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Simple Summary: Nosema bombycis (N. bombycis), an obligate intracellular eukaryotic parasite, is a
virulent pathogen of the silkworm, that causes major economic losses. Although many studies have
reported on B. mori host response to this pathogen, little is known about which genes are induced by
N. bombycis. Our results showed that two B. mori uridine diphosphate-glucosyltransferases (UGTs)
(BmUGT10295 and BmUGT8453) could be activated by N. bombycis and provide resistance to the
microsporidia in silkworms. These results will contribute to our understanding of host stress reaction
to pathogens and the two pathogen-induced resistant genes will provide a target for promoting
pathogen resistance.

Abstract: As a silkworm pathogen, the microsporidian N. bombycis can be transovarially transmitted
from parent to offspring and seriously impedes sericulture industry development. Previous studies
found that Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are involved in regulating diverse
cellular processes, such as detoxification, pigmentation, and odorant sensing. Our results showed
that BmUGT10295 and BmUGT8453 genes were specifically induced in infected silkworms, but other
BmUGTs were not. Tissue distribution analysis of the two BmUGTs showed that the transcriptions of
the two BmUGTs were mainly activated in the midgut and Malpighian tubule of infected silkworms.
Furthermore, there were significantly fewer microsporidia in over-expressed BmUGTs compared with
the control, but there were significantly more microsporidia in RNA interference BmUGTs compared
with the control. These findings indicate that the two BmUGTs were induced by N. bombycis and
provided resistance to the microsporidia.

Keywords: Bombyx mori; innate immunity; UDP-glucosyltransferase; induced expression

1. Introduction

Microsporidia are a group of obligate intracellular parasites that can infect nearly
all animal phyla in nature [1,2]. Microsporidia infection can cause major economic
losses; for example, Nosema ceranae causes serious disease in adult honey bees [3,4],
Enterocytozoon hepatopenaei affects cultured shrimp [5,6], and Cryptosporidium baileyi impacts
the digestive and/or respiratory tract of many bird species across various orders [7,8]. More-
over, infection with some microsporidia is a serious threat to human life and health [9–11].
Although there are many studies on microsporidia, there has not been sufficient research
on host response because of the complexity of host–pathogen interactions and the dif-
ferences among species [12–14]. The microsporidian N. bombycis was identified from the
silkworm, Bombyx mori, in which it causes pebrine and leads to enormous economic losses
in the silkworm industry [15]. Upon infection, innate immune responses of silkworms
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against the pathogen N. bombycis are activated, such as hemocytin [16] and Bombyx Tur-
tle protein expression [17]. Moreover, the autophagy pathway is induced by N. bombycis
infection [18,19], and apoptosis and reactive oxygen species production also change upon
infection with N. bombycis [20].

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are found in all living or-
ganisms, including animals, plants, bacteria, and viruses. As a phase II enzyme in the
detoxification system, UGTs catalyze the addition of sugars to a broad range of lipophilic
molecules; this turns the lipophilic molecules into more water-soluble metabolites that
can be easily excreted to regulate internal molecules and protect the cellular system from
damage by toxic foreign compounds [21]. In insects, UGTs play a vital role in the bio-
transformation of exogenous and endogenous compounds from being hydrophobic to
hydrophilic, which results in more efficient internal molecule regulation and excretion that
prevents retention of toxic foreign compounds. For example, UGTs are involved in the
detoxification of xenobiotics produced by the plants upon which they feed [22,23].

The UGTs that participate in detoxification of plant toxins can also result in cross-
resistance to various pesticides [24–28], and therefore could be a crucial knock down target
when developing novel pest control strategies to improve the natural toxicity of plants or
chemicals to pests [29]. Besides being detoxification enzymes, UGTs are also involved in
physiological processes [30–32], pigmentation [33], and odorant sensing [34,35]. In B. mori,
many UGTs have been identified [36,37]; BmUGT10286 catalyzes quercetin 5-O-glucoside
formation, which protects pre-pupae from the harmful effects of UV radiation during
metamorphosis and facilitates green cocoon formation [38]. The green cocoon of silkworms
that results from quercetin 5-O-glucosyltransferase is an evolved response to dietary
toxins [39]. Moreover, BmUGT1 shows activity with flavonoids, coumarins, terpenoids,
and simple phenols, which supports a role of this enzyme in detoxication processes [40], and
BmUGT013829, which is highly expressed in larval and adult antennae, may be involved
in insect olfaction [36]. Though UGTs are involved in detoxification, pigmentation, odorant
sensing and cocoon formation, there are no any reports about the involvement of UGT in
microbial stress response in insects.

