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Simple Summary: The spiders, Pirata subpiraticus Bösenberg et Strand (Araneae: Lycosidae) and
Pardosa pseudoannulata Bösenberg et Strand (Araneae: Lycosidae) are important natural enemies of
many rice pests. Herbivore-induced plant volatiles can attract natural enemies to pest locations
and are becoming important in integrated pest management. This study assessed the effects of
herbivore-induced rice volatiles on the selection behavior, predation ability and field attraction of two
species of spiders. The selection frequency of spiders for methyl salicylate, linalool, and 2-heptanone
were significantly greater than the blank group. Methyl salicylate can shorten the predatory latency
of male P. pseudoannulata and can also trap more P. pseudoannulata in the field. Linalool may also
shorten the predatory latency of male P. subpiraticus and increase the daily predation capacity of
female P. pseudoannulata. In summary, herbivore-induced rice volatiles attract P. pseudoannulata and
P. subpiraticus, and potentially increase their pest control capability. These results provide support for
the practical use of herbivore-induced rice volatiles to attract and retain spiders in rice fields.

Abstract: Spiders are important natural enemies of rice pests. Studying the effects of herbivore-
induced rice volatiles on spider attraction and predation ability may lead to safer methods for pest
prevention and control. In this study, four-arm olfactometer, predation ability experiment, and
field trapping experiment were used to evaluate the effects of herbivore-induced rice volatiles on
Pirata subpiraticus Bösenberg et Strand (Araneae: Lycosidae) and Pardosa pseudoannulata Bösenberg
et Strand (Araneae: Lycosidae). The 0.5 µg/µL linalool concentration was attractive, and also
shortened the predation latency in male P. subpiraticus and female P. pseudoannulata. The 0.5 µg/µL
linalool concentration increased the daily predation capacity of female P. pseudoannulata. Male
P. pseudoannulata were attracted to 1.0 g/L methyl salicylate, which also shortened their predation
latency. In field experiments, methyl salicylate and linalool were effective for trapping spiders.
Herbivore-induced rice volatiles attract rice field spiders and affect their predatory ability. These
results suggest that herbivore-induced rice volatiles can be used to attract spiders and provide
improved control of rice pests.

Keywords: rice field spiders; herbivore-induced rice volatiles; selection behavior; predation latency;
daily predation capacity

1. Introduction

Rice is an important food crop and rice yield is always a high priority [1]. How-
ever, pests such as Nilaparvata lugens Stal (Homoptera: Delphacidae), Sogatella furcifera
Horváth (Homoptera: Delphacidae), Chilo suppressalis Walker (Lepidoptera: Pyralidae), and
Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae) can reduce rice production [2].
Pesticide application is the main approach for managing rice pests. Although chemical pes-
ticides are effective, their widespread use has resulted in an increase in the occurrence of 3R
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(residue, resistance, and resurgence). This has made the biological management of rice pests
more important [3–5]. Herbivore-induced plant volatiles (HIPVs) regulate the interaction of
plants, herbivorous insects, and their natural enemies [6,7]. They can be used as attractants
for the natural enemies of pests [6,8]. Herbivore-induced rice volatiles (HIRVs) such as (Z)-
3-hexen-1-ol, methyl salicylate, 2-heptanone, linalool, and others are produced or increased
when rice is damaged by pests [9–13]. HIRVs increase significantly, when rice is eaten by
adult females of the brown planthopper N. lugens and the white-backed planthopper S.
furcifera [14]. Some HIRVs are attractive to natural enemies of rice planthoppers, such as
Anagrus nilaparvatae Pang et Wang (Hymenoptera: Mymaridae) [9,15,16], Haplogonatopus
japonicus Esaki et Hashimoto (Hymenoptera: Dryinidae) [17] and Cyrtorhinus lividipennis
Reuter (Hemiptera: Miridea) [18,19]. Some HIRVs are attractive to Apanteles chilonis Mu-
nakata (Hymenoptera: Braconidae), which is the natural enemy of C. suppressalis [20]. The
HIRVs released by Tibraca limbativentris Stål (Heteroptera: Pentatomidae) and Glyphepomis
spinosa Campos et Grazia (Heteroptera: Pentatomidae) feeding on rice are attractive to the
natural enemy of rice pest, Telenomus podisi Ashmead (Hymenoptera: Platygastridae) [21].

