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Simple Summary: False codling moth is a polyphagous pest that could be introduced and establish in
Australia. This moth may threaten many commercial horticultural and agricultural production crops
in Australia by damaging a wide range of agricultural crops including avocados, guavas, peaches,
citrus, grapes, cotton, roses and some solanaceous crops. Since false codling moth has caused
considerable financial loss to rose growers through damage to agricultural crops and horticultural
products as well as the costs associated with its control and eradication in some African countries, it
is prudent to predict likely establishment regions in Australia. The predictions were generated using
a Species Distribution Model named Maxent. Results not only considered the climatic suitability but
also overlaid the prediction maps with presence of susceptible hosts. The predictions indicated a
range of near-ocean regions across Australia that were potentially suitable habitats. These results
provided preliminary insight into the potential for false coding moth to establish in Australia. This
research is valuable as the economic impact of this pest could be serious, with prediction and early
detection key to preventing the establishment and spread of false codling moth across Australia.

Abstract: Kenya and some other African countries are threatened by a serious pest Thaumatotibia
leucotreta (Meyrick) (Lepidoptera: Tortricidae), the false codling moth. The detection of T. leucotreta is
quite difficult due to the cryptic nature of the larvae during transportation and is therefore a concern
for Australia. This insect is a known pest of agriculturally important crops. Here, Maxent was used
to assess the biosecurity threat of T. leucotreta to Australia. Habitat suitability and risk assessment of
T. leucotreta in Australia were identified based on threatened areas under suitable climatic conditions
and the presence of hosts in a given habitat. Modeling indicated that Australia is vulnerable to
invasion and establishment by T. leucotreta in some states and territories, particularly areas of western
and southern Australia. Within these locations, the risk is associated with specific cropping areas.
As such, invasion and establishment by T. leucotreta may have serious implications for Australia’s
agricultural and horticultural industries e.g., the fruit and vegetable industries. This study will be
used to inform the government and industry of the threat posed by T. leucotreta imported via the cut
flower industry. Targeted preventative measures and trade policy could be introduced to protect
Australia from invasion by this pest.

Keywords: biological invasion; Thaumatotibia leucotreta; species distribution model; Maxent; climate
suitability; habitat suitability

1. Introduction

Australia is a net agricultural exporter, with the gross value of agricultural production
exceeding $66 billion in 2020–2021 [1]. Agricultural exports play an important part in the
Australian economy, with 70% of Australian agricultural production exported annually due
to the relatively low Australian population and high production [2]. As such, Australia’s
agriculture industry must be protected from invasive pests that might threaten agricultural
exports.
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At the same time, Australia is an importer of horticultural products. From 2019–2020,
the Australian export of fresh cut-flower produce was valued at AUD8.4 million while
import produce was valued at AUD74.2 million [3]. Kenya is one of the largest exporters
of cut flowers to Australia, supplying Australia with 20% of their imported cut flowers:
80,557,649 units valued at USD12.7 million in 2019 [4]. Rose (Rosales: Rosacea) imports
comprise the largest volume of consignments (approximately 34%) of the total volume of
fresh cut-flowers imported during the last decade [5].

Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Noctuidae), also known as false
codling moth, is a European Union quarantine pest. T. leucotreta is a known pest of
agriculturally important crops, including avocados, guavas, peaches, citrus, grapes, cotton,
some solanaceous crops and roses [6–8]. In recent years, T. leucotreta has been deemed
a priority pest by many countries, with pathways of human-assisted spread, such as
passenger luggage and imported fresh products [9]. T. leucotreta is native to sub-Saharan
Africa [7] and has been established in two non-indigenous regions, Western Cape of South
Africa [10] and Israel [11]. Currently, this species is a major pest of economic concern
in Africa, and endemically established across the African land mass, including Angola,
Ghana, Ethiopia, Kenya, South Africa and some island countries, including Madagascar
and Côte d’Ivoire [7]. Additionally, T. leucotreta is present but restricted in Israel [6,7] and
was temporarily detected but successfully eradicated from glasshouses in Netherlands
(2014) [12]. Thaumatotibia leucotreta is considered a significant economic pest in Kenya
and other African counties as its impact on agricultural areas threatens local and export
crop production including vegetables, fruits and flowers, as well as reducing the export
of capsicums, roses and avocados to the EU and around the world. The pest also has a
negative impact on Kenya citrus production [13]. The economic impact involves yield
losses of crops, cost of control and management of the pests and negative environmental
and health impacts associated with the use of insecticides. More recently, T. leucotreta is
now classified as not only a production pest, but also regulated as a phytosanitary pest
with declared ‘zero tolerance’ [14]. This could involve ongoing economic losses, impact
on reputation, customer loyalty and even import licensing [15]. Thaumatotibia leucotreta
is typically polyphagous and can cause feeding damage to over 107 host species and
subspecies, both cultivated and wild [6,7,9,16–18]. Although T. leucotreta has low natural
dispersal ability across the landscape, it is able to move long distances via human-mediated
pathways [19]. Many hosts can be classified as “green bridges”, allowing pests and diseases
access to span cropping seasons [20,21]. This facilitated mobility and host availability
increases the challenge of control as the pest moves between crops grown in the same field
and between fields [21,22].

Damage caused by T. leucotreta can include a range of symptoms, such as chewing,
exit holes and frass eventually resulting in yield reduction [23], and infested plants are
more susceptible to infection by fungi and bacteria [18]. A further challenge associated
with managing T. leucotreta is that infestation symptoms are often difficult to detect. In the
case of roses, the flower buds can appear to be undamaged during early infestation [9].

