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Simple Summary: Bristletails (Insecta: Microcoryphia) are primarily wingless insects, some of which
have been found to exhibit parthenogenesis. In the genus Coreamachilis, parthenogenesis occurs in
C. coreanus, whereas sexual reproduction is found in C. songi. Therefore, after obtaining mitochondrial
genome sequences of these two species, we analyzed their selection pressure, based on phylogenetic
trees of Microcoryphia. However, no positive selection was found in the mitochondrial protein
coding genes of either C. coreanus or C. songi. In addition, a long hairpin structure was found between
ND1 and 16S rRNA genes in Machilinae and Petrobiinae, which was highly consistent with the
phylogenetic results.

Abstract: The order Microcoryphia, commonly known as bristletails, is considered as the most
primitive one among living insects. Within this order, two species, Coreamachilis coreanus and C. songi
(Machilidae: Machilinae), display the following contrasting reproductive strategies: parthenogenesis
occurs in C. coreanus, whereas sexual reproduction is found in C. songi. In the present study, the
complete mitogenomes of C. coreanus and C. songi were sequenced to compare their mitogenome
structure, analyze relationships within the Microcoryphia, and assess adaptive evolution. The length
of the mitogenomes of C. coreanus and C. songi were 15,578 bp and 15,570 bp, respectively, and the
gene orders were those of typical insects. A long hairpin structure was found between the ND1 and
16S rRNA genes of both species that seem to be characteristic of Machilinae and Petrobiinae species.
Phylogenetic assessment of Coreamachilis was conducted using BI and ML analyses with concatenated
nucleotide sequences of the 13 protein-coding genes. The results showed that the monophyly of
Machilidae, Machilinae, and Petrobiinae was not supported. The genus Coreamachilis (C. coreanus and
C. songi) was a sister clade to Allopsontus helanensis, and then the clade of ((C. coreanus + C. songi) +
A. helanensis) was a sister clade to A. baii, which suggests that the monophyly of Allopsontus was not
supported. Positive selection analysis of the 13 protein-coding genes failed to reveal any positive
selection in C. coreanus or C. songi. The long hairpin structures found in Machilinae and Petrobiinae
were highly consistent with the phylogenetic results and could potentially be used as an additional
molecular characteristic to further discuss relationships within the Microcoryphia.

Keywords: Coreamachilis; Microcoryphia; mitochondrial genome; phylogenetic relationship; selection
pressure

1. Introduction

Bristletails (Insecta: Microcoryphia) are primarily wingless insects, living in places
such as under fallen leaves, the bark of trees, moss on wet logs, etc. They can be found at the
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seashore or inland all over the world. There are over 500 species in two families (Machilidae
and Meinertellidae), and three subfamilies of Machilidae (Petrobiellinae, Petrobiinae, and
Machilinae) have been reported [1,2]. The genus Coreamachilis belongs to the subfamily
Machilinae. At present, there are two reported species of Coreamachilis; C. coreanus is
distributed in Northern Korea and China [3], along with C. songi in China [4]. When Mendes
described C. coreanus from North Korea, he did not find any male individuals, suggesting
that parthenogenesis occurred in C. coreanus [5]. By contrast, C. songi was reported to show
sexual reproduction [4].

Many studies have reported parthenogenetic lineages, particularly among species
living at higher altitudes or in extreme habitats [6], indicating an association between
parthenogenesis and environmental selection pressures that lead to specialized life cy-
cles [7]. It was suggested that the loss of sexual reproduction was driven by a very
general selective force [8], and selective factors promoted by variations in environmental
conditions may be advantageous to parthenogenic reproduction [9]. By contrast, sexual
reproduction is common among animals, and there have been many studies suggesting
that natural selection can affect the characteristics of sexual reproduction [10,11]. In addi-
tion, parthenogenesis is rare in Microcoryphia [5]. Hence, we wondered if the mechanism
of parthenogenesis in C. coreanus is under selective pressure. Also, we aimed to deter-
mine if there is a relationship between sexual reproduction and parthenogenesis within
Coremachilis, related to selective pressure.