B. mori is an economically important insect and a lepidopteran model for investigating
gene functions. In previous studies, many genes of silkworm were found to be induced by
N. bombycis that were involved in many signal transduction pathways [19,41–44]. However,
there was no report that UGT was induced in silkworm, and there was also few reports
that UGT was involved in the process of biological stress. In this study, we determined that
BmUGT10295 and BmUGT8453 genes were induced by N. bombycis and provided resistance
to microsporidia proliferation. Our study is the first report to find that UGT facilitate
resistance to pathogens in insects.

2. Materials and Methods
2.1. Insect Rearing and Cell Lines

The B. mori strain Dazao was reared on an artificial diet (Nihonnosanko, Yokohama,
Japan) and maintained at 25 ◦C under a photoperiod of 12 h light and 12 h dark.

BmN-SWU1, a B. mori cell line, was cultured in TC-100 medium (United States Biological
Inc., Swampscott, MA, USA) with 10% fetal bovine serum and 1% penicillin/streptomycin
(Gibco, Waltham, MA, USA) and maintained at 28 ◦C [45].

2.2. Immune Challenge

N. bombycis CQ1 (No. CVCC102059) was conserved in the China Veterinary Culture
Collection Center. The mature spores of N. bombycis were purified from infected silkworms
and stored in sterilized distilled water at 4 ◦C for later use.

The artificial silkworm diet was cut into small pieces, adding 106 N. bombycis spores
to each piece. Each silkworm in day 1 fifth instar was fed a small piece of artificial diet
with N. bombycis. The silkworms that did not eat the diet within 20 min were eliminated.
Control silkworms were orally administered with sterilized water. Finally, 200 silkworms
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were separately screened out and separately reared together in the infected and control
groups. Three groups (six silkworms per group) were randomly selected at 3, 6, 12, 24, 48,
and 72 h after oral challenge, and all tissues were harvested. The collected samples were
stored at −80 ◦C and later used for total RNA extraction or protein extraction.

2.3. RNA Isolation, cDNA Synthesis, and Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA isolation and cDNA synthesis were conducted as described in a previous
study [46]. To investigate the transcription of BmUGT genes in B. mori, RT-PCR was
performed using ExTaq (Takara, Tokyo, Japan). The PCR program using touchdown-PCR
amplification was conducted under the following conditions: initial denaturation at 94 ◦C
for 5 min; followed by 20 cycles of 94 ◦C for 40 s, annealing temperatures starting at 62 ◦C
for 40 s (decreasing 0.5 ◦C/cycle), and 72 ◦C for 1.5 min; 30 cycles of 94 ◦C for 1 min, 55 ◦C
for 40 s, 72 ◦C for 2 min; and a final extension at 72 ◦C for 10 min.

For RT-PCR, all BmUGT gene sequences were obtained from the InsectBase database
(http://www.insect-genome.com/ (accessed on 20 March 2017)) and the KAIKObase
database (http://sgp.dna.affrc.go.jp/KAIKObase/ (accessed on 20 March 2017)). All gene
IDs are listed in Table S1. The silkworm actin3 (BmA3) gene was used as an internal control
and all primer sequences are listed in Table S2. The PCR product was analyzed by 1%
agarose gel electrophoresis.

2.4. Gene Cloning

To obtain the full-length cDNA of BmUGT10295, we used a GeneRacer™ Kit (L1502,
Invitrogen, Waltham, MA, USA) to synthesize the cDNA following the kit’s instructions.
The primers used are listed in Table S2. PCRs were performed under the following
conditions: 94 ◦C for 3 min; 30 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for
1 min; and a final extension at 72 ◦C for 10 min. The purified PCR products were inserted
into the PESI-Blunt simple vector (10910, Yeasen, Shanghai, China) and the positive clones
were sequenced by the Sangon Company (Shanghai, China).

To obtain the 5′-end sequences of BmUGT10295 according to predicted transcription
initiation sites, we designed the forward primers (BmUGT10295-TSS-F; Table S2). The 5′-end
sequences of BmUGT10295 were obtained by PCR using the primers BmUGT10295-TSS-F
and Bm10295-race-R (Table S2). The positive bands of PCR were cut and inserted into the
PESI-Blunt simple vector. Then the positive clones were sequenced by the Sangon Company.