Spiders are often referred to as the “Paddy Field Guardian”, and are natural enemies
of rice pests in the rice fields of China [22,23]. Spiders are carnivorous, with a large food
intake, strong predatory ability, high reproductive rate, and high adaptability [24]. There-
fore, spiders play a significant role in the biological management of rice pests. In China,
the dominant species of rice field spiders include Tetragnatha maxillosa Thoren (Araneae:
Tetragnathidae), Pardosa pseudoannulata Bösenberg et Strand (Araneae: Lycosidae), Pirata
subpiraticus Bösenberg et Strand (Araneae: Lycosidae), Pirala piraticus Clcrck (Araneae:
Lycosidae), Clubiona japonicola Bösenberg et Strand (Araneae: Clubionidae), and Oxyopes
sertatus L. Koch (Araneae: Oxyopidae) [25–27]. Netting spiders and wandering spiders are
the two main types of dominant spiders. Netting spiders feed on a variety of flying insects
while wandering spiders feed on insects in many locations [26]. Wandering wolf spiders
are the majority spiders in rice fields. Wolf spiders rely on their sense of smell to discover
and locate their prey [28,29]. Cao et al. identified the wolf spider P. pseudoannulata having
two potential odorant-binding protein genes [30]. This information provides the basis for
further research on the olfactory selection behavior of wolf spiders. Spider olfaction is
critical in their predatory behavior [31], but it is not known if HIRVs are attractive to spiders.
Therefore, we selected two paddy wolf spiders, P. subpiraticus and P. pseudoannulata, to
study the selection behavior of spiders on HIRVs. P. subpiraticus often forages on rice, water,
and land to prey on rice pests [32]. It has strong predation ability and starvation tolerance.
It can consume 6–16 S. furcifera every 24 h [33], and survive up to 42.7 d without food under
certain humidity conditions [34]. P. pseudoannulata is an important predator of rice pests.
It is a hunting spider with a wide niche, good running and jumping ability, and strong
predatory ability for rice pests [35].

In the study, two rice field spiders and four volatiles were selected to ascertain if HIRVs
are attractive to spiders and to determine the optimum concentrations of the attractive
volatiles. We used the optimum concentration to verify how HIRVs affect the predatory
ability of spiders. HIRVs were also used as attractants to trap spiders in the field.

2. Materials and Methods
2.1. Spiders

P. subpiraticus and P. pseudoannulata were collected from a rice field in Yanlou Town,
Huaxi District, Guiyang, China (106◦6′24” E, 26◦3′19” N). Spiders of various growth stages
were collected and placed in individual plastic test tubes (12 cm × 3.5 cm diam). To
maintain humidity, a water-soaked sponge was placed at the bottom of each test tube, and
the top of the tube was sealed with a cotton ball. Spiders were raised in a clear artificial
climate box at 25 ◦C ± 1 ◦C, 75% ± 5% relative humidity, and a 14:10 h (L:D) photoperiod.
The spiders were fed Musca domestica adults twice a week (2–3 M. domestica adults each
time) until they were adults.
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2.2. Volatiles

The volatiles were purchased from Sigma-Aldrich (St. Louis, MO, USA). There were
four volatile standard products, 99% methyl salicylate (MeSA), 98% cis-3-hexen-1-ol (CH),
99% 2-heptanone (HE), and 99% linalool (LI). The control was 99.9% liquid paraffin.
The four volatiles were dissolved in liquid paraffin and diluted to test concentrations
of 0.5 µg/µL, 1 µg/µL, and 1.5 µg/µL based on existing information on the spectrum of
HIRVs [11,12].