Insect mitogenomes are usually double-stranded circular molecules with a length of
14–20 kb, encoding 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribo-
somal RNAs (rRNAs), and a control region (CR; or the AT-rich region) [12,13]. Because
of their characteristics of fast evolution rates, small genome sizes, and low sequence re-
combination, mitogenomes have been used widely as molecular markers for phylogenetic
analyses [13–15]. Many studies have now shown that specific gene rearrangements can
occur in the mitogenomes of different families or genera [16–18]. Intergenic regions can
also be used as a synapomorphy for a genus [18,19], and these regions can sometimes fold
into stem–loop secondary structures or hairpin structures. Hairpin structures have been
observed at PCG junctions in the mitochondrial genomes of various metazoans, including
insects [20–25]. Kim et al. [25] suggested that hairpin structures are important for precise
cleavage of the mature protein-coding genes. In addition, potential hairpin structures
were also found in the A + T-rich region of insect mitogenomes, which was considered
to be the initiation site of secondary strand synthesis [21,24,26]. However, the hairpin
structures found in insects were relatively short (about 10 bp), and only a few studies have
inferred an association between phylogenetic relationships and hairpin structures. We
were interested in whether the hairpin structures were associated with synapomorphy
at genus or family levels within Microcoryphia. It is well known that the mitogenome is
often assumed to be an important neutral marker [27]. However, recent research has shown
that the evaluation of selective pressures acting on mitogenome proteins can provide key
insights into the adaptive evolution of the mitogenome [28–33]. To date, various studies of
mammalian [34,35], avian [36], frog [33], fish [37], and insect mitogenomes have indicated
that adaptive evolution has occurred. Among insects, this has included studies of Hy-
menoptera [38], Orthoptera [39], Ephemeroptera [40], Diptera [41], and Lepidoptera [42].
Thus, the mitogenome can be used as a molecular tool to explore/assess adaptive evolution.

In the present study, we sequenced the mitogenomes of C. coreanus and C. songi, and
compared these mitogenomes with those of other bristletails available in the GenBank
database. The 13 protein-coding genes were used to construct phylogenetic relationships
of Microcoryphia, in order to discuss the relationship of Coreamachilis. A positive selection
analysis was also used to assess whether C. coreanus, with parthenogenic reproduction, and
C. songi, with sexual reproduction, were under positive selection at the mitogenome level.
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2. Material and Methods
2.1. Specimen Collection and DNA Extraction

The specimens of C. songi were collected from Lianyungang city, Jiangsu Province,
China, and the specimens of C. coreanus were collected from Gongchangling, Liaoyang city,
Liaoning Province, China. All specimens were identified by JY Zhang and stored in 100%
ethanol in a −40 ◦C freezer. Total DNA was extracted from individual female specimens
using QIAGEN DNeasy blood and tissue kit (QIAGEN, Hilden, Germany).

2.2. Polymerase Chain Reaction (PCR) Amplification and Sequencing

After modifying the primers designed by Simon et al. [43] and Ma et al. [44] in
combination with published sequences of Machilinae, we designed 15 pairs of universal
primers for amplification of mitogenomes (Table 1). PCR was performed using a BioRAD
MJ mini personal thermal cycler (California, USA). Based on the sequence information
obtained from earlier PCR runs using universal primers, several pairs of specific primers
were then designed to obtain the whole mitogenome. Both PCR amplifications and reaction
volume were carried out using methods described previously [17]. All PCR products were
sequenced in both directions by Sangon Biotech Company (Shanghai, China).

Table 1. List of universal primers used for PCR amplification according to Simon et al. [43].

