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Simple Summary: DHCR24 (24-dehydrocholesterol reductase) is a key enzyme for producing
cholesterol from desmosterol and that is also involved in the conversion of plant sterols to cholesterol
in most plant-feeding insects. This study extensively examined the possibility of DHCR24 involved
in the sterol conversion in omnivorous insects, which feed on multiple food origins. Homologs
of DHCR24 (GbDHCR24-1 and -2) were identified and characterized by using the two-spotted
cricket, Gryllus bimaculatus, as an experimental model. The quantitative expression analyses and
RNA interference experiments revealed that GbDHCR24-1 rather than GbDHCR24-2 facilitates the
desmosterol-to-cholesterol conversion in crickets. Our data suggested that the omnivorous species
produced cholesterol from desmosterol in the same manner as the plant-feeding species do.

Abstract: Arthropods, including insects, convert sterols into cholesterol due to the inability to
synthesise cholesterol de novo. 24-dehydrocholesterol reductase (DHCR24) plays an important
role in the conversion. Not only involving the cholesterol biosynthesis in vertebrates, DHCR24 is
required for the conversion of desmosterol into cholesterol in phytophagous insects. The current
study extensively examined DHCR24 in omnivorous insects, which feed on both plants and animals,
using Gryllus bimaculatus as the experimental model. We identified cDNAs encoding two homologues
of DHCR24 from G. bimaculatus, which were designated as GbDHCR24-1 and GbDHCR24-2. Both
homologues contained the flavin adenine dinucleotide binding domain, which is a feature of DHCR24.
Quantitative polymerase chain reaction revealed that among tissues of adult crickets, fat body
and anterior midgut expressed high levels of GbDHCR24s. Both fat body and anterior midgut
demonstrated DHCR24 activities in which one of the functions is the conversion of desmosterol into
cholesterol in vitro. Knockdown of GbDHCR24-1 significantly reduced the conversion activity in
the anterior midgut while knockdown of the GbDHCR24-2 did not. Additionally, the accumulation
of desmosterol was detected in a feeding experiment with a specific DHCR24 inhibitor, azacosterol.
We finally concluded that GbDHCR24-1 is the major enzyme that facilitates the desmosterol-to-
cholesterol-conversion in crickets.

Keywords: DHCR24; desmosterol; cholesterol; phytosterols; cricket; omnivorous insects; RNAi

1. Introduction

Cholesterol is critical for the survival of many organisms because of its varied func-
tions. In the cholesterol biosynthesis of vertebrates, two pathways, which are known
as the Bloch pathway and the Kandutsch-Russell pathway, are involved [1]. In both
pathways, an enzyme called 24-dehydrocholesterol reductase (DHCR24) reduces ∆24 in
sterols. In mouse and other mammals, DHCR24 converts desmosterol to cholesterol in
the Bloch pathway while DHCR24 converts lanosterol to 24,25-dihydrolanosterol in the
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Kandutsch–Russell pathway [2–4]. Despite arthropods, including insects, being unable to
synthesise cholesterol de novo, DHCR24 is equally important to them [5]. Insects, particu-
larly phytophagous insects that feed on plants convert plant sterols (phytosterols), such as
β-sitosterol, campesterol and stigmasterol, into cholesterol to meet their cholesterol require-
ment [6]. The phytosterols are converted into desmosterol via dehydration, epoxidation
and dealkylation [6–12]. Desmosterol is then converted to cholesterol. In the silkworm,
Bombyx mori, DHCR24 has been shown to have the potential to convert desmosterol into
cholesterol in vitro [13,14]. There are two DHCR24 variants in B. mori. Both are expressed in
endoplasmic reticulum (ER) of larval midgut [15]. One homologue, BmDHCR24-1, shows
significant enzyme activity, but the other homologue, BmDHCR24-2, exhibits almost no ac-
tivity. The conversion is also facilitated by DHCR24 in other species, such as Caenorhabditis
elegans [16].

