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Simple Summary: The application of nanotechnology in textiles is limited by the difficulties of loading
the fabrics with nanoparticles (NPs) and by their subsequent uncontrolled leakage. More fundamentally,
there is a need to answer the question of the “space available” in textile fibers, and generally,
other natural polymers for NPs loading. Due to these challenges, there is a risk that uncontrolled
leakage of NPs from the textile industry could harm the environment and human health. Here, with a
green and straightforward approach, using supercritical carbon dioxide (scCO2) as a carrier fluid,
we explored the impregnation in four types of Indian textile silks (Mulberry, Eri, Muga, and Tasar)
with five standard sizes of gold NPs (5, 20, 50, 100 and 150 nm). The results suggested that all silks
could be permanently impregnated with the gold nanoparticles (Au NPs) up to 150 nm. Knowing
the available space in silk or other natural polymers can help us understand how and which natural
polymers are suitable for use as catalysts, antimicrobial materials, UV-protective agents, and other
valuable properties.

Abstract: How many nanoparticles can we load in a fiber? How much will leak? Underlying is
the relatively new question of the “space available” in fibers for nanoparticle loading. Here, using
supercritical carbon dioxide (scCO2) as a carrier fluid, we explored the impregnation in four Indian
silks (Mulberry, Eri, Muga, and Tasar) with five standard sizes of gold nanoparticles (5, 20, 50,
100 and 150 nm in diameter). All silks could be permanently impregnated with nanoparticles up
to 150 nm in size under scCO2 impregnation. Accompanying structural changes indicated that
the amorphous silk domains reorganized to accommodate the gold NPs. The mechanism was
studied in detail in degummed Mulberry silk fibers (i.e., without the sericin coating) with the
5 nm nanoparticle. The combined effects of concentration, time of impregnation, scCO2 pressure,
and temperature showed that only a narrow set of conditions allowed for permanent impregnation
without deterioration of the properties of the silk fibers.

Keywords: silk; supercritical carbon dioxide impregnation; nanofiller

1. Introduction

The primary purpose of impregnating nanoparticles (NPs) in fibers is to increase
mechanical strength, improve physical properties, such as electrical conductivity and
antistatic behavior, and add functionalities, such as antimicrobial, UV protection, flame
retardance, and self-cleaning [1–3]. If homogeneously distributed, NPs in polymer matrices
can increase the composite toughness and abrasive resistance. There are several ways to
impregnate/synthesize nanoparticles, and most importantly, stabilize them on or in fibers.
Now, standard methods include plasma treatment [4], in situ synthesis [5], sol-gel synthesis,
chemical assembly [6], deposition [7], dip-coating [8,9], radiolysis [10], and sonochemical
reduction [11].
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The methods above have drawbacks, specifically a decrease in the tensile strength of
the fibers; the process demands harsh chemical pretreatment, and leakage of nanoparticles
occurs with time [12,13]. The severe chemical pretreatment step and leakage of NPs from
fibers lead to serious environmental and health issues [12–14].

Within this context, the use of supercritical carbon dioxide (scCO2) is an attractive
alternative [15–19]. The synthesis/impregnation of NPs on a polymeric substrate under
scCO2 has several advantages due to some of its unique properties: low toxicity, non-
flammable, inexpensive, low surface tension, and no residue in the treated medium after
removal [15,20–23]. Typically, the exposure of natural and synthetic polymers to scCO2
results in swelling and enhanced chain mobility of the polymers, which helps to load
the additives [24–26]. Recent examples and applications using scCO2 with dyes [25,27],
conductive monomers [28,29], inorganic NPs [30], such as TiO2 [31], Ag [32] into fibers
have demonstrated the usefulness of the method [33]. However, the leakage, particle
stabilization, and impregnation mechanism were unclear.

In 1995, NPs were synthesized on a polymer substrate for the first time using a
supercritical fluid [34,35]. Afterward, substantial research led to the incorporation of metal
NPs on various inorganic and organic substrates [20,32,35–38]. Silk has had a limited
application with scCO2. This is mainly within silk fibers dyeing [25,39], grafting [40,41],
and controlled drug delivery application [42]. To the best of our knowledge, no report yet
of metal/metal-oxide NPs impregnation in silk fibers using scCO2.

Therefore, in the present work, we explored the impregnation in four different types
of silks of standardized gold NPs. The choice of gold NPs was motivated by their colloidal
stability, monodispersity and low chemical reactivity. For example, a careful evaluation of
the plasmon peak of the gold NPs left in solution after impregnation provided a qualitative
estimate for their chemical stability. Finally, the choice of size was limited to 150 nm since,
at 200 nm, the colloidal stability of the gold NPs was poor.

The combined results demonstrated the usefulness of scCO2 for impregnation and
determined that the space available in silks was finite if no structural damage was the
limiting factor.