Because the sequence of the BmUGT8453 gene in KAIKObase was full-length cDNA,
the BmUGT8453 gene was also cloned and sequenced for verification. The primers used
are listed in Table S2.

2.5. Real-Time Quantitative PCR (qPCR) Analysis

SW22934, a microarray probe of Bombyx mori eukaryotic transcription initiation factor
4A, was used as an internal control for normalization. The 20-µL mixture included 2 µL
cDNA or DNA, 0.5 µL of each primer (10 mM; Table S2), 10 µL SYBR Green Master Mix
reagent (Yeasen, Shanghai, China), and 7 µL ddH2O. qPCR was performed according to the
following parameters: one cycle of an initial denaturation step at 95 ◦C for 5 min, followed
by 40 cycles at 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C for 40 s. The relative gene expression
levels were estimated according to the 2−∆∆Ct or 2−∆Ct method [45]. These experiments
were repeated three times and all samples were run in triplicate of each time.

2.6. Vector Constructs

Because there were substantial sequence similarities between BmUGT10295 and
BmUGT8453 (Figure S2, a partial BmUGT8453 sequence and the full-length BmUGT10295
sequence were cloned into pET32a vector to generate pET32-BmUGT10295 and pET32-
BmUGT8453 vectors for polyclonal antibody production. The primers are listed in Table S2.

For overexpression of the BmUGTs in BmN-SWU1 cell line, the pEHI vector was
constructed. The region of the B. mori nuclear polyhedrosis virus (BmNPV) genome that
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contained homologous region 3 (HR3), which acts as an enhancer for the promoter of a
nonviral gene, were cloned from BmNPV. The OpIE2-MCS-PA fragment (OpIE2 promoter,
multiple cloning sites, and polyadenylation sequence) was cloned from the pIZ/V5-His
vector (Invitrogen, Waltham, MA, USA). The HR3-OpIE2-MCS-PA fragment was assem-
bled with the fragment HR3 and OpIE2-MCS-PA using overlapping PCR techniques.
Then, the HR3-OpIE2-MCS-PA fragment was inserted into the PESI-Blunt simple vector
(10910, Yeasen, Shanghai, China) to obtain the pEHI vector. The full-length BmUGT10295
and BmUGT8453 were cloned from the above PESI vectors. DsRed was cloned from the
pDsRed2-N1 vector. Then full-length BmUGT10295, BmUGT8453 and DsRed sequences
were cloned into the pEHI vector to generate pEHI-BmUGT10295, pEHI-BmUGT8453 and
pEHI-DsRed vectors. The primers are listed in Table S2.

2.7. Protein Expression, Purification, and Polyclonal Antibody Production

The above pET32a recombinant plasmids (pET32-BmUGT10295 and pET32-BmUGT8453
vector) were transformed into BL21(DE3) cells for BmUGT expression following standard
protein expression protocols. Briefly, when the culture reached an OD600 of 0.4–0.6, it
was induced with 0.1 mM isopropyl-b-D-1-thiogalactopyranoside for 20 h. The cells that
contained recombinant vector were re-suspended in lysis buffer (20 mM Tris-HCl, pH 8.0,
and 100 mM NaCl) and sonicated. Then, the fused expression proteins were purified using
the Ni–NTA beads (QIAGEN, Valencia, CA, USA).

For polyclonal antibody production, all animal experiments were conducted in ac-
cordance with Laboratory Animals Ethics Review Committee of Southwest University
guidelines (Chongqing, China), and the committee approved this study (Permit Number:
AERCSWU2017-7). Three mice were each subcutaneously inoculated with each recom-
binant BmUGT10295 and BmUGT8453 (80–120 µg/mouse) homogenized with Freund’s
adjuvant (1:1; Sigma, St. Louis, MO, USA) four times. One week after the fourth injection,
antisera were collected and stored at −80 ◦C.

2.8. Western Blotting

The silkworm samples were ground with liquid nitrogen and then lysed with RIPA
(P0013B, Beyotime Biotechnology, Shanghai, China) at 4 ◦C for 30 min. The supernatants were
separated by SDS–PAGE and transferred to a PVDF membrane (Roche, Basel, Switzerland).
After blocking for 1 h at 37 ◦C in TBST (20 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20)
with 5% (w/v) skim milk, membranes were incubated with 1:1000 dilutions of anti-BmUGT
or negative control serum in TBST for 1 h at 37 ◦C. Following several washes, membranes
were reacted with HRP-labeled goat anti-mouse IgG (Bio-Rad, Richmond, CA, USA),
successively, with washing in between. ECL Plus Western Blotting Detection Reagents
(Bio-Rad, Richmond, CA, USA) were used to detect the bound antibodies.