2.3. Experimental Treatments
2.3.1. Spider Selection Behavior Experiments in Response to HIRVs

A four-arm olfactometer was used following the procedure of Vet et al. [36,37] (Figure 1).
The test cavity of the olfactometer was 15 cm in diameter and composed of transpar-
ent Plexiglas. Four odor areas and centers were drawn on the surface of the olfactometer’s
test cavity. The purpose of the area boundaries was to determine spider location. Silicon
tubes were used to link the odor source bottle (or control bottle), gas cleaning bottle, ac-
tivated carbon filter bottle, flow meter, and atmosphere collector to the olfactometer. A
20 W fluorescent bulb was placed 30 cm above the olfactometer. A gas flow meter was used
to regulate the airflow of the four arms at 400 mL/min. The indoor test temperature was
25 ◦C ± 3 ◦C.
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and the predatory latency (the period between the preys were placed and the spider suc-
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Figure 1. Experimental olfactometer for olfactory selection. The black wire connecting the instrument
represents the rubber tube. In the olfactometer, the solid cross-line represents the boundary of the
test area; 1, 2, 3, 4 are four test areas, and the dotted lines of different colors represent different
test volatiles and flow directions; 5 is the introduction area of the spiders and the exit location of
the volatiles.

The spiders were starved for 48 h before being tested (water was added without food).
Liquid paraffin was used as the control and to dilute the volatile standards. Before starting
the volatile test, we first observed the spider’s selection behavior of the four arms of the
olfactometer for placed liquid paraffin. During the test, one of the four arms was defined as
the control arm, while the other three were defined as the treatment arms. The filter paper
(4 cm diam) was sprayed with 20 µL quantities of different concentrations of the same
volatiles (20 µL liquid paraffin was used as a control) and placed in the olfactometer’s four
odor source bottles. Second, we pumped the air for 5 min to fill the pipe with the odors
then used a funnel to introduce the test spiders into the test chamber of the olfactometer
where they were observed for 5 min. We recorded spider movements in each odor area and
in the central area. If the spider entered the arm of a certain odor area and remained there
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for 2 min, the arm volatile was deemed the spider’s last choice. The spider was deemed
unresponsive if it did not make a choice within 5 min after entering the test cavity. When
the spider made a final choice in one of the arms, the remaining time (5 min minus the time
spent making the final choice) was added to that arm. Each time, one spider was tested,
and each volatile was tested on 30 female or male adults of each species. We changed the
filter paper in the bottle after five tests were completed, cleaned the olfactometer with 100%
ethanol, and dried it with a hair drier. We linked the olfactometer to each odor source bottle
and the control bottle after each cleaning.

2.3.2. Spider’s Predatory Ability Experiments

We used P. subpiraticus and P. pseudoannulata as experimental subjects to determine if
HIRVs could affect the predatory ability of rice field spiders. The test spiders were starved
for seven days before predation testing, since spiders can ingest and store surplus food.
This was done to ensure that the spiders would be able to hunt during the experiments.
During the experiment, we placed filter paper containing 3 µL of the volatile into the plastic
tube with spiders for 30 min, then placed Drosophila melanogaster (prey, well-developed,
and with similar body sizes) into the plastic tube with spiders. Preliminary experiments
show that spiders of different sizes and sexes have different predatory abilities. Therefore,
females of P. pseudoannulata placed 40 preys, and other spiders placed 30 preys. Twenty
female or male adults of each spider species were tested for each HIRV, and the predatory
latency (the period between the preys were placed and the spider successfully finished the
attack), as well as daily predation was recorded.

2.3.3. Field Trapping Experiments

Xixiu District, Anshun, Guizhou Province, China (106◦9′19′′ E, 26◦9′38′′ N) was se-
lected as the site for the field experiment. The rice was in the filling stage. We selected
volatiles such as methyl salicylate, linalool, and 2-heptanone, which were all attractive to
spiders in experimental treatments. The attractant was formulated in an 8:1 proportion of
volatiles to liquid paraffin. A 225 mL plastic cup served as the trap. The 2 mL attractant
centrifuge tube was connected to the inside of the plastic cup with small holes drilled at
the bottom and liquid paraffin was the control. We set traps between rice plants at the
base of every 16 clusters of rice, 10 traps for each volatile. We recorded the species and the
number of spiders in the traps after 7 days. In each HIRVs field experiment, there were
three replications with a plot spacing of at least 10 m to minimize inter-plot interference.