2. Materials and Methods

Gold NPs of different diameters (5, 20, 50, 100, and 150 nm) were purchased from
Sigma-Aldrich (Darmstadt, Germany). The NPs were phosphate stabilized and suspended
in 0.1 mM phosphate buffer saline (PBS, Sigma-Aldrich, Darmstadt, Germany), having
an optical density of 1 (O.D. = 1). At this O.D. the corresponding concentration were
5 nm (69 µg/mL, 3.5 × 10−7 M), 20 nm (53 µg/mL, 2.7 × 10−7 M), 50 nm (44 µg/mL,
2.2 × 10−7 M), 100 nm (38 µg/mL, 1.97 × 10−7 M) and 150 nm (63 µg/mL, 3.2 10−7 M).
Details are in Table S1. The NPs were used without further treatment. Silk yarns from
Mulberry (Bombyx mori), Eri (Samia Cynthia ricini), Muga (Antheraea assamensis), and Tasar
(Antheraea mylitta) were purchased from Adarsha Traders, Davangere, Karnataka, India.
Degummed (soap and sodium carbonate) silk fibers from Mulberry (Bombyx mori) were
obtained from an online silk supplier (Wild Fibres, http://www.wildfibres.co.uk, accessed
on 1 November 2021).

2.1. Preparation of Silks Fibers to Be Impregnated with Gold NPs

A bundle of fibers was weighed (0.051 ± 0.003 g), gently rinsed with 10 mL of double-
distilled water twice and dried at room temperature for 12 h on the lab bench. The dry silk
fibers were then immersed in 10 mL of reacting solution (9 mL of water and 1 mL of NPs)
in a 20 mL glass vial. We used aluminum foil to cover the glass vial and magnetic bars to
mix the solutions (see Figure 1). Total loading would yield the following µg of gold per mg
of silk 1.4, 1, 0.9, 0.8 and 1.2 for the 5, 20, 50, 100 and 150 nm, respectively.

http://www.wildfibres.co.uk
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Note that direct attempts with the NPs resulted in the partial coloration of the fibers, 
thus incomplete and uneven impregnation (data not shown). Henceforth, the impregna-
tion was carried on in the presence of water. The depressurizing effect was not studied, 
but the return to atmospheric conditions happened as slowly as the instrument allowed 
(i.e., 20 min). Another result is the known low pH under CO2 conditions. Immediately 

Figure 1. Schematic diagram of supercritical CO2 set up. Briefly, when reaching supercritical
conditions, the water and gold NPs become a ternary mixture of water/gold NPs/scCO2. The new
mixture has enhanced diffusion and interfacial properties allowing the gold NPs to be transported in
the fibers.

2.2. Impregnation of Silk Fibers under Supercritical and Atmospheric Conditions

The scCO2 impregnation was performed in a modified SFE-100 from Thar Technolo-
gies, Inc. (Pittsburg, PA, USA). Figure 1 illustrates the experimental apparatus. Although
not intuitive, the CO2 in the supercritical state permeates the whole reactor and mixes with
the water/g NPs solution. The new mixture (water/gold NPs/scCO2) has new diffusion
and interfacial properties, transporting the gold NPs onto/into the fibers.

The setup consisted of a steel reaction vessel of 100 mL volume immersed in a ther-
mostated water bath (see temperature details in the results section) with a magnetic stirrer.

The glass vial (20 mL) was inside the reaction vessel. The CO2 was pumped in at
11 g per minute to reach the desired pressure. For the impregnation of the four silks, the
temperature was kept at 40 ◦C and the pressure at 200 bars. For the detailed study of
the impregnation using the fully degummed Mulberry silk fiber, the final pressure and
temperature were adjusted according to the experimental design table (Table 1). The control
impregnation happened at atmospheric pressure and at the corresponding temperature and
time to match the supercritical conditions. The magnetic agitation speed of impregnation
was kept constant at 300 rpm. Each experiment was run in triplicate.

Table 1. Factorial design parameters.

Factors Levels Range

A: Temperature (◦C) 2 35, 50 and center point at 42.5
B: Pressure (bars) 2 100, 250 and center point at 175
C: Time (hours) 2 1, 3 and center point at 2
D: Mixing (rpm) 2 0 and 300

Note that direct attempts with the NPs resulted in the partial coloration of the fibers,
thus incomplete and uneven impregnation (data not shown). Henceforth, the impregnation
was carried on in the presence of water. The depressurizing effect was not studied, but
the return to atmospheric conditions happened as slowly as the instrument allowed (i.e.,
20 min). Another result is the known low pH under CO2 conditions. Immediately after
opening the reaction vessel, we found that the pH of the final solution had a pH of 3.
Attempts to maintain the pH at 7 using a 1 M phosphate buffer did not significantly differ.
Henceforth, the impregnation happened in water.
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2.3. Fiber Post-Processing