In 2004, the European Commission declared T. leucotreta as a Union quarantine pest
listed in Part A of Annex II of Commission Implementing Regulation ((EU)2019/2072) and
listed as priority pests in Commission Delegated Regulation ((EU)2019/1702) [6] and the
pest has caused a considerable financial loss to Kenya’s rose growers through shipment
rejection [8]. Kenya remains a major source of T. leucotreta in the export of cut flowers [24].
There has been an increasing number of T. leucotreta interceptions in the EU over recent
years with the most noticeable interception increases reported in roses [7]. The interception
statistics for the EU showed no detections of T. leucotreta in cut flowers from Kenya between
2005 and 2017, however, there were 37 detections in 2018, 39 in 2019, 51 in 2020, 50 in 2021
and 9 until June of the current year, 2022 [25].

There is no evidence that T leucotreta can enter diapause [16,26,27]. Boardman et al. [28],
however, reported that larvae of T. leucotreta may pass into a “chill coma” at temperatures
of 3 ◦C–7 ◦C, becoming dormant, and ceasing feeding and other activity. However, Moore
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et al. [29] obtained 100% mortality of T. leucotreta at temperatures 1, 2 and 3 ◦C for 19, 20
and 24 days. Huisamen et al. [30] reported that 4 ◦C was not likely to affect the T. leucotreta
fitness (spontaneous behavior and flight ability) based on simulating lower-temperature
transportation. The shipping temperatures for cut flowers sent to Australia is 4 ◦C [31]. To
ensure the maximum vase life of the fresh cut-flowers, those imported products are often
transported via air freight at temperatures between 1 ◦C and 4 ◦C [31]. As such, the pest is
unlikely to die, instead it will limit its activity during export.

While T. leucotreta is a tropical pest, it is known to be active during winter nights in
South Africa, indicating that the pest has a greater tolerance to low temperatures compared
with the codling moth, Cydia pomonella [32]. Moreover, European and Mediterranean Plant
Protection Organization (EPPO) [6] identified that T. leucotreta is mostly considered to be
particularly vulnerable under continuing cold conditions, however, regions with a greater
diurnal fluctuation range tends to favor the pest overwintering even under cold conditions.
As the pest may be able to complete more than one generation during the summer period,
this may allow transient populations to survive [6]. This suggests that T. leucotreta may
also be a threat to more temperate countries. Venette [17] forecasted that around 20% of
continental USA is a potentially suitable habitat for T. leucotreta, particularly in the southern
and south-western United States [33]. Given its frequent interception in Europe [25] and
United States [10,33], Australia has identified T. leucotreta as a high risk as it is assumed to
be capable of establishing itself in Australia and is considered a serious biosecurity threat,
particularly to a wide range of crops across tropical and sub-tropical areas [23].

Given the threat posed by T. leucotreta, determining the accurate geographic area that
is most likely threatened by potential establishment is essential for effective monitoring
and management. Species Distribution Models (SDMs) are a useful tool for predicting the
potential distribution of species [34] based on an estimation of the relationship between
known species distribution data (occurrence records) and environmental data (environ-
mental variables/predictors) of the area under consideration [35]. In this study, Maxent,
based on the principle of maximum entropy [36], was selected to predict the potential
distribution of the species. Maxent is commonly used to predict the areas susceptible to
pest species using presence-only data [37]. Compared to other techniques, Maxent shows
higher robustness [38] as well as working well on rare species with a small sample size [39].

Climate change is another concern with SDMs prediction in the future. Climatic
changes cause the change in greenhouse gases which may affect the distribution of the
pest [40]. Levi-Zada et al. [41] mentioned climate change as the possible reason for recent
outbreaks of T. leucotreta in pomegranate plantations in Israel. The global mean surface
temperature is becoming warmer along with the global long-term warming trend iden-
tified by NASA’s Goddard Institute for Space Studies (GISS) [42]. The increasing global
temperature has the potential to alter the suitable area for T. leucotreta.

In light of the biosecurity concern of an incursion by T. leucotreta into Australia and
the potential for its establishment, T. leucotreta represents a clear and present threat to
Australia’s agricultural and horticultural sectors. As post-border detections of T. leucotreta
inevitably increase, this research seeks to provide information to biosecurity managers,
industry and government departments on the potential regions that are likely to support
the infestation and establishment of this pest with the specific aims: (i) to estimate the
potential geographic distribution of T. leucotreta in Australia, along with the strength of
habitat suitability and (ii) to identify the most important environmental predictors that
drive the establishment range of T. leucotreta.

This research aims to guide development of early detection methods, monitoring
systems and other phytosanitary interventions that will assist with the biosecurity manage-
ment of T. leucotreta (False codling moth).
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2. Materials and Methods
2.1. Thaumatotibia leucotreta Occurrence Data

The occurrence data for T. leucotreta were collected from currently available distribution
records obtained from a range of sources: Global Biodiversity Information Facility (GBIF;
https://www.gbif.org/ (accessed on 16 October 2020)); Centre for Agriculture and Bio-
science International (CABI; https://www.cabi.org/cpc (accessed on 17 October 2020)); and
European and Mediterranean Plant Protection Organization (EPPO; https://www.eppo.int/
(accessed on 17 October 2020)).