2.4. Statistical Analysis

Experiment data were analyzed using IBM SPSS Statistics 21.0. The selection frequency
of spiders between different concentrations of volatiles was tested using a goodness-of-fit χ2

test. The observed behavioral responses were compared to expected frequencies assuming
a random distribution of spiders to volatiles (three concentration odor sources and one
control). The stay (retention) time of spiders in different areas was compared using one-way
analysis of variance (ANOVA). The attack latency and daily predation of spiders between
different treatments were assessed using one-way ANOVA in the predation experiment. In
the field experiment, one-way ANOVA was used to compare spider trapping rates between
the different treatments.

3. Results
3.1. Spider Selection Behavior in Response to HIRVs

Liquid paraffin was used as the control and to dilute the volatile standards. The
P. pseudoannulata and P. subpiraticus selection frequencies showed no significant difference
between liquid paraffin in the four arms of the olfactometer (Table 1).
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Table 1. Behavioral responses (observed frequencies (N = 30) compared to expected frequencies
assuming random distribution by using a χ2 test) of spider to volatiles.

Spider Sex Treatment χ2 p Significance

P. pseudoannulata

male

CK 2.533 0.469 NS
MeSA 8.667 0.034 *

HE 9.200 0.027 *
CH 6.533 0.088 NS
LI 10.267 0.016 *

female

CK 2.267 0.519 NS
MeSA 1.200 0.753 NS

HE 0.667 0.881 NS
CH 3.867 0.276 NS
LI 13.200 0.004 **

P. subpiraticus

male

CK 5.467 0.141 NS
MeSA 3.867 0.276 NS

HE 16.667 0.001 **
CH 5.467 0.141 NS
LI 13.467 0.004 **

female

CK 7.600 0.055 NS
MeSA 3.333 0.343 NS

HE 4.400 0.221 NS
CH 2.267 0.519 NS
LI 2.533 0.469 NS

Note: CK indicates liquid paraffin, MeSA = methyl salicylate, HE = 2-heptanone, CH = cis-3-hexen-1-ol,
LI = linalool; “NS” = no significant difference; “*” denotes a significant difference at the p < 0.05 level; “**” denotes
a significant difference at the p < 0.01.

Spider selection between three concentrations of the same volatile and a negative con-
trol was studied using a four-arm olfactometer. The results showed that selection frequency
of male P. subpiraticus for 2-heptanone (χ2 = 16.667, p = 0.001) and linalool (χ2 = 13.467,
p = 0.004) were significantly different (Table 1). The male P. subpiraticus showed a stronger
preference for 0.5 µg/µL linalool and 1.0 µg/µL 2-heptanone than for other concentra-
tions and controls (Figure 2). However, there was no significant difference in selection
frequency for cis-3-hexen-1-ol (χ2 = 5.467, p = 0.141) and methyl salicylate (χ2 = 3.867,
p = 0.276) (Table 1). The selection frequency of female P. subpiraticus for linalool (χ2 = 2.533,
p = 0.469), 2-heptanone (χ2 = 4.400, p = 0.221), methyl salicylate (χ2 = 3.333, p = 0.343),
and cis-3-hexen-1-ol (χ2 = 2.267, p = 0.519) were not significantly different (Table 1). The
selection frequency for methyl salicylate (χ2 = 8.667, p = 0.034), 2-heptanone (χ2 = 9.200,
p = 0.027), and linalool (χ2 = 10.267, p = 0.016) in male P. pseudoannulata were significantly
different (Table 1). Male P. pseudoannulata selected 1.0 µg/µL linalool, 1.0 µg/µL methyl
salicylate, and 0.5 µg/µL 2-heptanone more frequently than other concentrations and con-
trols (Figure 2). The selection frequency for cis-3-hexen-1-ol (χ2 = 6.533, p = 0.088) in male P.
pseudoannulata was not significant (Table 1). Female P. pseudoannulata selection frequency for
linalool (χ2 = 13.200, p = 0.004) was significantly different (Table 1). The selection frequency
of 0.5 µg/µL linalool by female P. pseudoannulata was higher than the other concentrations
and controls (Figure 2). Female P. pseudoannulata selection frequency for methyl salicylate
(χ2 = 1.200, p = 0.753), 2-heptanone (χ2 = 0.667, p = 0.881), and cis-3-hexen-1-ol (χ2 = 3.867,
p = 0.276) were not significantly different (Table 1).