Although phytophagous insects have been proven to use DHCR24 to convert desmos-
terol to cholesterol, it is still unclear if insects feeding on meat and other types of food
exhibit this enzyme activity. Omnivorous insects, which feed on both herbivorous and
carnivorous diets, may be able to catalyse more types of sterols than species that only feed
on one type of food. Since omnivorous insects also feed on plants, they are very likely to
metabolise phytosterols such as the phytophagous insects do, but it is still uncertain if the
phytosterol conversion pathways in the omnivorous and phytophagous insects are exactly
the same [5]. In the present study, we used the two-spotted cricket, Gryllus bimaculatus,
as an experiment model to investigate the conversion of desmosterol in omnivorous insects.
We first identified the putative DHCR24 sequences in crickets. Then, we examined the en-
zyme activity of DHCR24. Through the knockdown of DHCR24 variants, we investigated
the activity of each variant. Moreover, we used a specific DHCR24 inhibitor, azacosterol
(also known as 20,25-diazacholesterol), to examine if DHCR24 would be the only enzyme
that was capable of converting desmosterol to cholesterol in crickets [17].

2. Materials and Methods
2.1. BLAST Search and Phylogenetic Analysis

Two amino acid sequences of Bombyx mori DHCR24, BmDHCR24-1 and BmDHCR24-2
were used to search Gryllus bimaculatus cDNA sequences encoding DHCR24 homologues
with our in-house database generated from RNA-sequencing analyses [13,14]. An align-
ment of amino acid sequences of B. mori DHCR24s and putative amino acid sequences
in G. bimaculatus DHCR24s were generated using Clustal W. Phylogenetic analysis was
performed with MEGA X. The phylogenetic tree was constructed by the Neighbour Joining
method with 1000 bootstrap replicates. 7-dehydrocholesterol reductase in Homo sapiens
was used as an outgroup in the phylogenetic analysis.

2.2. Experimental Insects

The two-spotted cricket, G. bimaculatus, was reared in plastic boxes with water supply
and powder grounded from rabbit food (LRC4, Oriental Yeast Co., Ltd., Tokyo, Japan)
and cat food (Carat Mix (fish flavour), Petline, Japan) (1:4 w/w ratio). Crickets were
reared at 28 ◦C with a relative humidity of approximately 40% in a 16 h light and 8 h dark
photoperiod regime.

2.3. Preparation of Azacosterol Diet

The diet was prepared by mixing rabbit food (LRC4) and azacosterol (AdooQ Bio-
Science, Irvine, CA, USA) dissolved in dichloromethane (Wako, Osaka, Japan). After evap-
orating dichloromethane to dryness, crickets were given the azacosterol-rabbit diet of a
final concentration of 20 ppm (w/w) for 18 h and were kept individually.

2.4. Preparation of Ultrancentrifugal Fractions

Fat body and anterior midgut were dissected out from 8–10 adult females on the
second day after adult emergence using 0.9% NaCl aqueous solution containing 0.1%
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(v/v) 200 mM 4-amidinophenylmethanesulfonyl fluoride hydrochloride (p-AMPSF) (Wako,
Osaka, Japan) in dimethyl sulfoxide. The anterior midguts were submerged in the ho-
mogenising solution (20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
0.66 mM MgCl2, pH 7.4) containing cOmplete Mini EDTA-free protease inhibitor cocktail
(Sigma Chemical Company, Tokyo, Japan) and were homogenised by the glass Teflon
homogenisers. Four ultracentrifugal fractions (7700× g-pellet; 15,300× g-pellet; 116,200×
g-pellet; final supernatant) in the homogenates were isolated using the differential centrifu-
gation method adapted by Liebrich and Hoffmann with slight adjustments [18]. The pellets
were resuspended in the reaction solution (100 mM HEPES, 3.3 mM MgCl2, pH 7.5) con-
taining 50 µM p-AMPSF. The protein concentration of each ultracentrifugal fraction was
determined using the Bradford reagent (Bio-Rad, Hercules, CA, USA), and the absorbance
was measured at 595 nm. Solutions of known concentrations of bovine serum albumin
(BSA) (Sigma Chemical Company, Japan) were used as standards.