The total 89 occurrence points used for the modeling of T. leucotreta in this study
are shown in Figure 1. These data, based on current distribution utilized for T. leucotreta,
were managed using a bias grid file created by ‘ENMeval’ package [43] in RStudio Version
1.4.1106 (PBC, MA, Boston), which was initially built for Maxent models [44,45]. This was
to ensure the background data points had the same sampling bias with presence locations.
This grid file was used in order to reduce the potential spatial autocorrelation. Spatial
autocorrelation is a problem caused by spatial sampling bias, and generally occurs in
ecological research data because of a lack of independence between pairs of observations
within a specific geographical space [46]. This problem may reduce model performance [47]
and have an adverse impact on model quality [39,48].
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2.2. Environmental Data

Climate is one of the most important factors driving the distribution of phytophagous
insects [49]. In most SDM studies, the environmental variables are also known as predictors,
covariates or inputs in statistical terms [37]. Nineteen bioclimatic variables including
temperature and precipitation are commonly employed for modeling SDMs. For this study,
19 bioclimatic variables of WorldClim Version 2 were downloaded from the WorldClim
dataset at 10 arc-minutes spatial resolution (Table 1), with a temporal boundary between
1970 and 2000 [50]. This study also assumed ‘degree days above 10 ◦C’ as a threshold for
T. leucotreta population development as eggs of T. leucotreta have a higher mortality rate at
temperatures below 13 ◦C [51] and cessation of hatching was noted at 10.6◦ C [16]. This refers
to Kumar’s [52] research of using the variable ‘Degree days’ as a species-specific phenology
variable that may improve the predictive power of correlative niche models [53,54]. As
such, this variable was calculated by raster calculator through ArcToolbox of ArcGIS [55],

https://www.gbif.org/
https://www.cabi.org/cpc
https://www.eppo.int/
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according to Nugent’s [56] study. The 19 Bioclimatic variables as well as ‘Degree days above
10 ◦C’, were included based on the biological requirement of T. leucotreta for temperatures
above 10 ◦C for egg laying and an optimal temperature for colonization of 25 ◦C [16,32,51].

Table 1. Bioclimatic variables from the WorldClim dataset, plus degree days, assessed to determine
suitability for inclusion in Thaumatotibia leucotreta predictive modeling. DDA10 is Degree days above
10 ◦C.

Variable Code Variable Title Unit Modeling Used
in This Study

Bio1 Annual mean temperature ◦C

Bio2 Mean diurnal range ◦C

Bio3 Isothermality %

Bio4 Temperature seasonality ◦C √

Bio5 Maximum temperature of warmest month ◦C

Bio6 Minimum temperature of coldest month ◦C √

Bio7 Temperature Annual Range ◦C √

Bio8 Mean temperature of wettest quarter ◦C

Bio9 Mean temperature of driest quarter ◦C

Bio10 Mean temperature of warmest quarter ◦C

Bio11 Mean temperature of coldest quarter ◦C

Bio12 Annual Precipitation mm

Bio13 Precipitation of Wettest Month mm √

Bio14 Precipitation of Driest month mm

Bio15 Precipitation seasonality (coefficient of
variation) %

Bio16 Precipitation of Wettest quarter mm

Bio17 Precipitation of Driest quarter mm √

Bio18 Precipitation of Warmest Quarter mm

Bio19 Precipitation of Coldest quarter mm √

DDA10 Degree days above 10 ◦C dd √

Collinearity is a common problem when statistical models are used to estimate the
relationship between one response variable and a set of predictor variables [57]. To reduce
collinearity, this study used the Spearman rank-order to remove correlations in variables
with higher pairwise correlation coefficients (|r| > 0.8) bolding (Appendix A Table A1).
Distilling predictors in advance by using ecologically relevant environmental variables is a
preferred approach [34], i.e., variables with less biological relevance were excluded from
high collinearity variables for this study. In this study, 13 variables were eliminated and
seven variables (Table 1, highlighted with a tick) were used in modeling.

2.3. Maxent Modeling

Models were processed using the ‘Maxent’ platform (Version 3.4.1). The two parame-
ters that have the greatest influence on model accuracy are ‘feature classes’ and ‘regulariza-
tion multiplier’ (RM) [58]. Feature classes include Linear (L), Quadratic (Q), Product (P),
Threshold (T) and Hinge (H) [41]. Regularization parameters work to smooth the model
and prevent it from ‘overfitting’ [44,58]. As well as presence data (occurrence records),
10,000 background points were randomly selected as pseudo-absence data. This approach
used the commonly adopted procedure ‘K-fold cross-validation’ (CV), which efficiently
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uses all data for validation and allows for uncertainty in predictions [59,60]. The results
were generated with 10 replicates across the models. Logistical output was used for ease of
interpretation and estimation of the probability of occurrence conditioned by environmental
variables [58]. In addition, logistical output is robust to unknown prevalence [37,58].

2.4. Model Performance and Preferred Model Selection

This study considered both threshold-independent metrics and threshold-dependent
metrics to evaluate and select the optimal model. Area under the curve (AUC) of the
receiver operating characteristic (ROC) curve [61] is a threshold-independent metric that
characterizes the performance of models in many applied SDM research [44,60]. The AUC
value estimates whether the presence points (locations) have greater habitat suitability
values (HSV) than a random selection of pseudo absences from the study area [62]. The
value of AUC varies between 0 and 1, with the random prediction corresponding to the
value of 0.5 [44]. Values under 0.5 indicate poor performance, i.e., worse than a random
model, and as model performance increases to 1, approaching a perfect fit model [63].
Akaike’s information criterion (AIC) [64] is another threshold-independent metric used
to evaluate the models generated by the ‘ENMeval’ package [43]. The model should be
selected with the minimum AIC value at zero [65]. The threshold-dependent metric used in
this study is ‘omission rate at minimum training presence threshold’ (OR), and ‘omission
rate at 10% training presence threshold’ (OR10). The OR and OR10 values approximate to
0 and 1. 1, respectively, and indicate better performance of the model [47]. The selection of
the optimal model followed a sequence of lowest AIC value at zero, lower OR and OR10
values, as well as higher AUC values.