Number Primer Name Sequence (5′-3′) Length Target Gene Region

1
SB-J-165 AAGCTANTGGGYTCATAYCC

1000 bp tRNAMet-ND2SB-N-1273 CAGCTTTGAAGGCTAWTAGTTT

2
SB-J-20 GGATTACARTGATAAAGTAAA

3000 bp tRNAIle-COX1SB-N-3003 TCCRATGCACTTWTCTGCCAAAWTA

3
SB-J-2195 TGATTYTTTGGNCAYCCHGAAGT

1000 bp COX1SB-N-3014 TCCRATGCACTTATCTGCCAARTTA

4
SB-J-2161 TATTTTGATTYTTTGGNCAYCCHGAAGT

1500 bp COX1-COX2SB-N-3646 CCACARATTTCNGARCAYTG

5
SB-J-3360 ACWATHGGDCAYCAATGATAYTG

1300 bp COX2-ATP8SB-N-4061 GARAATARGTTDGTTATCATTTTCA

6
SB-J-3645 GGCCAATGYTCNGAAATYTGYGG

3800 bp COX2-ND5SB-N-7462 CCWGCDGCTATRGCHGCNCC

7
SB-J-5747 CCATTYGAATGYGGNTTTGAYCC

500 bp ND3-tRNAAsn
SB-N-6160 CTTAATRDTABCATTAACAGTGR

8
J-12517 CGGTTTCAACTCAGATCATGTA

800 bp ND1-16S rRNAN-13321 CACCTGCTTATCAAAAACA

9
SB-J-7077 ATYAAATCYTTWGARTAAAAHCC

700 bp ND5SB-N-7793 TTDGGDTGRGATGGDTTDGG

10
SB-J-7572 AAADGGAATTTGDGCTGTYTTAGT

1200 bp ND5-ND4SB-N-8727 AARGCDTTAATTGCBTAYTCWTC

11
SB-J-8641 CCWCTHGARCAYAANCCATG

500 bp ND4SB-N-9153 TGRGGRTATCARCCWGARCG

12
SB-J-8882 GGHGCTTCNACRTGAGCYTT

2000 bp ND4-Cyt b
SB-N-10885 CCTCARAANGATATYTGHCCTCA

13
SB-J-10690 TGYCGAGATGTWAATTAYGGWTG

1800 bp Cyt b-ND1
SB-N-12489 TATRTTCARATTCGDAAAGGDCC

14
SB-J-12887 CCGGTYTGAACTCAGATCATGT

500 bp 16S rRNASB-N-13398 CGCCTGTTTAYCAAAAACATGKC

15
SB-J-10873 TATGTTYTHCCNTGAGGDCAAATRTC

3700 bp Cyt b-CR
SB-N-14556 TAAACTAGGATTAGATACCCTATTAT
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2.3. Sequence Analyses and Annotation

Raw sequence files were proofread and assembled using SeqMan in DNASTAR package
v.6.0 [45]. The tRNA genes were identified and their cloverleaf secondary structures were
determined by MITOS [46]. The locations of the 13 protein-coding genes (PCGs) and two
rRNA genes were determined by comparing with homologous sequences of other Microco-
ryphia mitogenomes [44,47], and the 13 PCGs were translated into amino acids by MEGA
7.0 [48]. The codon skews, relative synonymous codon usage (RSCU), nucleotide composition,
and AT and GC skews were calculated using Phylosuite v1.1.16 [49]. Two mitogenome maps
were drawn using CGView server V 1.0 [50]. Hairpin structures were identified using RNA
secondary structure prediction (http://www.genebee.msu.su/services/rna2_reduced.html,
accessed on 26 April 2021) [51].

2.4. Phylogenetic Analyses of Microcoryphia

Since Microcoryphia is located at the base of the class Insecta, we chose Xibalbanus tu-
lumensis (Nectiopoda: Speleonectidae) [52] and Daphnia magna (Anomopoda: Daphniidae)
(MT199637) as the outgroups for phylogenetic analyses in this study. To date, only 10 mi-
togenomes of Microcoryphia were available for download from the NCBI [44,47,53–56].
Therefore, we combined all mitogenomes of Microcoryphia as the ingroup including
C. coreanus and C. songi along with the two outgroups in order to discuss the phylogenetic
relationships in Microcoryphia. Accession numbers of all bristletail mitogenomes are listed
in Table 2. Sequences of the thirteen PCGs were extracted from the mitogenomes using
PhyloSuite v1.1.16 [49], and aligned in batches with MAFFT integrated into PhyloSuite
v1.1.16 using codon-alignment mode. Gblocks in PhyloSuite v1.1.16 was used to remove
ambiguous sites. Finally, the 13 protein-coding genes were linked into a single line using
concatenate sequence in PhyloSuite v1.1.16. We used the program PartionFinder 1.1.1 [57]
to estimate the best partitioning scheme and model according to the Bayesian information
criterion (BIC). ML analysis was conducted in RAxML 8.2.0 [58] with the best model of
GTRGAMMA and 1000 bootstrap replications. BI analysis was conducted using the Mr-
Bayes 3.1 [59] with the model of GTR + I + G set for 10 million generations with sampling
every 1000 generations. The first 25% of generations were discarded as burn-in and the
average standard deviation of split frequencies in MrBayes 3.1 was below 0.01.

Table 2. Species used to construct the phylogenetic relationships along with GenBank accession numbers.

