 2 is that
it may also function as a barrier to invaders, such as parasites and pathogens. Collectively,
our findings demonstrate the novel role of AmAPD 2 as an antimicrobial agent and a
cuticular protein in honeybees.

5. Conclusions

Our findings provide the first evidence that AmAPD 2 exhibits antimicrobial activity,
demonstrating that AmAPD 2 functions as an antimicrobial agent as well as a cuticular
protein in A. mellifera worker bees. In addition, AmAPD 2 has the same antimicrobial action
as AMPs and AMP-like peptides. These results provide novel insights into APDs to better
understand the functional role of CPs in bees.
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