Washing and fastness test: after the impregnation step, the fibers were recovered
for post-processing, namely, washing and fastness treatment successively. The remaining
liquid after impregnation was referred to as gold loading. Next, the washing step, the silk
fibers, were transferred in a new glass vial and rinsed with 10 mL of water for 1 h. The
remaining liquid is referred to as wash leakage. The final step is the fastness test; the silk
fibers were transferred to a new glass vial containing 10 mL of water and heated to 50 ◦C
for 1 h. This step is referred to as fastness leakage. The procedure is illustrated in Figure S1
in the Supplementary Information.

The liquid supernatants were measured by UV absorbance, and we calculated the
gold loading, wash leakage, fastness leakage, and total efficiency as follows:

Gold loading (%) =

(
1− A1

A0

)
∗ 100 (1)

Wash leakage (%) =
A2

A0 − A1
∗ 100 (2)

Fast leakage (%) =
A3

(A0 − (A1 + A2))
∗ 100 (3)

Total e f f iciency (%) =
A0 − (A1 + A2 + A3)

A0
∗ 100 (4)

where A0 was the absorbance of gold suspension before impregnation, while A1, A2, and A3
were the absorbance of the liquid supernatant after impregnation, water wash, and fastness
treatment, respectively, the efficiencies were statistically compared using a general linear
model on the arcsine transformed efficiencies (to avoid truncation) with a Tukey posthoc
test for multiple comparisons. The analysis was performed using Minitab (Minitab, Inc.,
Philadelphia, PA, USA).

2.4. Characterization
2.4.1. UV-Visible Absorption Spectroscopy

The UV-Visible (UV-Vis) absorption measurements were performed with a Cary
60 UV-Vis spectrophotometer (Agilent) in the 200–800 nm wavelength range at a scan
rate of 600 nm·min−1; and a 1 cm plastic cuvette.

2.4.2. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR)

The Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectra of
silk fibers were measured at different steps: after the impregnation process (scCO2 or
atmospheric conditions), after washing and after fastness test using a Nicolet iS5 infrared
spectrometer with an iD5 ATR accessory with diamond crystal (Thermo Scientific). Each
spectrum was background corrected and collected between 550–4000 cm−1 (see supporting
information Figure S2). Each spectrum was an average of 32 scans at 4 cm−1 resolution.
The FTIR-ATR spectra were further processed to extract four structural parameters: the
crystallinity degree (see Supplementary Materials Figure S3), the tyrosine ratio (see Sup-
plementary Materials Figure S4), Amide I/II ratio and the hydrogen bond index. The silk
fibers degree of crystallinity [43] was calculated by comparing the peaks’ intensities at 1263
and 1230 cm−1 as follows:

Crystallinity degree (%) =
A1263

A1230 + A1263
∗ 100 (5)

A1263 and A1230 are the intensities of the peaks at 1263 and 1230 cm−1
, respectively.

The tyrosine ratio was calculated by estimating the area under the tyrosine peaks at
±830 and ±850 cm−1 and computing the ratio of intensities at 850/830 cm−1. The weak
features at ±850 and ±830 cm−1 make a doublet attributed to the Fermi resonance of the
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aromatic side chain of the tyrosine residue. The ratio is indicative of the local environment
of tyrosine residues within the fibers and, by extension, the local environment of the
amorphous regions of the silks [44].

Further, the ratio of the maximum intensities of Amide I (at around 1640 cm−1) and
II (at about 1510 cm−1) peaks was calculated to estimate the total change in secondary
structure upon treatment [45,46]. Typically, for silk fibers, the two peaks at ≈1620 cm−1

and ≈1510 cm−1 are mainly assigned to amide I (C=O and C–N) and amide II (N–H and
C–N) β-sheet structures. The ratio will measure any changes due to water hydration and
β-sheet structures. Additionally, the Amide I region (1600–1700 cm−1) was deconvoluted
to extract the secondary structure composition of the silks (see Supplementary Materials
Figure S5).

An estimate of hydrogen bond intensity [47] was calculated using the ratio of in-
tensities of N-H vibrations between 3200 cm−1 to 3500 cm−1. In this region, a careful
decomposition of the N-H stretching mode provides some information on the “free” (non-
hydrogen bonded ±3400 cm−1) and hydrogen-bonded N-H (±3320 cm−1). The hydrogen
bond index (HBI) was the ratio of bonded to free N-H intensities.

2.4.3. Scanning Electron Microscopy-Degummed Bombyx Mori

Scanning electron microscopy (SEM) images for degummed Bombyx mori were ac-
quired on a JEOL JSM 6700F. The energy-dispersive X-ray spectroscopy (EDXS) analysis
was performed using an Oxford X-MAX add-on. The spectra and images were reduced and
analyzed using the Aztec software. Before SEM and EDXS, the fibers were carbon-coated.