2.5. Evaluation of Enzyme Activity

A substrate solution (solution S) composed of 1 mg/mL of deuterated desmosterol
(desmosterol-d6) (Avanti Polar Lipids, Alabaster, AL, USA) in 45% (2-hydroxyethyl)-β-
cyclodextrin dissolved in water was prepared. An incubation mixture with a total volume
of 100 µL composed of 1 µL of solution S, 3.5 mM of NADPH, and reaction solution
containing 50 µM p-AMPSF was incubated with one ultracentrifugal fraction containing 10
µg of protein at 37 ◦C for 16–18 h. The sterols were extracted from the incubation mixture
with n-hexane, and the resulting organic extracts were evaporated to dryness. An internal
standard, cholestanol (1 µg) (Sigma-Aldrich, Tokyo, Japan) was added to the dried extracts.
The mixture was then incubated with N,O-bis(trimethylsilyl)trifluoroacetamide (15 µL)
(Wako, Osaka, Japan) and n-hexane (100 µL) at 65 ◦C overnight. The resulting solution was
evaporated to dryness and dissolved in n-hexane (100 µL). The solutions were analysed
by gas chromatography–mass spectrometry (GC-MS). The selective ion-monitoring mode
was operated, and the area of the fragment ion peak or the molecular ion peak on the
gas chromatogram was measured. The ion peaks for quantification are listed on Table 1.
Since cholesterol is the product of the conversion, the intensity of enzyme activity was
determined by the peak area ratio of detected cholesterol-d6 to desmosterol-d6. Although
data varied in repeated experiments with different populations, the data showed similar
tendencies. In the other experiments, the peak area ratios of targeted sterol to the internal
standard were calculated instead.

Table 1. List of sterols analysed.

Sterols Parent Ion Peak for Identification Relative Retention
(TMS Derivatives) (m/z) (m/z) Time (RRT)

Cholesterol 458 458 1.009
Cholesterol-d6 464 464 1.013
Cholesterol-d7 465 465 1.014
Desmosterol 456 343 0.978

Desmosterol-d6 462 462 0.984
7-Dehydrocholesterol 456 325 0.974

7-Dehydrodesmosterol 454 349 0.943

2.6. GC-MS Conditions

GCMS-QP2010 Plus (Shimadzu, Kyoto, Japan) was operated with an electron ion-
ization source at an electron energy of 70 eV in the positive mode for ion detection. A
TR-5MS column (30 m × 0.25 mm i.d., 0.25 µm film thickness; Thermo Fisher Scientific,
Franklin, MA, USA) was used for the analysis. The operating conditions were described
as the following. Ion source temperature was set at 230 ◦C. Interface temperature was
set at 290 ◦C. The column oven temperature was held at 80 ◦C for 1 min after injection,
then programmed to 240 ◦C at 25 ◦C/min, followed by 5 ◦C/min to 290 ◦C with a 10 min
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hold. Helium was used as the carrier gas at flow rate of 1.4 mL/min. The mass spectrum
of the peak was recorded in the total ion current mode of the mass spectrometer with a
mass range from m/z 45 to 600. The retention times of standard sterols were determined by
analysing the TMS derivatives of commercial samples, including cholesterol-d7 (Cayman
Chemical, Ann Arbor, MI, USA), desmosterol (Sigma Chemical Company, Japan) and
desmosterol-d6 (Avanti, Alabaster, AL, USA) in GC-MS (Table 1). The retention times of
TMS-cholesterol-d6 and TMS-7-dehydrodesmosterol were determined according to the
corresponding peaks detected in the samples. The relative retention time was calculated
to normalise the retention times of sterols in each sample. The identities of the detected
sterols in each sample were confirmed with their relative retention times and mass spectra.