Order Family Species GenBank Accession Number References

Nectiopoda Speleonectidae Xibalbanus tulumensis NC_005938 [52]
Anomopoda Daphniidae Daphnia magna MT199637 Unpublished

Microcoryphia

Meinertellidae Nesomachilis australica AY793551 [53]

Machilidae

Allopsontus baii KJ754500 [44]
Allopsontus helanensis KJ754501 [44]

Coreamachilis songi MW752138 This study
Coreamachilis coreanus MW752137 This study

Pedetontus silvestrii EU621793 [54]
Pedetontinus luanchuanensis KJ754502 [44]

Petrobiellus bannaensis KJ754503 [44]
Petrobiellus puerensis KJ754504 [44]
Petrobius brevistylis AY956355 [55]

Songmachilis xinxiangensis JX308221 [47]
Trigoniophthalmus alternatus EU016193 [56]

2.5. Selection Pressure Analyses of Coreamachilis

The ratio of non-synonymous-to-synonymous (dn/ds) ω can indicate selection pres-
sure at the protein level, with ω = 1, ω > 1 and ω < 1 meaning neutral selection, positive
selection and negative selection, respectively [60]. The ω value was calculated by the

http://www.genebee.msu.su/services/rna2_reduced.html
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codon-based maximum likelihood method using the CodeML algorithm [60] implemented
in the EasyCodeML [61]. Four different models were used to test the selection pressure,
including the site model, clade model, branch model and branch-site model. We chose
C. coreanus and C. songi as the foreground branch, respectively, and others as the back-
ground branch using three different model selections (the clade model, branch model and
branch-site model). The branch models were performed under the one-ratio model (M0) or
the two-radio model, the former presuming that ω in specific branches was different from
the rest of the tree. Also, the branch-site models were combined with heterogeneous ω

across sites and branches (model A) and can be compared against a null model (model A
null), which made it possible to find neutral evolution and negative selection. Likelihood
ratio tests (LRTs) and Bayes empirical Bayes (BEB) were used to assess these models and
evaluate the posterior probability of positive selection sites, respectively. The likelihood
ratio test (LRT) was used to compare the statistical model in order to determine whether
there were differences between them.

3. Results and Discussion
3.1. Specimen Collection and Mitogenome Structure

We gathered over three hundred C. coreanus female individuals in our collection area,
Liaoyang city, Liaoning Province, China, between 2005 and 2015, finding no males among
these specimens. Similarly, Mendes [3] collected C. coreanus species in North Korea, but
did not find any male individuals. Hence, it can be inferred that parthenogenic repro-
duction has emerged in C. coreanus. Only two species of Meinertellidae [62], two species
of Petrobiinae [63], and several species of Machilinae [1,64] were previously found to
exhibit parthenogenesis. In addition, we collected male and female individuals of C. Songi,
indicating that it was indeed using the sexual reproduction strategy as reported [4,5].

The complete mitogenomes of C. coreanus and C. songi were circular DNA molecules
of 15,578 bp and 15,570 bp in length, respectively (Table 3). By comparison, the other
10 sequenced mitogenomes of Microcoryphia ranged from 15,473 bp [47] to 16,197 bp [56].
Both the C. coreanus and C. songi genomes encoded 13 PCGs, two rRNA genes, and 22 tRNA
genes (Figure 1), which is consistent with typical insect mitogenomes [65]. Among these,
23 genes were located on the heavy (H) strand and the other 14 genes were on the light
(L) strand (Table 3). The gene order of the C. coreanus and C. songi mitogenomes were the
same as those of typical insects. Among the 12 mitogenomes of Microcoryphia, including
the two mitogenomes in this study, ten of them had the same gene arrangement, except
for Petrobius brevistylis [55] and Trigoniophthalmus alternatus [56]. In the mitogenomes of
C. coreanus and C. songi, the tRNAAla–tRNAArg–tRNAAsn–tRNASer1–tRNAGlu–tRNAPhe

cluster was found between ND3 and ND5 genes (Figure 1), as also occurred in eight
other mitogenomes of bristletails, except for P. brevistylis [55], which showed a clus-
ter of tRNAArg–tRNAAsn–tRNASer1–tRNAGlu–tRNAAla–tRNAPhe and T. alternatus with a
tRNAAla–tRNAArg–tRNAAsn–tRNASer1–tRNAGlu–tRNATyr–tRNAPhe cluster.

There were some overlaps (34 bp and 35 bp) and intergenic regions (37 bp and 60 bp)
in the mitogenomes of C. coreanus and C. songi, respectively. Among other Microcoryphia
mitogenomes, the overlaps ranged from 13 bp to 38 bp, and the intergenic regions ranged
from 77 bp to 230 bp. The intergenic region of C. coreanus was the shortest among the
sequenced Microcoryphia, largely due to the short intergenic region between ND1 and
tRNASer2, which was always longer than 20 bp in most of the Microcoryphia species, but
was only 6 bp in C. coreanus.
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Table 3. Gene arrangement of C. coreanus (C. c) and C. songi (C. s) mitochondrial genome.