We studied the duration that spiders remained in different treatments to see if HIRVs
affected their selection behavior. Male P. pseudoannulata remained significantly longer in
the presence of 1.0 µg/µL methyl salicylate and 1.0 µg/µL linalool than in other concen-
trations of the same volatiles or the control treatment. Female P. pseudoannulata remained
significantly longer in the presence of 0.5 µg/µL linalool than in the presence of other
concentrations of the same volatile or the control treatment. Male P. subpiraticus remained
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longer with 1.0 µg/µL 2-heptanone and 0.5 µg/µL linalool than with other volatile concen-
trations or the control treatment (Table 2).
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Figure 2. Selection frequency (N = 30), (A) male P. subpiraticus, (B) female P. subpiraticus, (C) male
P. pseudoannulata, (D) female P. pseudoannulata; MeSA indicates methyl salicylate, HE indicates
2-heptanone, CH indicates cis-3-hexen-1-ol, LI indicates linalool.

Table 2. Stay times of spiders in the four test areas.

Spider Name Sex Treatment 0.5 µg/µL 1.0 µg/µL 1.5 µg/µL ck

P. pseudoannulata

male

CH 2.151 ± 0.457 a 1.323 ± 0.407 ab 0.661 ± 0.313 b 0.826 ± 0.343 ab
MeSA 0.990 ± 0.368 b 2.313 ± 0.459 a 1.157 ± 0.381 b 0.494 ± 0.275 b

HE 2.110 ± 0.450 a 0.534 ± 0.273 b 0.668 ± 0.312 b 1.652 ± 0.434 a b
LI 1.171 ± 0.387 b 2.295 ± 0.456 a 0.822 ± 0.335 b 0.661 ± 0.313 b

female

CH 1.986 ± 0.452 a 1.161 ± 0.391 a 0.993 ± 0.369 a 0.827 ± 0.343 a
MeSA 1.157 ± 0.390 a 1.651 ± 0.434 a 0.992 ± 0.368 a 1.156 ± 0.389 a

HE 1.161 ± 0.391 a 1.491 ± 0.423 a 0.990 ± 0.368 a 1.326 ± 0.409 a
LI 2.640 ± 0.456 a 0.989 ± 0.367 b 0.656 ± 0.311 b 0.655 ± 0.310 b

P. subpiraticus

male

CH 0.827 ± 0.343 a 1.489 ± 0.424 a 0.661 ± 0.313 a 1.987 ± 0.452 a
MeSA 1.156 ± 0.389 a 1.154 ± 0.390 a 1.821 ± 0.445 a 0.828 ± 0.344 a

HE 0.825 ± 0.342 b 2.474 ± 0.460 a 0.661 ± 0.313 b 0.991 ± 0.368 b
LI 2.647 ± 0.460 a 0.991 ± 0.368 b 0.496 ± 0.276 b 0.826 ± 0.343 b

female

CH 0.993 ± 0.368 a 1.486 ± 0.421 a 0.836 ± 0.343 a 1.656 ± 0.434 a
MeSA 1.159 ± 0.390 a 0.662 ± 0.313 a 1.324 ± 0.407 a 1.819 ± 0.443 a

HE 1.167 ± 0.392 a 1.986 ± 0.451 a 0.662 ± 0.313 a 1.157 ± 0.389 a
LI 1.820 ± 0.444 a 1.158 ± 0.389 a 0.828 ± 0.344 a 1.157 ± 0.386 a

Note: Data are mean± SE; CK = liquid paraffin, MeSA = methyl salicylate, HE = 2-heptanone, CH = cis-3-hexen-1-
ol, LI = linalool; different lowercase letters indicate significant differences in stay time in different areas (ANOVA,
Tukey p < 0.05).
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In summary, comprehensive selection frequency and stay time of P. pseudoannulata
and P. subpiraticus, 1.0 µg/µL methyl salicylate and 1.0 µg/µL linalool were attractive to
males of P. pseudoannulata; 0.5 µg/µL linalool was attractive to females of P. pseudoannulata;
1.0 µg/µL 2-heptanone and 0.5 µg/µL linalool were attractive to males of P. subpiraticus.