The final optimal model chosen for this study included the threshold dependent metric
‘Delta AIC’ at 0 with a good AUC value (0.954 ± 0.020). The threshold independent metric
of the optimal model shows a low omission rate of 0.03 as well as a low value of omission
rate (10%) of 0.15. The optimal model used in this study included six climatic variables:
bio4, bio6, bio7, bio13, bio17, bio19 and DDA10 (degree days > 10 ◦C). All feature classes:
linear, quadratic, product, threshold and hinge (LQPTH) were included. The ‘regularization
multiplier’ (RM) value was set at 3.

2.5. Prediction of Habitat Suitability and Identification of Key Variables

Based on the output of the most optimistic model, ArcMap 10.6 [55] was used to trans-
form the logistic output into habitat suitability maps based on one of the best thresholds
‘sensitivity-specificity sum maximization’ [66]. Liu [67] also identified that using Maxent
with ‘sensitivity-specificity sum maximization’ has higher performance for common species
with presence-only data. The habitat suitability maps were classified into four layers us-
ing the Spatial Analyst SDMToolbox 2.0 [68] of ArcMap. Four classes of suitability were
used based on Jenks Natural Breaks Classification [69]: Unsuitable (0–0.1), Low (0.1–0.2),
Moderate (0.2–0.4) and High (0.4 to 0.8).

To identify the potential for T. leucotreta to establish in Australia, the areas of potential
species invasion considered both climatic habitat suitability and host range [9,18], as well
as the pest’s ability to disperse across susceptible hosts [9]. Given that T. leucotreta is a
polyphagous pest, its host range could be much wider than currently known. This research
incorporates the extent of possible hosts using the horticultural and agricultural land
use data from ‘Australian land use and management classification’ [70]. According to
the classification, the prediction considered normal, irrigated and intensive horticulture,
as well as cropping areas with known susceptible, or potentially susceptible hosts. The
overlay map was generated by ArcMap, with the climatically suitable habitat of T. leucotreta
superimposed on host land use. In addition, the potential establishment area (hectares) of
each state or territory was estimated using ArcMap and Excel.

The Maxent model’s internal Jackknife test and contribution percentage were both
used to identify the relative importance of different environmental variables and the relative
contribution that each variable made to the model [59,70]. Jackknife test could estimate the
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variance and bias of large populations via the regularized training gain [71]. In addition,
response curves were used to analyze the predicted probability of the species presence
response to environmental variables [59].

3. Results
3.1. Predicted Habitat Suitability of Areas for Potential Establishment by Thaumatotibia leucotreta

The optimal model predicted climatically suitable areas for T. leucotreta in Australia
(Figure 2). The central area of Australia was determined as an unsuitable habitat, because it
is mostly desert with virtually no agricultural areas. The most suitable areas for T. leucotreta
were generally located in the coastal regions of each state and territory (Figure 2). The
most highly suitable areas are clustered in the south-west of Western Australia (WA),
including temperate agricultural areas (Shire of Augusta-Margaret River, Shire of Albany
and catchment shires or cities in southern parts of the Wheatbelt). The south-east part of
South Australia (SA), including agriculture areas in temperate southern Australia (Fleurieu
Peninsula and Kangaroo Island), is also highly suitable. Additionally, there were a few
scattered areas of high suitability in the tropical northern part of the Northern Territory
(NT), northern and eastern part of Queensland (Qld), the temperate eastern part of New
South Wales (NSW), as well as the northern part of Tasmania (Tas.). The majority of
moderate and low suitability areas were found in QLD and NSW along the coast. Moderate
and low suitability areas also covered southern Victoria (Vic.), the eastern coastal area of
SA, the northern part of NT and some northern regions of Tasmania.

The overlay map (Figure 3) combines areas of climatic suitability with host crop
production areas and highlights the high suitability areas in WA and SA (Figure 4). In
WA, the total measurement of highly suitable areas is around 89,670 hectares (ha) (Table 2).
The potential invasion and establishment extent includes the agricultural areas in parts of
temperate south-western Australia (Augusta, Albany and Manjimup) (Figure 3, Table 2),
with the possible cultivated hosts embracing perennial, seasonal irrigated and intensive
cropping and horticulture (Table 3). The surrounding areas of WA’s Shire of Augusta-
Margaret River and City of Busselton in temperate south-western Australia were also
identified as highly suitable areas, with some irrigated and perennial horticultural areas
(Tables 2 and 3). SA has the second-largest highly suitable area with 69,756 ha (Figure 3,
Table 2), involving some cropping, perennial and intensive horticulture, irrigated cropping,
perennial horticulture and seasonal horticulture in temperate southern Australia (Fleurieu
Peninsula and the Limestone Coast), as well as a small number of cropping areas in
the temperate areas of Eyre and Yorke peninsulas (Figure 3, Table 3). NSW predictions
include relatively smaller areas, mostly around temperate eastern Australia (Shoalhaven
and South Coast) with the cultivated area encompassing cropping and perennial, seasonal
and intensive horticulture (Figure 2, Table 3). Other areas, for example, areas in temperate
southern Australia (Glenelg-Southern Grampians in Vic. and West Coast in Tas.), tropical
north eastern Australia (Far North and Gladstone–Biloela in Qld) had minor potential
establishment areas, which were cropping or irrigated cropping (Figure 2, Table 3).
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Table 2. Summary of potential establishment areas (ha) for Thaumatotibia leucotreta in each Australian
state/territory.