2.4.4. Photographs

The silk fibers were captured using HP Scanjet G 4050 against a black background.

2.5. Factorial Design for Degummed Bombyx Mori Study

To test the effects of temperature, pressure, and time we designed a full factorial
table. We measured the following responses: total efficiency and FTIR-ATR results (i.e.,
Amide I/II ratio, crystallinity, and tyrosine ratio). Table 1 summarizes the factorial table
parameters. A total of 17 sample conditions were investigated.

3. Results

The four silks chosen are among the most common silks produced in India. Table 2
summarizes their most salient chemical and physical properties [48–50].

Table 2. Silk properties.

Mulberry Eri Muga Tasar

Average density (g/cm3) a 1.357 1.288 1.34 1.323
Average moisture regain (%) a 7.04 8.03 7.61 8.52

Sericin content (%) b 10.4–24.4 6.5–10.1 8.6–12.7 8.2–14.4
Acid dye exhaustion (%) c 89.82 58.38 57.02 59.10

Disperse dye exhaustion (%) d 23.67 13.55 12.59 16.20
Elongation (%) 13.5 20.8 22.3 26.5
Tenacity (g/d) e 3.75 3.7 4.35 4.5

Initial modulus (g/d) 95 89 81 84
X-ray crystallinity (%) 38.2 32.6 35.0 35.2
Glass transition (◦C) f 200–220 220–235 215–235 235–250
Basic/Acidic ratio g 0.65 1.3 1.24 0.97

Hydrophilic/hydrophobic ratio g 0.28 0.35 0.38 0.44
Bulky/non bulky side groups ratio g 0.17 0.24 0.28 0.33

Glycine/Alanine ratio g 1.58 0.8 0.82 0.81
a average of outer, middle and inner silk cocoons layers. b low and high sericin content in fibers (from
reference [50]). c Texacid fast red A (acid dye). d Foron scarlet S-3GFL (disperse dye). e g/d: gram per de-
nier. f from references [51,52]. g from reference [50].
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3.1. The Efficiency of the Impregnation Process and Fibers Color Change

After correction for wash leakage and fastness leakage (see materials and methods), the
total efficiencies are summarized in Figure 2. The total efficiency of gold loading was above
90% for the scCO2 treated Mulberry silk fiber with gold NPs size 5, 20, 50, 100 nm, except
for 150 nm, where the efficiency dropped to 75.9 ± 3.4%. In the controls, at atmospheric
pressure, the total efficiency was constant from 5 to 100 nm at 24.0 ± 6.2%; and dropped to
approximately 12% for the 150 nm particle sizes.
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Figure 2. Comparison of total efficiency at supercritical and control impregnation of Indian silks:
(A) Mulberry (B) Eri (C) Tasar (D) Muga with five different sizes of gold nanoparticle (5, 20, 50,
100 and 150 nm). Black squares (�) are scCO2 samples, red circles (O) are control samples. The
control and scCO2 efficiencies were significantly different (N = 30, p < 0, α = 0.05) for Mulberry,
Tasar and Muga silks for all gold nanoparticles sizes. For Eri below 100 nm the efficiencies were not
significant (N = 30, p5nm = 0.35 p20nm = 0.12 p50nm = 0.09, α = 0.05), above 100 nm the efficiencies
were significantly different (N = 30, p < 0, α = 0.05).

For the other three silks, namely: Eri, Tasar, and Muga, the total efficiency of gold
loading was above 90% for scCO2 impregnated regardless of the gold NPs’ sizes. For
those three silks, the scCO2 treatment efficiencies were significantly larger (see caption
Figure 2). However, Eri silks showed exceptionally high efficiency in the controls at
98.3 ± 0.01, 89.6 ± 2.9, and 94.6 ± 0.7% for 5, 20, and 50 nm size nanoparticles, respectively
(not significantly different; see caption Figure 2). Beyond, the total efficiency dropped to
77.2 ± 2.1 and 61.9 ± 2.3% for 100 nm and 150 nm NPs (significantly different; see caption
Figure 2).

Tasar and Muga, in the controls, showed a total efficiency of about 10% regardless of
the size of the NPs. Increasing concentration, three times more gold at 5 nm, resulted in a
decrease in total efficiency for all silks except Eri that stayed constant (see Supplementary
Materials Figure S6).

Our observations of the total efficiencies for gold NPs in the four silks studies collec-
tively showed an all-or-nothing effect, which meant that the process parameters have little
influence. The four silks behaved identically under scCO2 impregnation with no correlation
to any of the silk properties shown in Table 2.