3.2. Spider’s Predatory Ability
3.2.1. Daily Predation Capacity and Predatory Latency of P. subpiraticus

There was no difference in the predatory latency of female P. subpiraticus between
treatments. The predatory latency of male P. subpiraticus was not significantly different
between control and 2-heptanone (0.5 µg/µL), but linalool (0.5 µg/µL) treatment was
significantly shorter than that of control and 2-heptanone (0.5 µg/µL). The daily predation
capacity of female and male P. subpiraticus was not significantly different between the
treatments (Figure 3).
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Figure 3. Predatory efficiency of P. subpiraticus on Drosophila melanogaster: (A) indicates the predatory
latency of P. subpiraticus. (B) indicates the daily predation capacity of P. subpiraticus. CK indicates
liquid paraffin, HE (1.0 µg/µL) indicates 2-heptanone (1.0 µg/µL), LI (0.5 µg/µL) indicates linalool
(0.5 µg/µL). The data are expressed as mean ± SE. Vertical bars indicate SE. Columns of the same sex
with different lowercase letters are significantly different (ANOVA, Tukey p < 0.05).

3.2.2. Daily Predation Capacity and Predatory Latency of P. pseudoannulata

The predatory latency of female P. pseudoannulata was not significantly different be-
tween the treatments. The predatory latency of male P. pseudoannulata was not significantly
different between the control, linalool (1.0 µg/µL), and linalool (0.5 µg/µL). However, the
1.0 µg/µL methyl salicylate treatment predatory latency was significantly shorter than
that of the control, linalool (1.0 µg/µL), and linalool (0.5 µg/µL). The daily predation of
male P. pseudoannulata was not significantly different between the treatments. The daily
predation capacity of female P. pseudoannulata was not significantly different between the
control, linalool (1.0 µg/µL), and methyl salicylate (1.0 µg/µL), but the linalool (0.5 µg/µL)
treatment was significantly greater than the control treatment (Figure 4).
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Figure 4. Predatory efficiency of P. pseudoannulata on Drosophila melanogaster: (A) = the predatory
latency of P. pseudoannulata. (B) = the daily predation capacity of P. pseudoannulata. CK = liquid
paraffin, MeSA (1.0 µg/µL) = methyl salicylate (1.0 µg/µL), LI (1.0 µg/µL) = linalool (1.0 µg/µL), LI
(0.5 µg/µL) = linalool (0.5 µg/µL). The data are expressed as mean ± SE. Vertical bars = SE. Columns
of the same sex starting with different lowercase letters are significantly different (ANOVA, Tukey
p < 0.05).

3.3. Field Trapping

The HIRVs were attractive to spiders, and the average catch of traps with HIRVs was
higher than that of control traps. In particular, the traps containing methyl salicylate had
higher catches than other traps. In the HIRVs traps, the proportions of P. pseudoannulata in
the total spider number were methyl salicylate (72%), linalool (62.5%), and 2-heptanone
(16.67%). The proportions of P. subpiraticus in the total spider number were 2-heptanone
(16.67%), methyl salicylate (12.5%), and linalool (4%) (Figure 5).
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Figure 5. Field trapping rate and spider number: (A) = the trapping rate (traps with spiders/total
traps), Columns starting with different lowercase letters are significantly different (ANOVA, Tukey
p < 0.05), N = 3. (B–E) = the percentage of P. subpiraticus, P. pseudoannulata, and other spiders in
the total number of spiders. CK = liquid paraffin, MeSA = methyl salicylate, HE = 2-heptanone,
CH = cis-3-hexen-1-ol, LI = linalool.
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4. Discussion