State/Territory
Suitability High Moderate Low Unsuitable

Western Australia 89,670 348,652 2,271,156 41,408,183
South Australia 69,766 262,205 750,311 13,348,525

New South Wales 530 53,004 112,464 25,191,545
Victoria 81 9564 123,151 10,449,260

Tasmania 52 52,179 23,382 152,890
Queensland 45 360,547 628,732 4,414,677

Northern Territory 3 3 149 37,673
Australian Capital Territory 0 0 0 553

Grand Total 160,147 1,086,154 3,909,346 95,003,307
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Table 3. Types of cultivation located in different regions of Australia that show potentially high suitability for Thaumatotibia leucotreta establishment.

Regions of State/Territory Area (ha) Cropping Perennial
Horticulture

Seasonal
Horticulture

Production from
Irrigated
Agriculture and
Plantations

Irrigated
Cropping

Irrigated
Perennial
Horticulture

Irrigated
Seasonal
Horticulture

Intensive
Horticulture

Albany (WA) 63,376 √ √ √ √ √ √ √

Manjimup (WA) 22,162 √ √ √ √ √ √ √ √

Augusta-Margaret
River-Busselton (WA) 4132 √

Fleurieu-Kangaroo Island
(SA) 47,386 √ √ √ √ √ √

Limestone Coast (SA) 22,328 √ √ √ √ √

The Eyre Peninsula and
South West (SA) 52 √

Shoalhaven (NSW) 209 √ √ √ √

South Coast (NSW) 321 √ √ √ √ √

Glenelg-Southern Grampians
(Vic.) 81 √

West Coast (Tas.) 52 √

Far North (Qld) 36 √

Gladstone-Biloela (Qld) 9 √

Daly-Tiwi-West Arnhem
(NT) 3 √
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The majority of moderate suitability and low suitability potential establishment areas
in temperate south-western Australia (WA) and tropical north-eastern Australia (Qld)
extended along the coast and passed through the whole coastal area of temperate eastern
Australia (NSW) to temperate southern Australia (Vic.). Moderate and low areas also cover
the eastern coastal area of temperate southern Australia (SA), the northern part of tropical
north Australia (NT) and some northern regions of temperate southern Australia (Tas.)
(Figure 3, Table 3). Apart from the different habitat suitability of potential establishment
areas to cultivation areas, most of the cultivation areas were predicted as not suitable, which
was attributable to unfavorable climatic conditions for T. leucotreta (Figure 3, Table 2).

3.2. Key Climatic Variables Influencing the Predicted Distribution of Thaumatotibia leucotreta

This study identified the important environmental factors determining the potential
distribution of T. leucotreta in Australia. Based on the optimum model, Bio7 (temperature
annual range) had the highest contribution (31.2%) to T. leucotreta’s habitat distribution, of
the environmental factors assessed, as well as the highest permutation importance (67.3%).
Bio4 (Temperature seasonality) (20.9%) and DDA10 (Degree days above 10 ◦C) (17.9%) also
had an important contribution, but with more limited permutation importance (Bio4, 4.8%;
DDA108.6%). The lowest contributions were from Bio17 (Precipitation of driest quarter, 4%
contribution; 8% importance), and Bio19 (Precipitation of coldest quarter, 0.8% contribution;
1% importance) (Table 4).

Table 4. Percent contribution and permutation importance of environmental variables used to predict
location suitability for Thaumatotibia leucotreta in Australia.

Variable Code Variable Title Unit Percent
Contribution (%)

Permutation
Importance (%)

Bio7 Temperature annual
range

◦C 31.2 67.3

Bio4 Temperature seasonality ◦C 20.9 4.8

DDA10 Degree days above 10 ◦C dd 17.9 8.6

Bio13 Precipitation of wettest
month mm 13.3 9.7

Bio6 Minimum temperature of
coldest month

◦C 11.8 0.6

Bio17 Precipitation of driest
quarter mm 4.0 8.0

Bio19 Precipitation of coldest
quarter mm 0.8 1.0

The results of the Jackknife test showed that Bio4 (Temperature seasonality) had the
highest training gain (Figure 5), as well as the second highest contribution rate. Bio7
(Temperature annual range) had the second highest training gain (Table 4), and Bio17
(Precipitation of driest quarter) and Bio18 (Precipitation of warmest quarter) the least
training gain (Figure 5), the least contribution, and relatively low importance (Table 4).