The two most remarkable observations were the loss of efficiency for Mulberry after
100 nm. The control sample from Eri silk displayed efficiencies comparable to the scCO2
ones and up to 50 nm gold NP. We found, however, no significant properties of Eri that
could explain this behavior. A possibility, therefore, was the sericin coating on each of
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the fibers. There is considerable variability in the sericin from each silk; even though we
applied a pre-wash step before scCO2 impregnation, we cannot fully control the sericin
effect. The sericin is the natural target for dying silk fibers and would likely host the gold
nanoparticles. The alternative is to remove the sericin and only use the remaining fibroin
brins. The difficulty in sericin removal for Eri, Muga, and Tasar meant that only Mulberry
silk fiber was further investigated.

Figure 3 shows the color changes in the silks from the gold plasmonic effect. Note that
the color change for Muga and Tasar silks was not as evident as Mulberry and Eri since the
formers are naturally colored.
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first fiber bundle from the left was the native untreated silk in all photographs. Then the fibers were
treated with five different sizes of gold nanoparticles (5, 20, 50, 100, and 150 nm), respectively. The
color change correlates with the initial gold solutions’ color.

3.2. ScCO2 Impregnation Induced Structural Changes

The evaluation of the impact of the impregnation procedure was principally conducted
using FTIR-ATR and XRD. Figure 4 shows the effect of gold NPs size on a global structural
parameter: amide I/II ratio. Changes in the amide I/II ratio indicate that a structural
change has occurred. For Mulberry silk fiber, we observed no differences between scCO2
treatment and control at different gold NPs sizes. Interestingly both traces overlapped with
the Amide I /II ratio of the native silk (horizontal line in Figure 4A).

Muga silk behaved similarly. The Tasar silk presented a similar trend to Mulberry and
Muga, except that the amide I/II ratio was consistently lower than the native Tasar silk.
The Eri silk, on the other hand, the amide I/II ratio showed differences between treatments
and departed from the native Eri silk amide I/II ratio.

The Amide I/II ratio changes can be resolved by fitting the Amide I peak with a sum
of Gaussian contribution. The position and relative area of the Gaussian peaks were then
interpreted in terms of secondary structure content and fraction (Table S2). Four secondary
structures were extracted for the four silks, namely, a peak centered at around 1620 cm−1

representing intermolecular β-sheets; a peak centered at 1655 cm−1 representing a mixture
of random coils and α-helices; a peak centered at about 1678 cm−1 representing β-turns and
a weak peak centered at around 1695 cm−1 representing β-sheets structures (see supporting
information Figure S5).
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Figure 4. FTIR-ATR change in amide I/ II ratio for Mulberry (A), Eri (B), Muga (C), and Tasar (D) silks.
Black squares (�) are scCO2 samples, red circles (O) are control samples. The horizontal line is the
amide I/II ratio in native silk. We found that for scCO2 treatment alone, the amide I/II ratio was not
significantly different from the native silks.

In all silks, the β-sheets content appeared constant regardless of the impregnated
gold NPs (see Supplementary Materials Figure S7). In Mulberry only, we found an inter-
conversion from the random coil/α-helical structures to β-turns with increasing gold NP
sizes (see Supplementary Materials Figure S7). Noteworthy is the overlapping signal from
water in the Amide I region that may bias the decomposition of secondary structures. For
example, scCO2 drying followed by washing and high-temperature treatment may affect
the water signal contribution in the Amide I differently. Additionally, the contribution of
the sericin coating may not be constant throughout the process. These, among others, were
the reason for the next section study with the degummed silk.

Besides, we found that the crystallinity index (similar to the β-sheets structure content)
did vary marginally from the native silks’ crystallinity, only for Eri, Muga, and Tasar. In
Eri, the crystallinity index from the gold impregnated silks was higher than the native Eri
fibers but similar to the controls. For Muga and Tasar, we observed the opposite trend, a
lower crystallinity (see Supplementary Materials Figure S8). The crystallinity index was
independent of the gold NP size in all fibers.

The relative intensity of the tyrosine doublet (Intensity at 850 cm−1/Intensity at
830 cm−1) was used as a spectral marker of the environment of the hydroxyl groups and
the strength of hydrogen bonds involving these groups. The tyrosine residues usually exist
in the amorphous regions, containing most amino acids with bulky and polar side chains.
An increase in the tyrosine ratio led to the conclusion that the hydrogen bonds involving
the tyrosine residues were weak, and consequently, the mobility of the tyrosine residues
was higher [44].