Gene Strand
Position Start Codon Stop Codon

C. c C. s C. c/C. s C. c/C. s

tRNAIle H 1–67 1–67
tRNAGln L 68–138 68–137
tRNAMet H 145–210 143–208

ND2 H 211–1239 208–1236 TTG/ATG TAA/TAA
tRNATrp H 1239–1304 1236–1301
tRNACys L 1304–1370 1301–1368
tRNATyr L 1371–1438 1369–1436

COX1 H 1431–2975 1429–2973 ATT/ATT TAA/TAA
tRNALeu2(UUA) H 2971–3035 2969–3033

COX2 H 3042–3729 3040–3727 ATG/ATG T/T
tRNALys H 3730–3800 3728–3798
tRNAAsp H 3804–3871 3803–3870

ATP8 H 3872–4033 3871–4032 ATT/ATT TAA/TAA
ATP6 H 4027–4704 4026–4703 ATT/ATT TAA/TAA
COX3 H 4704–5486 4703–5485 ATG/ATG TAA/TAA

tRNAGly H 5489–5556 5488–5554
ND3 H 5557–5910 5555–5908 ATC/ATC TAA/TAA

tRNAAla H 5914–5976 5912–5974
tRNAArg H 5979–6049 5977–6045
tRNAAsn H 6050–6116 6046–6112
tRNASer1 H 6117–6183 6113–6179
tRNAGlu H 6184–6252 6180–6248
tRNAPhe L 6254–6318 6250–6314

ND5 L 6318–8048 6315–8045 ATG/ATG TAA/TAA
tRNAHis L 8050–8113 8047–8110

ND4 L 8118–9467 8115–9464 ATG/ATG TAA/TAA
ND4L L 9461–9760 9458–9757 ATG/ATG TAA/TAA

tRNAThr H 9763–9824 9760–9821
tRNAPro L 9825–9887 9822–9885

ND6 H 9891–10,397 9889–10,395 ATT/ATT TAA/TAA
Cyt b H 10,397–11,533 10,395–11,531 ATG/ATG TAA/TAA

tRNASer2 H 11,532–11,599 11,530–11,597
ND1 L 11,606–12,554 11,604–12,531 ATG/ATT T/T

tRNALeu1(CUA) L 12,555–12,620 12,553–12,618
16S rRNA L 12,621–13,959 12,619–13,953
tRNAVal L 13,960–14,032 13,954–14,026

12S rRNA L 14,033–14,841 14,027–14,836
CR 14,842–15,578 14,837–15,570
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Figure 1. Mitochondrial genome maps of C. coreanus (A) and C. songi (B). The first circle shows the 
gene map (PCGs, rRNAs, tRNAs and the AT-rich region) and the genes outside the map are coded 
on the majority strand (J-strand) whereas the genes inside the map are coded on the minority strand 
(N-strand). The second circle shows the GC content and the third shows the GC skew. GC content 
and GC skew are plotted as the deviation from the average value of the entire sequence. 

Figure 1. Mitochondrial genome maps of C. coreanus (A) and C. songi (B). The first circle shows the
gene map (PCGs, rRNAs, tRNAs and the AT-rich region) and the genes outside the map are coded
on the majority strand (J-strand) whereas the genes inside the map are coded on the minority strand
(N-strand). The second circle shows the GC content and the third shows the GC skew. GC content
and GC skew are plotted as the deviation from the average value of the entire sequence.
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The nucleotide composition of the C. songi mitogenome was A = 36.38%, T = 35.33%,
C = 16.68%, and G = 11.61%, and was very similar to C. coreanus, which was as A = 36.67%,
T = 35.37%, C = 16.66%, and G = 11.30%. There were strong A + T biases in both C. songi
and C. coreanus, 71.7% and 72.1%, respectively, and these were within the range of other
Microcoryphia mitogenomes (67.9–74.4%). The skew statistics showed that there was a
positive AT skew and negative GC skew in both C. coreanus and C. songi (Table 4).

Table 4. Base composition, the percent of A and T, AT skew and GC skew of C. coreanus and C. songi.