The variable response curve for Bio7 (Temperature annual range) showed that the
mean temperature range had an important impact on habitat suitability (Figure 6). The
higher temperature ranges significantly decreased the habitat suitability. Habitat suitability
increased with Bio4 (Temperature seasonality) but decreased when temperatures became
too high. Habitat suitability was relatively proportional to Bio6 (Minimum temperature of
coldest month). The variable response curves for Bio13 (Precipitation of wettest month)
and Bio17 (Precipitation of driest quarter) identified the extremes for the rainfall in the
wettest month and the rainfall in the driest three months for the optimal habitat suitability
(Figure 7). Habitat suitability was basically relative to Bio19 (Precipitation of coldest
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quarter). Suitability increased with Degree days but decreases when the Degree days are
too high (Figure 8).
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4. Discussion

Thaumatotibia leucotreta (False codling moth) is polyphagous and able to remain active
throughout the year, assisted by a “green bridge” created by alternating susceptible crops.
As T. leucotreta does not diapause, there is a probability of the pest arriving alive with goods
at importing countries as a result of chill coma [28]. There was not a significant increase in
interception records for T. leucotreta in the EU for a number of different commodities for the
period of 2020 to 2022 [25]. This is on account of how the international flower trade has
been affected by coronavirus pandemic, COVID-19, which included both a sharp decline in
demand for flowers and restrictions in transportation networks [72–74]. Hence, Australian
biosecurity should focus on inspection of those frequently traded commodities, as well as
the less-known route of cut flowers. This research has presented the potential susceptible
areas of T. leucotreta in Australia with Maxent modeling.

In this study, suitable habitats were identified in not only tropical and sub-tropical
regions, but also in temperate areas across Australia. This result changes the risk area
profile for T. leucotreta in Australia as published by previous studies where the areas were
largely focused on tropical and sub-tropical regions [23]. The results do verify those of
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Loomans [9], who stated that T. leucotreta’s habitat preference included not only tropical but
also temperate climatic zones. Given that much of Australia’s horticulture is in temperate
areas, with warm summers and cold winters (mean temperature of the coldest month
between −3 ◦C–18 ◦C) [75,76] along with winter-dominant rainfall [72], this study suggests
the likely threat from T. leucotreta is greater than previously stated.

The predicted establishment of T. leucotreta within the Mediterranean climatic regions
of Australia is not surprising as they are also consistent with the more recent findings by
Loomans [9]. The suitability of Mediterranean climates for T. leucotreta was highlighted by
its introduction and establishment in Israel [11]. Added to this, established populations of
T. leucotreta have been found in Mediterranean climatic regions in South Africa [6,32,77].
Another study by Everatt [12] also summarized a range of suitable areas for T. leucotreta
that included establishments close to the Mediterranean coast in North Africa, the Near
East and Europe [6].

This research demonstrated that temperature-related variables generally contributed
more to the model than precipitation-related variables. This finding is supported by
EPPO [6]. For example, Bio4 (Temperature seasonality) and Bio7 (Temperature annual
range) contributed most to the potential establishment of T. leucotreta. While Bio6 (Minimum
temperature of coldest month) had a lower contribution, it is still relatively important
because of its higher training gain for modeling. The higher training gain demonstrated
by Bio6 reflects the importance of this variable in determining the model and predicted
distribution of T. leucotreta. This outcome concurs with EPPO [6] that indicated climatic
suitability of T. leucotreta strongly relies on the pest’s ability to overwinter and survive
under the lowest temperature period of the year. It also demonstrated the close relationship
between ‘low-temperature mortality’ of T. leucotreta and ‘winter mean monthly lowest
average temperature’ [32]. The majority of high suitability areas of Australia predicted in
this study had mean annual minimum temperatures from 0–5 ◦C based on Dawson’s [78]
‘Hardiness Zones of Australia’. In this study, DDA10 (Degree days above 10 ◦C) is the
additional variable that had a substantial contribution to the predicted establishment of T.
leucotreta. This verified the development threshold of T. leucotreta based on its biological
characteristics from previous studies [16,32,51].

Precipitation-related factors can also impact on T. leucotreta establishment. The re-
sponse curve of Bio13 (Precipitation of wettest month) and Bio17 (Precipitation of driest
quarter) indicated the highest suitability of an area for T. leucotreta establishment occurred
when the total mean rainfall was relatively low. This implies that high rainfall is not as
favorable to T. leucotreta establishment. This is similar to Daiber [79,80] who reported that
heavy or frequent precipitation will have a negative impact on T. leucotreta populations
as heavy rainfall has been shown to kill T. leucotreta eggs. However, low rainfall does
not mean an absence of rainfall, as extremely dry conditions have been reported to have
a negative impact on T. leucotreta development, with drought likely to limit population
growth [6]. These results further support the finding of EPPO [6] regarding humidity as
an influential factor in the life cycle of T. leucotreta, as the pest cannot avoid drought by
passing into diapause. Similarly, Daiber [79] identified that low humidity does not favor
egg or pupae survival.

According to the previous findings, T. leucotreta is recognized as a tropical pest thriving
in warm and moist conditions, with a requirement for humidity from precipitation. In
addition, host plants are an essential requirement for T. leucotreta establishment and spread.
The findings were confirmed in this study, where the entire central region of Australia’s
desert zone [81] has no cropping. This closely matches the current distribution in Africa
where the pest is only established in southern countries but not in northern Africa, which
is dominated by desert. Some northern African countries, with a Mediterranean climate
and thriving agricultural industries, are producing some crops susceptible to T. leucotreta.

The most important finding of this study is the confirmation that temperate areas of
Australia are at risk should T. leucotreta be introduced. This research identified a number
of agricultural habitats that are highly suitable to T. leucotreta establishment in Australia.
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These included the south-west of Western Australia (from latitude 32◦ S to 35◦ S with
longitude 115◦ E to 125◦ E) and the south-eastern part of South Australia (from latitude 36◦

S to 40◦ S with longitude 136◦ E to 140◦ E), both temperate and Mediterranean climates.
Additional high suitability areas were also predicted in the Western Australian Wheatbelt
(center from latitude 32◦ S with longitude 118◦ E), which are consistent with previous
predictions [23].