2.9. Indirect Immunofluorescence Assay

To detect BmUGT expression, we plated the B. mori cell line BmN-SWU1 in 6-well
culture plates (105 cells/well) and challenged with N. bombycis (spore: cell, 10:1). Then, 72 h
after infection, infected cells were fixed in 4% paraformaldehyde and permeabilized with
0.5% Triton X-100 for 5 min. The cells were subsequently blocked in PBS that contained
10% (w/v) goat serum and 0.5% (v/v) BSA for 1 h and incubated with anti-BmUGT (1:1000)
for 1 h. Alexa488 was used to label the primary antibodies and DNA was stained with
DAPI (Sigma, St. Louis, MO, USA) for 30 min. Fluorescence was observed and imaged
with confocal microscopy (Olympus, Tokyo, Japan).

2.10. dsRNA Synthesis

The interference segments of BmUGT10295, BmUGT8453, and EGFP (control) were
designed by the siDirect database (http://sidirect2.rnai.jp/ (accessed on 30 May 2018)).
T7 promoter sequences were tailed to sense and antisense primers (primers sequences in
Table S2). dsRNA synthesis was conducted with a Transcript Aid T7 High Yield Transcription

http://sidirect2.rnai.jp/
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Kit (KO441, Thermo Scientific, Waltham, MA, USA), which were purified using a MicroElute
RNA Clean-up Kit (R6247, OMEGA, Doraville, GA, USA) for RNA interference (RNAi).

2.11. Overexpression and RNAi BmUGTs

For overexpression of BmUGT10295 and BmUGT8453, BmN-SWU1 cells were tran-
siently transfected with pEHI-BmUGT10295 or pEHI-BmUGT8453 expression plasmids
(3 µg), and pEHI-DsRed (3 µg) was used as a control. Then, these cells were challenged
with N. bombycis (spore: cell, 10:1).

For RNAi BmUGT10295 and BmUGT8453, BmN-SWU1 cells were transiently trans-
fected with dsRNA of BmUGT10295 or BmUGT8453 (3 µg), and the dsRNA of EGFP was
used as a control. Then, these cells were challenged with N. bombycis (spore: cell, 10:1).

Each of the above cells was harvested on 1, 3 and 5 days post-infection N. bombycis;
They were divided into two parts and broken with glass beads. One part was used
for RNA extraction (R6934, OMEGA, Doraville, GA, USA) and the other was used for
DNA extraction (D3396, OMEGA, Doraville, GA, USA). The cDNA was synthesized
to estimate the effects of overexpression and RNAi BmUGTs through RT-qPCR (reverse
transcription–qPCR.). The DNA was used to estimate the relative copy levels of N. bombycis
infection through qPCR.

2.12. Statistical Analysis

One representative data set of three experiments was used to generate figures with
GraphPad Prism 8. All statistical analyses were conducted using IBM SPSS v. 22. All results
are shown as means ± SD of triplicate samples. All data presented are representative of a
minimum of three independent experiments.

3. Results
3.1. Identification of the N. bombycis-Inducible BmUGT Genes
3.1.1. Transcription of BmUGT Genes in B. mori

In our previous transcriptome data induced by N. bombycis (unpublished data), the
transcription of BmUGT10295 was activated in infected silkworms. In previous research,
42 UGT genes were identified in B. mori, which is much more than that known in other
insects, and they belonged to five groups that were identified by phylogenetic analysis.
The BmUGT10295 gene belongs to the Group I cluster, which is silkworm-specific [36]. To
investigate whether the other B. mori UGT genes were induced by N. bombycis in silkworms,
all genes of the Group I cluster were analyzed in infected and uninfected silkworms. The
results showed that only the BmUGT10295 and BmUGT8453 genes activated transcription
in infected silkworms (Figure 1A).

The transcriptional activation of BmUGT10295 and BmUGT8453 genes in different
silkworm tissues showed that there was no transcription in any tissues of uninfected silk-
worm (Figure 1B). There was also no transcriptional activation in any stages of uninfected
silkworms (Figure 1C). These findings indicate that BmUGT10295 and BmUGT8453 genes
are the only UGT genes activated by N. bombycis [36].