Region C. coreanus C. songi

Length (bp) AT% AT Skew GC Skew Length (bp) AT% AT Skew GC Skew

Whole genome 15,578 72.1 −0.018 −0.191 15,570 71.7 −0.015 −0.179
Protein-coding genes 6882 69.1 −0.121 −0.158 6882 69 −0.125 −0.156

Ribosomal RNA genes 2148 74 −0.021 −0.282 2145 73.7 −0.023 −0.285
Transfer RNA 938 74 −0.029 −0.016 1001 73.4 −0.011 −0.011

3.2. Protein-Codon Genes and Codon Usages

There were 13 PCGs identified in the mitogenomes of C. coreanus and C. songi, and
nine of them were located on the heavy strand (H-strand), whereas the others were on the
light strand (L-strand) (Figure 1). Most of the PCGs used ATN (N represents A, G, C, or
T) as the start codon, except for ND2 in C. coreanus, which used TTG as the start codon
(Table 3). Although ATN has been accepted as the canonical mitochondrial start codon
for insect mitogenomes [65], TTG is also regarded as a start codon [66]. In fact, before
being found in C. coreanus, TTG had only been found for the COX1 gene of the T. alternatus
mitogenome in the Microcoryphia order [56]. In the C. coreanus mitogenome, there were
seven genes that used ATG as the start codon, which was the same as in C. songi. Four
genes used ATT as the start codon in C. coreanus and five genes used ATT in C. songi. The
COX3 gene of C. coreanus and C. songi used ATA as the start codon (Table 5).

Table 5. Start and stop codons of the Microcoryphia mitochondrial genomes. Notes: Allopsonsu baii (A. b); Allopsonsus
helanensis (A. he); Coreamachilis coreanus (C. c); Coreamachilis songi (C. s); Nesomachilis australica (N. a); Petrobius brevistylis
(P. b); Petrobiellus bannaensis (P. ba); Pedetontinus luanchuanensis (P. l); Petrobiellus puerensis (P. p); Pedetontus silvestrii (P. si);
Songmachilis xinxiangensis (S. x); Trigoniophthalmus alternatus (T. a).

Gene
Start Codon/Stop Codon

A. b A. he C. c C. s N. a P. b P. ba P. l P. p P. si S. x T. a

ATP6 ATA/TAA ATG/TAA ATT/TAA ATT/TAA ATA/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ATP8 ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATA/T ATT/TAA ATC/TAA ATT/TAA ATC/TAA ATT/TAA ATT/TAA ATT/TAA

COX1 ATT/T ATT/T ATT/TAA ATT/TAA ATT/TA ATG/TAA ATT/TAA ATT/T ATT/TAA ATT/T TCG/T TTG/TA

COX2 ATG/T ATG/T ATG/T ATG/T ATG/T ATG/T ATG/TAA ATG/T GTG/TAA ATT/T ATG/T ATG/TAA

COX3 ATA/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATA/TAA ATG/TA ATG/TAA ATG/T ATG/TAA ATG/TAA

Cyt b ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ND1 ATT/TAG GTG/TAA ATG/T ATT/T ATA/TAA ATA/T ATA/TAG ATT/TAG ATT/TAA ATT/TAG ATT/TAA ATG/TAA

ND2 ATT/TAA ATC/TAA TTG/TAA ATG/TAA ATC/TAA ATT/TAA ATA/TAA ATG/TAA ATA/TAG ATT/TAA ATA/TAA ATG/TAA

ND3 ATA/TAA ATA/TAA ATA/TAA ATA/TAA ATA/TAA ATT/TAA ATA/TAG ATA/TAA ATA/TAG ATA/TAA ATA/TAA ATA/TAA

ND4 ATG/TAA ATT/TAA ATG/TAA ATG/TAA ATT/TAA ATG/TAA ATG/TAA ATG/TAG ATG/TAG ATG/TAG ATG/TAG ATG/TA

ND4L ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATT/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA ATG/TAA

ND5 ATG/TA ATG/TAA ATG/TAA ATG/TAA ATA/TAG ATG/TAA ATT/TAG GTG/T ATG/TA ATG/T ATG/TAA ATG/TAA

ND6 ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATA/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATT/TAA ATA/TAA

The stop codon usage was the same in both C. coreanus and C. songi. Eleven genes
used ATT as the stop codon, whereas an incomplete stop codon (T) was used in COX1
and ND1 genes (Table 5). It is common, in metazoan mitochondrial genomes, to see an
incomplete stop codon, and these truncated stop codons are presumed to be completed by
post-transcriptional polyadenylation [67].