In addition to climate, Australian land use is also an important factor for consideration,
given that the presence of susceptible host material is essential. Extensive areas containing
susceptible hosts are present in eastern NSW and south-west WA. In contrast, south-east
Qld, east Vic. and south-east SA all have a relatively small proportion of land with suitable
hosts. The NT and east Tas. have limited areas with susceptible hosts.

Thaumatotibia leucotreta is not able to move long distances independently, so areas
growing susceptible perennial hosts will be more suitable than seasonal hosts. However, if
there are surrounding alternative susceptible seasonal hosts growing at other times of the
year, the risk of establishment will increase, as hosts are available for longer periods. To
provide a sensible determination of where this pest might spread, it is necessary to consider
both climate suitability and presence of susceptible crops. The overlay map precisely
analyses the possibility of establishment of T. leucotreta in Australia and indicates that the
areas exposed to the highest likelihood of establishment are mostly confined to the states of
Western Australia and South Australia.

In Western Australia, there are large areas implicated in the agricultural surrounds
across the City of Albany in the Great Southern region (over 63,376 ha). The region around
Albany is a significant contributor to Australian agricultural production and includes horti-
culture and viticulture industries, with susceptible cultivated capsicum, sweet corn, beans,
peas and fruits such as avocados, wine grapes as well as some cut flowers [82]. These are all
suitable hosts for T. leucotreta. The Bunbury region of WA has the second largest susceptible
area (approximately 26,294 ha). This region has a diverse agricultural production sector [83],
with high-volume production of susceptible hosts including avocados, wine grapes and
nectarines [82]. Industry reports show that most of the vegetables in WA are produced
year-round, with some fruit production across the seasons [84]. These regions include
Plantagenet and the towns of Albany, Manjimup and Pemberton [85]. Given suitable host
availability year-round, and that T. leucotreta can be active the whole year, where the climate
is suitable, it can be assumed that agricultural production around Albany, Margaret River,
Manjimup and Bunbury are under threat from T. leucotreta establishment.

In South Australia (SA), there are large areas predicted to be highly susceptible to T.
leucotreta. in the Fleurieu Peninsula (47,386 ha). These areas include Cape Jervis, Victor
Harbor and Kangaroo Island, all with high value annual production of grapes and cit-
rus [82]. Limestone Coast was also identified as another large area with high potential for
establishment (22,327 ha). This region is one of the primary production areas for viticul-
ture (including high-value wine production) with its fertile soil, rainfall and groundwater
resources [82].

Wang et al. [86] suggested considering not only the distribution of host plants but
also the presence of natural enemies in the development of SDM predictions. For future
studies, the natural enemies of T. leucotreta could be considered as one of the variables
in predicting the potential establishment and distribution of the pest. Pest biology is
an important factor impacting the distribution of pests through the interaction between
the pest and its enemies [87]. Natural enemies of T. leucotreta include parasitoids and
predators. Trichogrammatoidea cryptophlebiae Nagaraja, the African egg parasitoid. is one of
the natural enemies of T. leucotreta and has been used as an effective biological control agent
against the pest [14,88–90]. Another effective parasitoid is larval, Agathis bishop (Nixon) [91].
Major predators include two ants, Anoplolepis custodiens (Smith) and Pheidole megacephala
(Fabricius), both have been proven to attack the larvae and pupae of T. leucotreta in citrus
orchards [14,92]. Additionally, there are some reported predators of T. leucotreta such as
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the egg predators, Orius sp., the larval predator, Rhynocoris albopunctatus (Stål) and the
egg/larval mite predator Pediculoides sp. [14,92–95].

Lehmann [87] identified that natural enemies impact on the proliferation of insect
species. However, predators and parasites used in biological control rarely totally eradicate
pests such as T. leucotreta. The effectiveness of biological control is sensitive to some abiotic
factors [96], parasitoids such as T. cryptophlebiae are sensitive to broad spectrum chemical
pesticides and their improper application [97]. Even so, natural enemies mentioned, such as
P. megacephala, were introduced into Australia [98] and competition between them and the
pest could reduce pest population growth [99] and slow the establishment of T. leucotreta.

5. Conclusions

This research using Maxent modeling has predicted a different habitat suitability for
T. leucotreta in Australia compared to previous reports. The outcome not only verified
the potential areas from previous research but also discovered and further enlarged the
potential areas. These results contribute towards a more accurate assessment of risks
posed by T. leucotreta to agriculture and horticulture. Potential invasion areas identified
in this study may be underpredicted, attributable to insufficient or the absence of data for
accurately determining the cold tolerance of T. leucotreta [100].

Areas likely to favor the establishment of T. leucotreta exist across Australia, in which
there are both a suitable climate and cropping. The poor natural dispersal ability of T.
leucotreta could confine the spread of the pest to the vicinity of cropping areas permitting
eradication. The pest’s polyphagous nature could allow it to infest alternating crops within
restricted areas. Early detection is therefore key to preventing potential spread.