2.7. Examination of the Effects of Azacosterol on Enzyme Activity

Azacosterol solution was prepared by dissolving azacosterol in water. The incubation
mixture was prepared as described in previous sections, but only the 15,300× g-pellet
fraction was used. Incubation mixture containing different amounts of azacosterol (1, 5,
7.5, 10 and 25 ppm w/v) were then incubated, and sterols were extracted as described in
above sections.

2.8. Preparation of cDNA

Two days after the female crickets emerged into adults, total RNA was extracted
from crop, fat body, hindgut, anterior midgut, posterior midgut and Malpighian tubules
using TRI-reagent (Molecular Research Centre, Inc., Cincinnati, OH, USA) according to the
manufacturer’s protocol. The extracted RNA was incubated with RQ1 RNase-free DNase
(Promega, Fitchburg, WI, USA) at 37 ◦C for 1 h. RNA was then extracted by phenol and
chloroform, followed by ethanol precipitation. cDNA was then synthesised using an oligo
dT18 primer and reverse transcriptase, RevaTra Ace® (Toyobo, Osaka, Japan). The mixture
was incubated at 42 ◦C for 1 h, followed by incubation at 99 ◦C for 5 min. In the experiment
measuring the enzyme activity of ultracentrifugal fractions extracted from tissues, RNA
was extracted with a slightly different method. After the preparation of incubation mixture
for the examination of enzyme activity as described above, all the ultracentrifugal fractions
were recombined. The partially combined fractions (50 µL) were added to TRI reagent
(300 µL), and the extraction procedures were same as described above.

2.9. Examination of Transcriptional Levels of DHCR24 in Tissues

Quantitative polymerase chain reaction (qPCR) was performed with the cDNA de-
rived in the previous section, THUNDERBIRD® SYBR Green (Toyobo, Osaka, Japan) and
the primer sets in Table 2 on Thermal Cycler Dice Real Time System TP850 (TaKaRa, Shiga,
Japan). The thermal cycling protocol of qPCR was as follows: initial denaturation at 95 ◦C
for 1 min and followed by 45 cycles of amplification. Each cycle consisted of 95 ◦C for
10 s and 60 ◦C for 30 s. The qPCR programme ended with dissociation curve analysis
in the following order: 95 ◦C for 15 s, 60 ◦C for 30 s and 95 ◦C for 15 s. The absolute
quantity of each gene was derived from the second Derivative Maximum Method. Both
the transcription levels of GbDHCR24-1 and GbDHCR24-2 were normalized to the that of
β-actin. All datapoints were performed twice to confirm the reproducibility.

2.10. RNA Interference (RNAi)

The T-vector subcloned cDNA was amplified by using primers containing an addi-
tional T7 promotor sequence at the 5’-terminal (Table 2) under the following amplification
conditions: initial denaturation at 96 ◦C for 2 min, 40 cycles of amplification (94 ◦C for 30 s,
55 ◦C for 30 s and 72 ◦C for 1 min) and followed 72 ◦C for 5 min. RNA was then synthesised
with T7 RNA polymerase using 800 ng of PCR products as template DNA. The synthesized
RNA was purified by phenol/choloroform extraction and ethanol precipitation. RNA was
dissolved in diethyl pyrocarbonate (DEPC)-treated water. RNA was diluted to a concentra-
tion of 3 µg/µL. The complementally synthesized RNA was denatured at 100 ◦C for 5 min
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and was gradually cooled down to room temperature to produce dsRNA. The prepared
dsRNA solution (6 µL) was injected into crickets. DsRed, which was prepared as previously
described [19], was also injected into the crickets as a control. Three days after injection,
the efficiency of RNAi and enzyme activity was examined by qPCR.