3.1.2. Transcription of BmUGT10295 and BmUGT8453 Genes in Different N.
bombycis-Infected B. mori Tissues

Although the BmUGT10295 and BmUGT8453 genes were induced in infected silkworms,
their transcription in different tissues during infection is unknown. Using N. bombycis-infected
silkworms, the transcriptional levels of B. mori BmUGT10295 and BmUGT8453 genes were
analyzed by RT-qPCR in different tissues at 48 h post-infection. The transcription of
the BmUGT10295 and BmUGT8453 genes was detected, and mainly in the midgut and
Malpighian tubule (Figure 2). According to the MIQE guidelines [47], the primer ampli-
fication efficiencies were also carried out. The results showed amplification efficiencies
of BmUGT10295 and BmUGT8453 were 105% and 103% respectively, which is generally
considered acceptable (Figure S1).
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terns of BmUGTs in response to N. bombycis. N3–N48 represents the silkworm samples at 3~48-h post-
infection, whereas C3–C48 represent the control group, which was given water. (B): BmUGT10295
and BmUGT8453 transcription in the different tissues of uninfected silkworms on day 3 fifth instar
larvae using actin3 (BmActin3) as internal reference. (C): BmUGT10295 and BmUGT8453 transcrip-
tion in different larval growth stages. RT-PCR was used to analyze the expression characteristics
of BmUGT10295 and BmUGT8453 in embryos, 1-day-old first instar larvae (L1D1) to 1-day-old fifth
instar larvae (L5D1), wandering larvae (W), male and female pupae (PM/PF), and male and female
adults (AM/AF) of uninfected B. mori.
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Figure 2. Spatial expression patterns of infected B. mori. Day 1 fifth instar Bombyx mori that were
infected with Nosema bombycis. The relative expressions of BmUGT10295 (A) and BmUGT8453 (B)
were assessed in different tissues of silkworms 3 days after infection. The relative gene expression
levels were estimated according to the 2−∆Ct method. sw22934 was used as an internal reference.
Bars represent the mean of three individual measurements ± SD. Statistical analysis was conducted
by one-way ANOVA using a Tukey’s multiple comparison test. Identical letters indicate no significant
difference (p > 0.01), whereas different letters indicate a significant difference (p < 0.01).

3.2. Full ORF Clone of the BmUGT Genes

Although the BmUGT10295 gene was identified, the sequence information it contains
remains controversial [36,37]. The predicted DNA sequence of BmUGT10295 was 780 bp
and composed of four exons that encode 260 amino acids, as inferred in the InsectBase
database (http://www.insect-genome.com/ (accessed on 20 March 2017)) (Figure 3Aa).
According to this sequence, the 3′ end of BmUGT10295 was cloned by 3′ RACE (Figure 3B)
and the 3′ end sequence was acquired by sequencing. Unfortunately, 5′ RACE failed. Then,
the transcription start site (TSS) of BmUGT10295 was predicted (Figure 3Aa). Based on these

http://www.insect-genome.com/
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predicted TSS sites, the primers were designed and PCR was performed. The PCR result
showed that there were significant amplification bands in TSS-3, TSS-4 and ATG group
(BmA3 was used as a control) (Figure 3C). Then, the PCR products were purified, cloned
into a PESI vector, and sequenced. The clone and sequence results of TSS-3 were consistent
with the genome sequence (Figure 3D). So, the transcriptional initiation of BmUGT10295
was TSS-3. Therefore, the full cDNA of the BmUGT10295 gene was obtained, which was
1550 bp and composed of five exons that encode 271 amino acids (Figure 3Ab,D). Moreover,
multiple sequence alignment showed that BmUGT10295, BmUGT8453, and BmUGT1 were
highly conserved (Figure S2). Because the sequence of BmUGT8453 gene in KAIKObase
was full-length cDNA, the BmUGT8453 gene was also cloned, which the sequencing result
was coincident with KAIKObase data.
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Figure 3. Obtaining the BmUGT10295 full-length cDNA. (A): The schematic phase included struc-
tural information of BmUGT10295 in the genome. (a), Annotation information of BmUGT10295 in
genome; TSS-1~TSS-4 represented the predicted transcription initiation site; (b), Schematic diagram
of BmUGT10295 gene structural information corrected according to experimental results. The yellow
squares represent coding DNA sequences (CDS), whereas the blue squares represent untranslated
regions (UTR). (B): 3′ RACE of BmUGT10295; 1 is from the first round of PCR and 2 is from the nested
PCR. (C): Determination of transcription start sites (TSSs). (D): The full-length cDNA sequence
of BmUGT10295.