Large economic losses have been reported from many areas in sub-Saharan Africa
and Israel, due to the damage caused by T. leucotreta. The pest’s increasingly frequent
interception in the EU, before the global outbreak of the coronavirus pandemic, COVID-19,
hit the international fresh cut-flower market, highlights the growing threat regarding T.
leucotreta’s introduction into Australia via imported fresh cut-flowers from Kenya, and the
potential for it to establish itself in high-value agricultural production areas in Australia.
The findings of this research show the importance of improving offshore and onshore
quarantine inspections. To increase inspection vigilance at borders, the next step should
consider not only cut flowers from Kenya, but also other imported commodities that could
be infested with T. leucotreta attributable to its polyphagia. It is also imperative to establish
a range of effective import treatments, such as cold treatment or fumigation, early warning
monitoring systems, along with published eradication plans with trap monitoring around
susceptible facilities identified by this study and awareness training for inspectors and the
community.
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Appendix A

Table A1. Spearman rank-order of removing correlations in a variable with higher pairwise correlation coefficients (|r| > 0.8) with red color highlight. DDA10 is
Degree days above 10 ◦C.

bio1 bio2 bio3 bio4 bio5 bio6 bio7 bio8 bio9 bio10 bio11 bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 ND >
10 ◦C

bio1 1 −0.29 −0.2 0.06 0.89 0.78 −0.27 0.94 0.92 0.97 0.94 0.04 0.15 −0.23 0.34 0.16 −0.14 −0.28 −0.03 0.99

bio2 −0.29 1 0.29 0.05 −0.02 −0.73 0.91 −0.36 −0.37 −0.35 −0.36 −0.66 −0.49 −0.51 0.38 −0.63 −0.6 −0.23 −0.58 −0.31

bio3 −0.2 0.29 1 −0.87 −0.14 −0.06 −0.05 −0.38 −0.03 −0.35 0.02 0.05 −0.03 0 −0.06 −0.14 0.03 0.05 0.11 −0.22

bio4 0.06 0.05 −0.87 1 0.11 −0.22 0.38 0.24 −0.18 0.21 −0.22 −0.3 −0.19 −0.16 0.24 −0.14 −0.27 −0.05 −0.4 0.08

bio5 0.89 −0.02 −0.14 0.11 1 0.55 0.03 0.81 0.82 0.89 0.82 −0.18 0.05 −0.45 0.49 0 −0.36 −0.36 −0.18 0.87

bio6 0.78 −0.73 −0.06 −0.22 0.55 1 −0.76 0.72 0.84 0.75 0.86 0.43 0.35 0.16 −0.06 0.41 0.31 −0.12 0.4 0.78

bio7 −0.27 0.91 −0.05 0.38 0.03 −0.76 1 −0.28 −0.41 −0.26 −0.43 −0.73 −0.54 −0.54 0.4 −0.63 −0.65 −0.24 −0.63 −0.28

bio8 0.94 −0.36 −0.38 0.24 0.81 0.72 −0.28 1 0.79 0.96 0.83 0.07 0.19 −0.13 0.31 0.23 −0.06 −0.12 −0.08 0.94

bio9 0.92 −0.37 −0.03 −0.18 0.82 0.84 −0.41 0.79 1 0.88 0.97 0.1 0.19 −0.18 0.23 0.17 −0.03 −0.37 0.19 0.9

bio10 0.97 −0.35 −0.35 0.21 0.89 0.75 −0.26 0.96 0.88 1 0.88 0.03 0.16 −0.23 0.34 0.18 −0.14 −0.28 −0.01 0.96

bio11 0.94 −0.36 0.02 −0.22 0.82 0.86 −0.43 0.83 0.97 0.88 1 0.16 0.24 −0.17 0.24 0.23 −0.03 −0.28 0.13 0.93

bio12 0.04 −0.66 0.05 −0.3 −0.18 0.43 −0.73 0.07 0.1 0.03 0.16 1 0.67 0.63 −0.48 0.85 0.66 0.55 0.55 0.11

bio13 0.15 −0.49 −0.03 −0.19 0.05 0.35 −0.54 0.19 0.19 0.16 0.24 0.67 1 0.13 0.13 0.89 0.18 0.58 0.15 0.16

bio14 −0.23 −0.51 0 −0.16 −0.45 0.16 −0.54 −0.13 −0.18 −0.23 −0.17 0.63 0.13 1 −0.84 0.36 0.96 0.31 0.63 −0.17

bio15 0.34 0.38 −0.06 0.24 0.49 −0.06 0.4 0.31 0.23 0.34 0.24 −0.48 0.13 −0.84 1 −0.15 −0.85 −0.09 −0.71 0.27

bio16 0.16 −0.63 −0.14 −0.14 0 0.41 −0.63 0.23 0.17 0.18 0.23 0.85 0.89 0.36 −0.15 1 0.41 0.6 0.33 0.2

bio17 −0.14 −0.6 0.03 −0.27 −0.36 0.31 −0.65 −0.06 −0.03 −0.14 −0.03 0.66 0.18 0.96 −0.85 0.41 1 0.21 0.75 −0.09

bio18 −0.28 −0.23 0.05 −0.05 −0.36 −0.12 −0.24 −0.12 −0.37 −0.28 −0.28 0.55 0.58 0.31 −0.09 0.6 0.21 1 −0.07 −0.24

bio19 −0.03 −0.58 0.11 −0.4 −0.18 0.4 −0.63 −0.08 0.19 −0.01 0.13 0.55 0.15 0.63 −0.71 0.33 0.75 −0.07 1 −0.01

DDA10
1 0.99 −0.31 −0.22 0.08 0.87 0.78 −0.28 0.94 0.9 0.96 0.93 0.11 0.16 −0.17 0.27 0.2 −0.09 −0.24 −0.01 1

1 Degree days above 10 ◦C.
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