Table 2. Primers used in this research.

Experiment Primer Sequence (5′ to 3′)

qPCR DHCR24-1 Forward AACAATGATCCAGGCCTCGT
DHCR24-1 Reverse AGGAACGCCGTATACACCAA
DHCR24-2 Forward ATGGGTGTTCGCGTCATTCT
DHCR24-2 Reverse TGAAGACCAACCAGTTGCGT
β-actin Forward TTGACAATGGATCCGGAATGT
β-actin Reverse AAAACTGCCCTGGGTGCAT

RNAi T7-DHCR24-1 Forward GCTTCTAATACGACTCACTATAGCGATAAGAAGGTGCGCAACG
T7-DHCR24-1 Reverse GCTTCTAATACGACTCACTATAGTAACGACACTGCCATCTGCC
T7-DHCR24-2 Forward GCTTCTAATACGACTCACTATAGATGCCTCCCAAGGTTTCGTT
T7-DHCR24-2 Reverse GCTTCTAATACGACTCACTATAGACACGTCAGGAAAAGCCTCC

2.11. Statistical Analyses

The Mann–Whitney U test was used as the statistic tests where it was appropriate
in this paper. In all the tests, p < 0.05 was considered as statistically significant. All
experiments were repeated multiple times with different populations of crickets, and
similar trends were confirmed in all the repeated trials.

3. Results
3.1. Characterization of GbDHCR24

In order to identify the homologous cDNAs encoding DHCR24 in G. bimaculatus, we
searched the cDNA sequences based on the B. mori DHCR24 two homologues (BmDHCR24-
1 and BmDHCR24-2) in our in-house database from RNA-sequencing analyses [13,14].
The BLAST search resulted in two nucleotide sequences encoding DHCR24 homologues
in G. bimaculatus DHCR24, GbDHCR24-1 and GbDHCR24-2. cDNA sequences encoding
GbDHCR24-1 and GbDHCR24-2 contained open reading frames of 1506 bp and 1515 bp, re-
spectively. The deduced amino acid sequences were composed of 501 and 504 amino acids,
respectively (Figure 1). The amino acid sequence of GbDHCR24-1 showed 56% and 39%
identities to the amino acid sequences of BmDHCR24-1 and BmDHCR24-2, respectively.
The amino acid sequence of GbDHCR24-2 showed 58% and 39% identities to the amino
acid sequences of BmDHCR24-1 and BmDHCR24-2, respectively. The amino acid sequence
of GbDHCR24-1 matched 66% of the sequence of GbDHCR24-2. Likewise, in the amino
acid sequences of BmDHCR24s, the Pfam database showed that both GbDHCR24-1 and
GbDHCR24-2 sequences of crickets contained flavin adenine dinucleotide (FAD) binding
domain [20]. Next, we analysed the phylogenetic relationship between GbDHCR24s and
the DHCR24 of the other species, including human, mouse and other insects (Figure 2). Us-
ing the distantly related 7-dehydrocholesterol reductase as an outgroup, the phylogenetic
tree showed two distinct groups. Both GbDHCR24s clustered with group one, which also
contained BmDHCR24-1 and the vertebrate DHCR24s. Group two was mostly consisted of
DHCR24 sequences of non-vertebrate species.

3.2. Tissue Distribution of GbDHCR24 Expression

In order to analyse the expression sites of GbDHCR24s in crickets, quantitative real-
time polymerase chain reaction (qPCR) was performed to measure the transcriptional levels
of GbDHCR24s in tissues (crop, fat body, hindgut, anterior midgut, posterior midgut and
Malpighian tubules). The highest transcriptional level of GbDHCR24-1 was observed in the
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anterior midgut (Figure 3a). On the other hand, the transcriptional level of GbDHCR24-2
was the highest in fat body (Figure 3b).