For Mulberry, Muga, and Tasar, we found that the tyrosine ratio was constant and
closed to the value from the respective native silks (see Supplementary Materials Figure S9).
On the other hand, Eri silk showed a constant tyrosine ratio with increasing gold NP size.
Still, a systematically lower ratio than native Eri silk, suggesting the amorphous region in
Eri was stiffer after the treatment.
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The XRD confirmed the gold NPs with an increasing diffraction peak at 38◦ (Figure 5).
The silks diffraction peaks were conserved regardless of the gold NP size used. No further
attempt at analyzing the XRD was deemed necessary.
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Figure 5. X-ray diffractogram as a function of gold NP size for Mulberry (A), Eri (B), Muga (C),
and Tasar (D) silks. The arrow indicates an increasing gold NP size. Note at around 37◦ the (111)
reflection for the gold.

In the next section, we focus only on the Mulberry silk fiber and the 5 nm gold NP to
unravel the processes underlying the gold impregnation capacity of silk fibers.

3.3. Effect of Degumming on Bombyx Mori and 5 nm Gold NPs
3.3.1. Facile Gold Impregnation in Supercritical Carbon Dioxide at 40 ◦C and 200 Bars

The supercritical treatment of silk fibers resulted in a high gold loading (95.5%—
Figure 6A), while the control treatment yielded a poor gold loading (6.3%—Figure 6A).
The high percentage of wash leakage (68.4%—Figure 6B) and fastness leakage (58.3%—
Figure 6C) for the control silk suggested that the gold NPs were weakly attached to the
surface of silk fibers.
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The scCO2 impregnated silk was, on the other hand, in sharp contrast with the
control. We found a low percentage of wash leakage (3.0%—Figure 6B) and fastness
leakage (2.8%—Figure 6C), thus a small amount of weakly attached gold NPs to silk fibers.
The substantial difference in the total efficiency of scCO2 and control-treated silk fibers
stressed the effectiveness of the former over the latter (Figure 6D).

3.3.2. Effect of Initial Gold NPs Concentration and Time of Impregnation

An essential set of parameters is gold NP concentration and time. Figure 7 summarizes
our three FTIR-ATR markers and the total impregnation efficiency. Figure 7B–D shows that
the first point at t = 0 min represents native degummed silk.
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Figure 7. Effect of increasing gold concentration (in optical density O.D.) on total efficiency (A),
Amide I/II ratio (B), Crystallinity (C), and Tyrosine ratio (D). Interestingly, even though we observed
no changes in the amide I/II ratio, we found that the crystallinity and tyrosine ratio were affected.
The O.D. concentrations correspond to approximately 6.9, 20.7 and 41.3 µg/mL for the 0.1, 0.3 and
0.6 O.D.

We found that the total efficiency and Amide I/II ratio were independent of the gold
NP concentration. On the other hand, the silk crystallinity increased with concentration,
whereas the tyrosine ratio decreased. It is important to note that the crystallinity and
tyrosine ratio’s positive and negative changes would result in a zero net change in structure,
as shown in the amide I/II ratio plot (Figure 7B). The result suggested that some amorphous
silk was converted in [-sheet structures (crystallinity)] the typical Silk I to Silk II conversion
with increasing gold NP concentration. The existing β-sheets structures were becoming
larger through interchain crystallization.

The contribution from the gold NPs to the FTIR-ATR spectra was measured to be at
around 1734, 1599, 1448, and 1245 cm−1 (data not shown). However, we did not observe
significant peaks in those regions, suggesting that silk most likely covered the gold signal.

A photograph (Figure 8) illustrates the sharp color change with increasing concentration.
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Figure 8. Photograph of impregnated silks, from left to right: native silk, control impregnation (no
scCO2), scCO2 impregnation 0.1, 0.3, and 0.6 O.D, respectively.

Figure 9 illustrates the effect of scCO2 impregnation time. Similarly to the gold NP
concentration, we found that the efficiency was constant at around 90%. Interestingly,
the amide I/II ratio decreased sharply with increasing times, whereas the crystallinity
appeared steady, and the tyrosine ratio showed a slight decrease with time.
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Figure 9. Effect of increasing scCO2 impregnation time on total efficiency (A), Amide I/II ratio (B),
Crystallinity (C), and Tyrosine ratio (D). The gold NP concentration was kept constant at 0.1 O.D.

Figure S10 shows the SEM images of a native degummed and scCO2 impregnated silk
(panel A and C, respectively). EDX spectra of selected features on the silk surface showed
no gold for the control and traces of gold for the scCO2 (panel B and D, respectively).

Taken together, the low amount of gold NPs on the surface and no gold NPs in the
solution, we could suggest that most of the gold NPs were inside the silk, as expected from
the efficiencies. A more precise quantification was obtained by XRD (See Figure 10) with
the characteristic gold peak at 38◦ (note that the other peaks at 65◦ and 78◦ were barely
visible for the highest gold NP concentration used). The distinct silk peaks [48] at 25◦, 40◦,
and 42◦ appeared unchanged with increasing gold NPs concentrations.