The A + T content of the 13 PCGs was 69.1% and 69% in C. coreanus and C. songi,
respectively. The AT skew and GC skew were negative in both the species (Table 4). The
RSCU of C. coreanus and C. songi is shown in Figure 2. The most frequently encoded amino
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acids were Leu (UUR), Phe, and Ile (>300), whereas the least frequently used amino acid
was Cys (<45).
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3.3. Ribosomal RNAs, Transfer RNAs and Hairpin Structures

Of the 22 tRNA genes, 14 tRNAs were encoded on the heavy strand (H-strand),
whereas the other eight tRNAs were encoded on the light strand (L-strand). Both rRNAs
were on the light strand (Table 3). As in other Microcoryphia mitogenomes, the 16S rRNA
gene was located between tRNALeu and tRNAVal, with a length of 1332 bp and 1322 bp in
C. coreanus and C. songi, respectively. Located between tRNAVal and the CR, the 12S rRNA
gene was 813 bp and 806 bp in C. coreanus and C. songi, respectively.

The total length of the tRNAs was 938 bp and 1001 bp, with an average A + T content
of 74% and 73.4% in C. coreanus and C. songi, respectively. In both the mitogenomes, most of
the tRNA genes displayed the common cloverleaf secondary structure, except for tRNASer

(AGN), which had lost the dihydrouridine (DHU) arm (Figure S1), as often found in other
insect mitogenomes [44].

A novel hairpin structure was located in the ND1 and 16S rRNA genes, with a length
of about 60 bp in the mitogenomes of both (Figure 3C,D). In fact, we found a similar hairpin
structure in 7 out of the 10 known bristletails mitogenomes (Figure 3A,B,E–I). Some hairpin
structures have been found in other species, but all of them were short (less than 10 bp) and
mostly located between PCGs [20–25]. Such sequences were suggested to have a potential
role as a secondary strand-replication origin [25]. In this case, the stop codon of one of the
PCGs was incomplete (T or TA), and the 3′-end region of this gene has the potential to
form a hairpin structure with the beginning region of the neighboring protein-coding gene,
which is important for the precise cleavage of the mature protein-coding genes [67–69]. In
the mitogenomes of C. coreanus and C. songi, the stop codon of ND1 was incomplete, but
the stem of the hairpin structure in the 16S gene was not at the beginning. Also, there were
similar hairpin structures in other bristletail mitogenomes, but all the stop codons of ND1
in those mitogenomes were complete (Table 4), and the stems of the hairpin structures
were not at the 3′-end region or beginning region. As for other genes with incomplete stop
codons, we did not find any other long hairpin structures like this in other insect orders. In
the A + T-rich region, it was reported that stem–loop structures could be formed. Also, it
has been mentioned that conserved regions of single stem–loop structure (the 5′ flanking
sequences with “TTATA”, while 3′ flanking sequences with a “G(A)nT” motif) have been
observed in a variety of insect orders [24,26]. This stem–loop structure in the A + T-rich
region was suggested as the site of the initiation of secondary strand synthesis [21,24,26].
However, the hairpin structures we found were not in the control region, and none of the
conserved structure was found. This hairpin structure between the ND1 and 16S RNA
genes, first reported in Microcoryphia, appears to be novel and about 60 bp in length, with
certain homologous segments (Figure 4), unlike the short hairpin structures previously
found. No relevant studies about such a structure were found during an online search of
the literature, and if a similar hairpin structure can be found in other species, it would be
interesting to explore its function.
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3.4. A + T Rich Region

The largest non-coding region of bristletail mitogenomes was the control region,
which was located between the 12S rRNA and tRNAIle genes. The length of the A + T-rich
region of C. coreanus and C. songi mtDNA was 736 bp and 734 bp, respectively. Ten other
Microcoryphia mitogenomes, published online, showed lengths of the A + T-rich region
ranging from 538 bp (N. australica) to 1149 bp (T. alternatus).