Figure 1. Alignment of G. bimaculatus DHCR24s (GbDHCR24-1 and GbDHCR24-2) and B. mori DHCR24 (BmDHCR24-1 and
BmDHCR24-2). Identical amino acids at the same position are shaded in black, and similar amino acids at the same position
are shaded in pale grey. The region matching the FAD binding domain on the Pfam database is highlighted in yellow.

3.3. Examination of Enzyme Activity of GbDHCR24

In order to measure the enzyme activity in crickets effectively, we prepared ho-
mogenates of tissues, and they were separated into four fractions (7700× g-pellet fraction,
15,300× g-pellet fraction, 116,200× g-pellet fraction and the final supernatant) before the
investigation. In order to trace the desmosterol-to-cholesterol-conversion, desmosterol-d6
was incubated with different ultracentrifugal fractions. A peak corresponding to TMS-
cholesterol-d6 was detected when the desmosterol-to-cholesterol-conversion was successful
(Figure 4a). The mass spectrum and the relative retention times of TMS-cholesterol-d6 were
confirmed by comparing with the data obtained from the TMS derivatives of commercially
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available cholesterol and cholesterol-d7 (Figures 4b and S1; Table S2). The conversion
was observed in at least one fraction extracted from fat body or anterior midgut. No
TMS-cholesterol-d6 was detected in any fractions extracted from crop, posterior midgut,
hindgut and Malpighian tubules (Figure 4c). Among the fractions, the reactions using the
15,300× g-pellet fraction of both fat body and anterior midgut gave the highest ratio of
cholesterol-d6 to desmosterol-d6 (Figure 4d,e). Smaller amounts of cholesterol-d6 were
also observed in the 7700× g-pellet fraction and the 116,200× g-pellet fraction of both
tissues. Almost none of the converted product was found in the final supernatant. This
indicated that the 15,300× g-pellet fraction was the predominant fraction for the detection
of DHCR24 activity. Hence, we used 15,300× g-pellet fraction extracted from the tissue
homogenates for the evaluation of GbDHCR24 activity in crickets in later experiments.
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spectrum of cholesterol-d6 detected in the reacted mixture. The parent ion of cholesterol-d6 is at m/z 464 (M) and the
characteristic fragment ions, at m/z 449 (M-15), 374 (M-90), 359 (M-90-15) and 335 (M-129), are derived by the loss of
trimethylsilanol (TMSOH) (M-90), loss of methyl group (M-15), loss of both TMSOH and methyl group (M-90-15) and loss
of the characteristic of 3β-hydroxy-5-ene steroids (M-129), respectively (Table S2). (c) The enzyme activity in the fraction
that exhibited the strongest enzyme activity in different tissues. (d,e) The intensity of GbDHCR24 activity in fat body and
anterior midgut was measured by the peak area ratio of cholesterol-d6 to desmosterol-d6 in four ultracentrifugal fractions,
7700× g-pellet fraction, 15,300× g-pellet fraction, 116,200× g-pellet fraction and final supernatant (n = 5–12). Data are
presented as mean ± SEM.
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3.4. Effects of Azacosterol on Crickets