Spiders are among the most abundant predators in rice fields. P. subpiraticus and P.
pseudoannulata are the predominant species of paddy field spiders. They have large popula-
tions and strong predatory ability [22,25]. HIPVs are specific volatile substances that plants
release when they are damaged by pest feeding [38,39]. HIPVs are an important component
of biological control and attract natural enemies to pest feeding locations [6,8]. The olfac-
tometer is a useful tool that can simulate the emission of volatiles in a field environment
and is useful for real-time observation of spider behavior [40]. Olfactometers have been
widely used to determine the relationship between insect selection behavior and volatiles
such as Chilo suppressalis Walker (Lepidoptera: Pyralidae) [41], Cotesia urabae Austin et Allen
(Hymenoptera: Braconidae) [40], Harmonia axyridis Pallas (Coleoptera: Coccinellidae) [42],
Coccinella septempunctata L. (Coleoptera: Coccinellidae) [43], Diaeretiella rapae McIntosh
(Hymenoptera: Braconidae) [43], Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae) [44],
and Diaphania indica Saunders (Lepidoptera: Crambidae) [45]. We used a four-arm ol-
factometer to observe the selection behaviors of P. subpiraticus and P. pseudoannulata on
four kinds of HIRVs. We obtained results for P. subpiraticus and P. pseudoannulata selection
frequency and stay time using the four-arm olfactometer. These experiments have practical
implications, because the selection behaviors of P. subpiraticus and P. pseudoannulata were
strongly correlated with the types and concentrations of the attractants.

We found that 1.0 µg/µL methyl salicylate was significantly attractive to male P.
pseudoannulata. Methyl salicylate is also attractive to the natural enemies of other pest
insects. For example, Zhu and Park showed that methyl salicylate attracts Coccinella
septempunctata L. (Coleoptera: Coccinellidae), a predator of Aphis glycines Matsumura
(Homoptera: Aphididae) [46]. Boer et al. showed that methyl salicylate is attractive to the
predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) [47]. James et al.
demonstrated that methyl salicylate attracted Chrysopa oculata Say (Neuroptera: Chrysopi-
dae) [48], Chrysopa nigricornis Burmeister (Neuroptera: Chrysopidae) [49], and Syrphidae
spp. (Diptera: Syrphidae) [50]. Shimoda showed that methyl salicylate attracts the preda-
tory mite Neoseiulus californicus McGregor (Acari: Phytoseidae), which is an important
natural enemy of Tetranychus urticae Koch. (Acari: Tetranychidae) [51]. Our results showed
that 1.0 µg/µL 2-heptanone was significantly attractive to male P. subpiraticus. Li et al.
also found that 2-heptanone was strongly attractive to Anagrus nilaparvatae Pang et Wang
(Hymenoptera: Mymaridae), the principal parasitoid of rice planthopper eggs [16]. Our
results showed that linalool triggered spider olfactory responses. A 1.0 µg/µL linalool con-
centration was attractive to male P. pseudoannulata, while 0.5 µg/µL linalool was attractive
to female P. pseudoannulata and male of P. subpiraticus. Linalool appears to be a very impor-
tant attractant. Carroll et al. reported that Spodoptera frugiperda J. E. Smith (Lepidoptera:
Noctuidae) was attracted to linalool [52]. Anderson et al. found that female Bombyx mori
L. (Lepidoptera: Bombycidae) were attracted to linalool [53]. Reisenman et al. found that
linalool could attract and stimulate oviposition in female Manduca sexta L. (Lepidoptera:
Sphingidae) [54]. Cruz-Lopez et al. studied coffee volatiles and found that Hypothenemus
hampe Ferrari (Coleoptera: Scolytidae) was attracted to linalool [55]. Mitra et al. found that
female Altica cyanea Weber (Coleoptera: Chrysomelidae) were attracted to linalool [56].