3.5. Phylogenetic Analyses and Selection Pressure Analyses

We constructed BI and ML trees with the nucleotide sequences of the 13 mitochon-
drial protein-coding genes, including 12 Microcoryphia species and two outgroup species
(X. tulumensis and D. magna), to perform phylogenetic analyses (Figure 4). The topologies
of BI and ML analyses were the same. The monophyly of Machilidae failed to be sup-
ported because Meinertellidae was clustered into Machilidae and formed a sister clade to
Petrobiellinae. The monophyly of Machilinae and Petrobiinae also failed to be supported,
because T. alternatus, belonging to Machilinae, was clustered into the subfamily Petrobiinae
(Figure 4). Similar results were also presented in the study by Ma et al. [44]. The previous
main diagnosis of the Machilinae subfamily was via morphological characters of plesiomor-
phies [1], but our phylogenetic tree-based result was not congruent with this morphological
taxonomy. The classification of Trigoniophthalmus genus should be reconsidered in com-
bination with phylogenetic trees and morphological characteristics. The clade consisting
of (Songmachilis xinxiangensis + (Allopsontus baii + (A. helanensis + (C. coreanus + C. songi))))
strongly supported the non-monophyly of Allopsontus and the monophyly of Coreamachilis
in BI and ML analyses. The genus Coreamachilis was proposed as a monophyletic group,
which is consistent with the morphological taxonomy, as well as sequence analysis of COX1
from the mitogenome [70]. However, the paraphyly of Allopsontus suggested that the sub-
genera of Allopsontus should be further assessed, because A. baii and A. helanensis belong to
the genus Allopsontus s. s. Silvestri, 1911 and Allopsonsus (Anisopsontus) Mendes, 1990 [71].
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Our results suggest that the morphological classification at the genus level can be further
improved by combining phylogenetic relationships. It was interesting that the hairpin
structure between ND1 and 16S RNA genes is a synapomorphy of the clade including
Machilinae and Petrobiinae. (Figure 3). In addition, in the clade with the long hairpin
structure, the homologous segments of hairpin structures aggregated together are more
alike (Figure 4). The five species of Machilinae were grouped into a branch, and their stem
sequences in the hairpin structure showed a high similarity (Figure 5A). At the same time,
the remaining clades with a hairpin structure were also of relative similarity (Figure 5B).
It is well known that gene order and genome organization can provide useful genetic
information to understand evolutionary relationships [72]. Hence, intergenic regions can
be used as a synapomorphy for a genus [18,19]. The hairpin structure found in this study
is located in the gene spacer between ND1 and 16S, and as a special structure, it is highly
correlated with the results of the phylogenetic tree. Hence, we indicate that the long hairpin
structure may be useful as a molecular characteristic to discuss phylogenetic relationships
within Microcoryphia.
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the stem among P. luanchuanensis, P. silvestri, T. alternatus and P. brevistylis.

The phylogenetic tree developed from the current data was used for selection pressure
analyses. Four different models were used in the test, including the site model (M3 vs. M0,
M1a vs. M2a, M7 vs. M8, and M8 vs. M8a), clade model (CmC vs. M2a_rel), branch
model (two-ratio model vs. M0), and branch-site model (A vs. A null) (Table S1). We chose
Coreamachilis as the foreground branch and other species as the background branch in the
clade model, branch model, and branch-site model. However, the LRTs did not indicate any
sign of positive selection (p > 0.05). Since C. coreanus and C. songi reproduced differently, we
calculated the selective pressures on each of them, to see if there was an adaptive evolution
at the mitochondrial gene level for the differences in reproductive patterns. However, the
results did not indicate any sign of positive selection either (Tables S2 and S3). Neither
C. coreanus (with parthenogenesis) nor C. songi (with sexual reproduction) were subject
to any positive selection. In a word, it was suggested that differences in Coreamachilis
reproductive patterns may not result from adaptive evolution on the mitogenome.

4. Conclusions

We successfully sequenced the complete mitogenomes of C. coreanus and C. songi,
which showed similar gene characteristics to the other 10 species of Microcoryphia with
published mitogenomes. We found a special long hairpin structure (about 60 bp) located
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between ND1 and 16S RNA genes of C. coreanus and C. songi, which was also found in
seven known bristletail mitogenomes belonging to Petrobiinae and Machilinae. However,
the function and formation of this long hairpin structure remain unclear, and still need to be
explored. Since the hairpin structure is highly correlated with the phylogenetic tree, the long
hairpin structure can be used as the synapomorphy for Machilinae and Petrobiinae. Both BI
and ML analyses supported the genus Coreamachilis as a monophyletic group, whereas the
monophyly of Allopsontus was not recovered. Neither C. coreanus (with parthenogenesis)
nor C. songi (with sexual reproduction) were subject to any positive selection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12090795/s1: Figure S1. Inferred secondary structures of the tRNA genes in C. coreanus
(A) and C. songi (B); Table S1. CodeML analysis of mitochondrial protein-encoding genes (13 genes)
(choosing Coreamachilis as the foreground branch); Table S2. CodeML analysis of mitochondrial protein-
encoding genes (13 genes) (choosing C. songi as the foreground branch); Table S3. CodeML analysis of
mitochondrial protein-encoding genes (13 genes) (choosing C. coreanus as the foreground branch).
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