The detailed peak deconvolution of the amide I (see Supplementary Materials Figure S11)
showed that the β-sheets structures were constant with gold concentration and impregna-
tion time. We observed, however, a conversion from the random coil/α-helical structures
to β-turns with increasing gold concentration and time.
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 Figure 10. Intensities versus diffraction angle (2θ) as derived by our X-ray diffraction for silk fibers
with different amounts of gold. For three times and six times gold addition, the gold peaks were at
2θ = 38◦, 65◦ and 78◦. No gold was detected for one-time gold addition. The silk characteristic peaks
were at 20◦, 25◦, 40◦ and 42◦. The grey dotted line indicates the gold reflection at 38◦.

Throughout the analysis so far, we found that changes happened in the amorphous
region of the silk. A complementary analysis of the interactions within the silk struc-
tures was the hydrogen bond index (HBI) from N-H vibration (ratio of intensities at 3320
to 3400 cm−1). Alternatively, one could use the carbonyl signal C=O between 1600 to
1700 cm−1. The presence of other strongly overlapping bands in the C=O region precluded
a correct estimation of the HBI.

The results for the HBI of the three samples (Figure 11) suggested that the hydrogen
bond index increased relative to the native silk but was not different from the two scCO2
treated silks. Overall, the structural effects observed were predominantly coming from
scCO2 treatment.
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Figure 11. Change in Hydrogen bond index for N-H vibration for native silk, scCO2 only treated silk,
and scCO2 plus gold NPs impregnated silk.

To help understand further the effect of the scCO2 process parameters (temperature,
time, pressure, and mixing), we used a factorial design.
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3.4. Factorial Design—Relationships between Process Parameters and Multiple Responses

In the factorial design table (see Table 1), we combined the various factors of interest
at different levels. We explored our four typical responses: total efficiency, crystallinity,
Amide I/II ratio, and tyrosine ratio.

We found for the total efficiency that only pressure and time contributed significantly
(significance level α = 0.1) to explain the total efficiency variance. We also noted that both
pressure and time contributed equally. For the Amide I/II ratio, we found that pressure and
time were significant, except that pressure had a more substantial effect than time. For the
crystallinity, only the temperature contributed significantly to the effect. Eventually, only
the time had a more significant effect on the tyrosine ratio, and the pressure was marginally
significant (see Supplementary Materials Figure S12).

One advantage of the factorial design is that one can seek the optimal conditions for
a set of parameters. Optimally, we wished to maximize efficiency while maintaining the
crystallinity at the lowest level possible. We found an optimal set of conditions: 35 ◦C for
temperature, 250 bar for pressure, 1 h for the time, and 300 rpm for the mixing speed.

4. Discussion
Mechanism of Impregnation and Gold Nanoparticles Location

The permeation of scCO2 into a polymer causes it to swell. Aided by its zero-surface
tension, the addition of scCO2 into the polymer phase gives the chains higher mobility. The
CO2 molecules act as lubricants, which reduce chain-chain interactions by increasing the
polymer’s inter-chain distance and free volume [53–56], also known as plasticization. The
physical properties of the polymer are changed dramatically, including the depression of
the glass transition temperature (Tg), the lowering of interfacial tension and a reduction
of the viscosity of the polymer melt. ScCO2 may increase the crystallinity of the polymers
because the polymer chains are freer to align themselves with a more favorable order [57].
The above phenomena describe well the impregnation of soluble molecules into polymers.
In the case of NPs, however, little is known.

Nevertheless, the studied silks could host gold NPs with sizes up to 150 nm using
SCO2. However, it is unclear as to the location specificity of the gold NPs with size. For
example, would the smaller NPs be preferentially located more in-depth, and, as the size
increases, the NPs would be nearer the silk surface.

The details of the degummed Mulberry silk fiber impregnation mechanism suggested
that the gold NPs were limited to the silk inter-fibrillar space and, more specifically, around
the amorphous regions. Figure 12 illustrates our findings.

Further research on ternary systems comprising “CO2 + Nonsoluble NPs + fibers
(solid substrates)” is required for a detailed understanding of mass transfer and diffusion
in the substrate and of influences on the properties of the bulk material as crystallinity,
morphology, anisotropy, and reactivity [58].

Collectively our results lead to the hypothesis that, under the supercritical conditions
used in our experiment, the transport of the NPs would happen due to a gradient in
surface tension. Park et al. [59] found, for example, that polystyrene (a polymer close to
silks) surface tension decreases with CO2 increased solubility in the polymer (i.e., higher
pressures and higher temperatures). They also found that the polymer surface tension
was independent of the polymer conformational entropy; in other words, its internal
organization.