In order to examine if only DHCR24 would contribute to the desmosterol-to-cholesterol-
conversion, azacosterol (a specific DHCR24 inhibitor) was introduced to crickets. The effect
of azacosterol was first examined in vitro. When different amounts of azacosterol were
incubated with the 15,300× g-pellet fraction, the conversion of desmosterol-to-cholesterol
was inhibited in a dose-dependent manner (Figure S2). In the anterior midgut, 5 ppm
of azacosterol (w/v) was adequate to fully inhibit DHCR24 (Figure S2a). The effect of
azacosterol was also examined in vivo via feeding crickets the diet containing azacosterol.
As a result, higher abundance of desmosterol was detected in fat body and anterior midgut
in the crickets fed on diets containing 200 ppm (w/w), while almost no desmosterol was
detected in crickets fed on diet without azacosterol (Figures 5a and S3). In addition, a peak
corresponding to 7-dehydrodesmosterol, which was identified after comparing with the
published mass spectrum, was also detected in all samples of anterior midgut in vivo
(n = 8) (Figure 5b,c) [21].
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Figure 5. Chromatogram of ions corresponding to TMS-desmosterol (m/z 343) and TMS-7-
dehydrodesmosterol (m/z 349) detected in anterior midgut of (a) crickets fed on diet containing
azacosterol and that of (b) crickets fed on diet without azacosterol. The number of times the peak
was magnified is indicated in the bracket next to the sterol name. (c) Mass spectrum of TMS-7-
dehydrodesmosterol detected in all anterior midgut samples of crickets in this study (n = 7). The
* indicates the peaks of sterols (Unidentified sterol (RRT = 1.005), TMS-5α-cholesta-7,22-dien-3β-ol
(RRT = 0.992) and TMS-lathosterol (RRT = 0.961) that were not studied in this paper.
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3.5. Effects of Knockdown of GbDHCR24s

In order to examine the contribution of each variant to the desmosterol-to-cholesterol-
conversion, we measured DHCR24 activity in fat body and anterior midgut after perform-
ing RNA interference (RNAi) through the injection of dsRNA. The efficiency of knockdown
of GbDHCR24-1 and GbDHCR24-2 was measured by qPCR (Figure S4). GbDHCR24-1
knockdown reduced the transcriptional level of GbDHCR24-1 by 48% and 79% in fat body
and anterior midgut, respectively. Meanwhile, GbDHCR24-2 knockdown reduced the
transcriptional level of GbDHCR24-2 in fat body and anterior midgut by 83% and 46%,
respectively. The knockdown of GbDHCR24-1 in anterior midgut and the knockdown of
GbDHCR24-2 in fat body were considered as successful knockdowns by the statistic test.
In the tissues which the transcriptional levels of GbDHCR24s were successfully affected by
RNAi, GbDHCR24-1 activity in anterior midgut samples extracted from the GbDHCR24-
1RNAi crickets was reduced by 76%. The statistic tests considered there was a significant
reduction in enzyme activity in anterior midgut derived from GbDHCR24-1RNAi crickets.
On the other hand, DHCR24 activity in fat body of GbDHCR24-2RNAi crickets was reduced
by 63%, but the statistic test did not suggest that knockdown of GbDHCR24s affect the
enzyme activity in fat body (Figure 6).

n.s.

**

n.s.

n.s.

0

0.5

1

1.5

2

2.5

3

3.5

4

GbDHCR24-1
RN
Ai

GbDHCR24-2
RN
Ai

DsRed
RN
Ai

GbDHCR24-1
RN
Ai

GbDHCR24-2
RN
Ai

DsRed
RN
Ai

Anterior MidgutFat Body

R
a

ti
o

 o
f 
P

e
a

k
 A

re
a

 

(c
h

o
le

s
te

ro
l-
d

6
/d

e
s
m

o
s
te

ro
l-
d

6
)

/1
0

 μ
g

 o
f 
P

ro
te

in

Figure 6. Enzyme activity of the 15,300× g-pellet fraction extracted from fat body and anterior midgut
of GbDHCR24 knockdown crickets (n = 6). The changes in enzyme activity between the DsRedRNAi

and GbDHCR24RNAi crickets were analysed by the Mann–Whitney U test. The significance is indicated
by ** p < 0.01. n.s. indicates no significance between groups. Data are presented as mean ± SEM.

4. Discussion

We successfully identified the GbDHCR24 sequences and demonstrated GbDHCR24
activities in crickets. GbDHCR24-1 seemed to be the homologue that resulted in the
production of cholesterol from desmosterol, but the function of GbDHCR24-2 remained
unknown. In the amino acid sequences of GbDHCR24, the characteristic FAD binding
domain was found in each variant, which is consistent with the findings in human DHCR24
and BmDHCR24s. As cholesterol is produced from desmosterol by DHCR24 only in the
presence of nicotinamide adenine dinucleotide 2’-phosphate (NADPH), the conserved FAD
binding domain might be used for NADPH binding to DHCR24 [3,13,15,22].