Our research aimed to determine the influence of HIRVs on spider predation re-
sponses. Therefore, the attack latency and daily predation capacity were selected to eval-
uate the predation ability of P. subpiraticus and P. pseudoannulata. Drosophila melanogaster
Meigen (Diptera: Drosophilidae) is a commonly used model organism in the laboratory. D.
melanogaster is often used as a predator laboratory for alternative prey since it is easy to
cultivate, rich in nutrients, and capable of flight [57–60]. Spiders generally only consume
living prey and the lively D. melanogaster stimulate predation responses in spiders. In this
study, D. melanogaster was used as an alternative prey for P. subpiraticus and P. pseudoan-
nulata. The results showed that 1.0 µg/µL methyl salicylate significantly shortened the
attack latency of male P. pseudoannulata and 0.5 µg/µL linalool significantly shortened
the attack latency of P. subpiraticus and enhanced the daily predation capacity of female P.
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pseudoannulata. Lycosid spiders mainly live at the base of rice plants where high densities
of brown planthoppers often occur. The brown planthopper is the target prey of many
Lycosidae spiders [26]. After the brown planthoppers feed on rice, the rice releases methyl
salicylate, linalool, and other volatiles [12,61]. These volatiles stimulate the olfactory se-
lective response in spiders, shortening predation latency and increasing predation. This
may be because spiders are attracted to the odor, which may affect their feeding response.
Other studies on spider predation have shown that selected chemicals can shorten spider
predation latency or enhance their predatory function. Suitable physiologically active
plant substances can significantly enhance the predatory function of P. pseudoannulata on
N. lugens [62,63]. Optimal low-dose pesticides, which shorten the subduing and feeding
times of spiders on prey, will enhance insect control efficiency and the instant attack rate
on the prey of P. pseudoannulata, P. subpiraticus, P. astrigera L. Koch (Araneae: Lycosidae),
and Coleosoma octomaculatum Bösenberg et Strand (Araneae: Theridiidae) [64–67].

Spider density will affect the management of pest populations, and increasing the
number of spider predators will aid in insect pest control. There are many examples of
using pheromones to attract and retain natural enemies. Simpson et al. used methyl
salicylate as an attractant for crops and found that parasitic wasps remain longer in these
attractant crops [68]. Jaworski et al. also proved that placing methyl salicylate attractants
in orchards increased the effect of predators in controlling pests compared to untreated
orchards [69]. Our field experiments showed that the spider trapping rate, using methyl
salicylate and linalool as attractants, was greater than that of the control treatment. Zhu and
Park also found that traps baited with methyl salicylate were highly attractive to adult C.
septempunctata in field tests [46]. These results show that natural enemies might use methyl
salicylate as an olfactory signal to locate prey. The trapped P. pseudoannulata dominated,
which showed that HIPVs not only attracts P. pseudoannulata in the laboratory but also
attracts P. pseudoannulata in the field. The P. subpiraticus was trapped in smaller numbers,
which may be because P. subpiraticus mainly wanders on the water surface and the base
of rice plants bordering the water surface, while the traps used for this experiment were
placed above the water surface. The other spiders trapped were mainly Salticidae and
Clubionidae spiders, which are good at jumping, and they may have accidentally fallen
into the trap. According to a preliminary field study, P. subpiraticus and P. pseudoannulata
were the dominant species at the experimental site [70], but the number of trapped spiders
was lower than expected. There are many uncontrollable factors that affect spider numbers,
such as temperature, humidity, wind, the size and location of the trap, and the concentration
of attractants.

In conclusion, our results indicate that HIRVs can attract spiders and increase pre-
dation. Two dominant species of rice spiders (P. pseudoannulata and P. subpiraticus) were
attracted by one or two concentrations of methyl salicylate, linalool, or 2-heptanone. A
predatory ability experiment showed that linalool and methyl salicylate shortened pre-
dation latency. Linalool increased the daily predation capacity of the spiders. A field
experiment verified that methyl salicylate and linalool are attractive to spiders. In future
research, we will determine the reasons why HIRVs enhance the predation ability of spiders
and develop practical methods for using HIRVs to attract and retain spiders in rice fields.
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