3.3. Recombinant BmUGT Purification and Immunoblot Analysis

The above results showed that BmUGT10295 and BmUGT8453 transcription was de-
tected, but their expression was unknown. Because the DNA sequences of BmUGT10295
and BmUGT8453 are very similar (Figure S2), the differential parts of BmUGT10295 and
BmUGT8453 genes were successfully integrated into the pET-32a vector for protein expres-
sion in E. coli. SDS–PAGE analysis showed that recombinant BmUGTs (rBmUGTs) were
expressed at a molecular mass of ∼40 kDa, which was consistent with the predicted size
(Figure S3A,B). The purified target proteins were cut from the gel and used to prepare
the antibody (Figure S3C). Western blot indicated that the rBmUGT antisera specifically
recognized an approximately 40-kDa protein (Figure S3D). Then, the antisera of BmUGTs
were used to detect the BmUGT10295 and BmUGT8453 expression. The results showed
that there were only blot signals in infected silkworms. Expressed BmUGT8453 had a
molecular mass of ∼60 kDa, which was consistent with the predicted size. Additionally,
expressed BmUGT10295 had a molecular mass of ∼30 kDa, which was also consistent with
its predicted size and indicated that the ORF was full-length (Figure 4).
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Figure 4. Western blotting analysis of BmUGT expression in infected silkworms. The polyclonal anti-
bodies of BmUGT10295 (anti-10295) and BmUGT8453 (anti-8453) recognized the corresponding signal
in infected silkworms, but not in uninfected silkworms. BmTubulin was used as an internal reference.

3.4. Nosema Bombycis Inhibited by BmUGT10295 and BmUGT8453

Because BmUGT10295 and BmUGT8453 are induced by N. bombycis, more research
was needed to elucidate the role of BmUGT10295 and BmUGT8453 in response to infection.
Therefore, a cell-induced expression model was established in the BmN-SWU1 cell line.
The results showed that BmUGT10295 and BmUGT8453 were only activated in infected
cells (Figure 5).
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Figure 5. BmUGTs induced by Nosema bombycis in the infected BmN-SWU1 cell line. (A): RT-PCR
showed that the BmUGT expression was activated by N. bombycis (Nb) in the infected cell line but
not in control. Bombyx mori actin3 (BmA3) was the internal reference. (B): Localization of BmUGTs
in the infected BmN-SWU1 cell line. Green fluorescence was observed in the samples incubated
with the polyclonal antibodies of BmUGTs. Blue fluorescence represents nuclei labeled with DAPI
(Sigma, Saint Louis, MO, USA).

Furthermore, the amount of N. bombycis proliferation was evaluated in over-expressing
BmUGTs cells. The results showed that the proliferation amount of N. bombycis was
significantly lower in over-expressing BmUGT10295 and BmUGT8453 cells than in the
control group (over-expressing DsRed cells) (Figure 6A,B). Additionally, the proliferation
amount of N. bombycis in RNAi BmUGTs in BmN-SWU1 cells was much higher than in
the control group (Figure 6C,D). The effects of over-expression and RNAi are shown in
Figure S4.
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Figure 6. BmUGT10295 and BmUGT8453 inhibited Nosema bombycis infection. The N. bombycis β-tubulin
relative copy levels in over-expressed BmUGT10295 (A) and BmUGT8453 (B) cells were lower
than that in over-expressed DsRed cells. The N. bombycis β-tubulin relative copy levels in RNAi
BmUGT10295 (C) and BmUGT8453 (D) cells were higher than that in RNAi EGFP cells. The relative
copy levels were estimated according to the 2−∆∆Ct method. sw22934 was used as an internal
reference. Over-expressed DsRed and RNAi EGFP were used for calibration (value 1). Bars represent
the mean of three individual measurements ± SD. Statistical significance was determined by an
unpaired t-test, and statistically significant differences are represented with asterisks (** p < 0.01).