One could envision a transport phenomenon akin to the Marangoni flow [60]. The
nature of the gradient remains unclear.
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Figure 12. Gold NPs impregnation in silk. The typical silk fiber consists of (a) sericin coating,
(b) fibroin brins, (c) fibrils, and (d) the secondary structure (idealized here the β-sheet as blue
rectangles and the α-helices, random coils and turns as curvy black lines). After impregnation, the
gold NPs were found in the inter-fibrillar spaces.

5. Conclusions

In conclusion, we demonstrated the permanent loading of gold NPs in four types of
silk (Bombyx, Eri, Tasar, and Muga) using green and scalable technology like scCO2. This
work addressed the existing problem of uncontrolled leakage of the loaded particles from
fibers, which is a significant concern for the environment and a hurdle in nanotechnology
applications for synthetic and natural fibers’ functionalization.

Further, we reported space availability in silk fibers by scCO2 assisted impregnation at
low temperatures. The four silks (Mulberry, Eri, Muga, and Tasar) displayed a remarkable
capacity for the size of gold NPs (up to 150 nm). The detailed study of the impregnation
mechanism in degummed mulberry silk fiber suggested a narrow window of process
parameters with no detrimental effect on the fiber. The mechanism of impregnation of NPs
into a solid fiber substrate is yet to be resolved; we hypothesized that the transport of the
NPs was possible because of a surface tension gradient at the liquid-solid interface.

This developed approach is scalable, environmentally friendly. The results could
help predict the application of natural fiber loaded with NPs as catalysts, self-cleaning,
antimicrobial materials, UV-protective agents, and other valuable properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects13010018/s1, Figure S1: wash procedure and leakage calculation. Figure S2: Typical
FTIR-ATR spectra of Mulberry, eri, muga, and tasar silks., Figure S3: Crystallinity index. The spectrum
is truncated between 1180 and 1300 cm−1, and a linear baseline is subtracted. The crystallinity index
is computed using the intensities of the peaks at 1263 and 1230 cm−1 (red stars). Figure S4: Tyrosine
ratio estimate. The spectra are truncated between 790 and 870 cm−1, and a linear baseline is subtracted.
The ratio is computed from the peak maxima at around 830 and 850 cm−1 (red stars in the figure).
Figure S6: Comparison of total efficiency of 5 nm gold NP impregnation at 0.1 and 0.3 O.D. Figure S5:
Secondary structure decomposition and analysis. Typical peak deconvolution of the Amide I and
Amide II (top panel) and associated residuals (bottom panel). Briefly, a series of Gaussian peaks
are fitted simultaneously to the Amide I and II. The initial position of the peaks is determined by
secondary derivative analysis [37]. The final number of peaks is determined using an F-test to

https://www.mdpi.com/article/10.3390/insects13010018/s1
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compare different models. The Amide I/II ratio is computed directly from the two main peaks in
the upper panel. Figure S7: FTIR-ATR changes in secondary structure content as a function of Au
NP size for Mulberry (A), Eri (B), Muga (C), and Tasar (D) silks. Black squares (�) are inter β-sheets,
red circles (O) are β-turns, blue triangles (∆) are α-helices and random coils, inverted green triangles
(∇) are intra β-sheets. Figure S8: FTIR-ATR change in crystallinity for Mulberry (A), Eri (B), Muga
(C), and Tasar (D) silks. Black squares (�) are scCO2 samples, red circles (O) are control samples.
The horizontal line is the crystallinity in native silk. We found that for scCO2 treatment alone, the
crystallinity was not significantly different from the native silks. Figure S9: FTIR-ATR changes in
tyrosine ratio for Mulberry (A), Eri (B), Muga (C), and Tasar (D) silks. Black squares (�) are scCO2
samples, red circles (O) are control samples. The horizontal line is the tyrosine ratio in native silk.
We found that for scCO2 treatment alone, the tyrosine ratio was not significantly different from the
native silks. Figure S10: SEM images of native (A, scale bar 5 µ) and impregnated (C, scale bar 10 µ)
silk fibers. The white squares represent the areas where the EDX spectra were collected. EDX spectra
of native (B) and impregnated (C) silk fibers. The spectra showed only weak gold signals at 2.5, 7,
9.5, 10.5, 11.5, and 13.5 keV (D). Figure S11: FTIR-ATR changes in secondary structure content as a
function of Au NP concentration. Black squares (�) are inter β-sheets, red circles (O) are β-turns,
blue triangles (∆) are α-helices and random coils, inverted green triangles (∇) are intra β-sheets.
Figure S12: Pareto charts of the standardized effect from the full factorial analysis. The red dotted
line is the standardized value above which a factor or combination of factors is considered significant
(α level = 0.1). Table S1: Gold nanoparticles concentration and mass. Table S2. Consensus assignment
for silk secondary structures determination by FTIR.
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