4. Discussion

Silkworm, as a model of Lepidoptera, has significant economic and scientific values.
Nosema bombycis, a pathogen that causes pebrine disease, can cause severe damage to
the sericulture industry. However, few studies have examined the mechanism of host
response to microsporidia infection. In previous studies, many genes were found to be
induced by N. bombycis that were involved in many signal transduction pathways and are
therefore key components of many cellular processes [19,41–44]. Although many genes
were found to be activated by N. bombycis through a genome-wide survey in our previous
study [41], these genes were determined to have different levels of background expression
in subsequent work [48]. In addition, the Hsp70 promoter was reported to have relatively
high microsporidia-inducible activity [49]. In this study, BmUGT10295 and BmUGT8453
were screened because they were activated by silkworm post-infection with N. bombycis
but not in uninfected silkworms (Figure 1).

The sterile insect technique is a highly effective area-wide pest control tool with
a low environmental impact, and is primarily used to control mosquitos [50–52] and
flies [53]. There have been many sterile insect technique strategies, and one strategy is
to use a sex-specific promoter or enhancer to drive the expression of a toxic gene for sex-
specific death [54,55]. Microsporidia, an obligate intracellular parasite, must rely on cells to
survive. Based on the SIT strategy, a toxic gene, driven by a N. bombyx-induced promoter,
expressed explicitly in infected cells, could finally lead to cell death and microsporidia lost
its living host. In this way, the silkworm was provided engineer resistance to N. bombycis.
A previous study showed that an Hsp70 promoter-inducible genome editing system
induced resistance to N. bombycis in transgenic silkworms [49], which picked up similar
threads. Numerous genes can be up-regulated after microsporidia infection [41,42,56], but
few specific microsporidia-inducible genes or promoters were reported. Though most UGTs
are constitutively expressed in organisms, in this study, BmUGT10295 and BmUGT8453
were induced after microsporidia infection but had hardly any transcriptional activity in
uninfected silkworms (Figure 1). Therefore, the research in this study provides a novel and
effective target for promoting silkworm resistance to N. bombycis.
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Members of the UGT superfamily typically catalyze the reaction of the covalent
addition of sugar from UDP-sugar cofactors to a lipophilic acceptor, which is a second-
order nucleophilic substitution reaction. UGTs can be divided into two major functional
domains [57]. The N-terminal domain, which is variable in sequence between different iso-
forms, is responsible for binding the aglycone. Alternatively, the C-terminal domain, which
is more conserved in sequence, is believed to contain a binding site for the UDP-sugar.
For insects, UGTs prominently detoxify xenobiotic compounds from the plant on which
they feed. For example, Spodoptera frugiperda uses SfUGT33F28 to inactivate maize defen-
sive benzoxazinoids [58]. Moreover, nicotine, one of the most abundant secondary plant
metabolites in tobacco, is highly toxic to herbivorous insects. In Myzus persicae nicotianae,
UGTs could be required to detoxify nicotine [22]. In addition to plant xenobiotic toler-
ance, insect UGTs are also involved in insecticide detoxification. For example, the UGTs
of Aphis gossypii are involved in sulfoxaflor [59,60], spirotetramat [24], imidacloprid [61],
and other insecticides [62] resistance. four Spodoptera UGT genes are significantly co-up-
regulated by the lambda-cyhalothrin, chlorantraniliprole, metaflumizone, and indoxacarb
insecticides [27]. UGT201D3 is highly expressed and more inducible with abamectin ex-
posure in the abamectin-resistant Tetranychus cinnabarinus strain [63]. Besides response to
insecticides, UGT genes are also a response to pathogens. Caenorhabditis elegans UGT29 was
robustly induced by Burkholderia pseudomallei [64]. Unlike Caenorhabditis elegans, there are
no reports about the involvement of UGT in microbial stress response in insects. In this
study, over-expressed or RNAi BmUGTs could affect the number of N. bombycis (Figure 6).
Our study is the first report to find that UGT facilitates resistance to pathogens in insects
and further analysis is required to reveal this mechanism.

5. Conclusions

BmUGT10295 and BmUGT8453 were activated by N. bombycis in infected silkworms.
Moreover, these two BmUGTs provided resistance to microsporidia in the BmN-SWU1
cell line. The obtained results contribute to our understanding of host stress reaction to
pathogens and provide a novel and effective target for promoting pathogen resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12090799/s1, Figure S1: The amplification efficiency of primers in BmUGT10295
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rBmUGTs and identification of BmUGTs polyclonal antibodies; Figure S4: The effect evaluations of
over-expression and RNAi BmUGTs; Table S1: List of the detected BmUGT genes in B. mori; Table S2:
Oligonucleotide primers.
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