Another finding about GbDHCR24 is the potential subcellular location of GbDHCR24,
which is also consistent with DHCR24 of the other species. When the enzyme activities of
different ultracentrifugal fractions were examined, the 15,300× g-pellet fraction showed
the strongest activity (Figure 4c,d). This fraction might contain ER and Golgi apparatus as
elsewhere reported that these two organelles could be obtained under similar centrifuge
conditions [23,24]. Since both ER and Golgi apparatus are associated with DHCR24,
strong DHCR24 activity was detected in the ultracentrifugal fraction containing these two
organelles [25,26]. The desmosterol-to-cholesterol–conversion was also detected in other
ultracentrifugal fractions, but they were more likely resulted from incomplete isolation of
organelles (Figure 4).
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Despite GbDHCR24s sharing some similarities with the other DHCR24s, GbDHCR24s
demonstrated their unique features. The phylogenetic tree showed that DHCR24 either
exists as (1) a single variant that belongs to group one, such as the human DHCR24;
or (2) two variants that do not cluster in the same group, but the enzyme activities of
the two variants are different, which was proved to be the case in B. mori [14]. However,
the situation in the currently identified GbDHCR24s is neither of the cases described
above. The sequences of the two GbDHCR24 variants match 66% identity, and the two
variants cluster in the same clade. Moreover, these variants have different enzyme activities.
The data showed that the conversion of desmosterol to cholesterol is more likely faciliated
by GbDHCR24-1 but not GbDHCR24-2 (Figure 3).

In the RNAi experiment that investigated the enzyme activity of each variant, the data
showed that no matter which variant was knocked down, the conversion of desmosterol
in fat body was not affected. Presuming that both GbDHCR24-1 and GbDHCR24-2 can
facilitate the desmosterol-to-cholesterol-conversion, when one variant was knocked down,
the conversion could still be facilitated by the unaffected variant. Moreover, the enzyme
activity in fat body appeared to be much weaker than that in anterior midgut. The effect
of knockdown of one variant in fat body might not show as drastically as it could be in
anterior midgut. This did not happen in the anterior midgut because the transcriptional
level of GbDHCR24-2 in anterior midgut was almost zero. Even if GbDHCR24-2 functions,
the influence would be too small to be detected.

Although GbDHCR24-1 and GbDHCR24-2 clustered in the same clade on the phylo-
genetic tree, the transcriptional level and enzyme activity in each tissue varied. The dif-
ferences may be derived from variations in the amino acid sequences. In humans, it was
suggested that the mutation of the phosphorylation sites that lied within and outside
the FAD binding domain could result in the loss of enzyme activity [27]. Based on the
predictions of phosphorylation sites, GbDHCR24-1 and GbDHCR24-2 seemed to have
different phosphorylation sites (Figure S5) [28]. Moreover, GbDHCR24-1 appeared to have
more tyrosine phosphorylation sites. It is uncertain if the number of phosphorylation sites
and the type of phosphorylation sites affect the functions of GbDHCR24.

Another interesting observation is the tissue distribution of the GbDHCR24. Al-
though all examined tissues expressed at least one variant of GbDHCR24s, DHCR24
activity was only detected in fat body and anterior midgut, and the transcriptional levels
of GbDHCR24-2 in these two tissues were much higher than those detected in the other
examined tissues (Figures 3 and 4c,d). The enzyme activity in other tissues may be too
weak to be detected. It is unclear if there is any relationship between the transcription level
and the intensity of the enzyme activity. However, we also have to consider other factors,
for example, the efficiency of translation and the regulatory effects of metabolites as we
mentioned above [29,30].

In order to confirm if GbDHCR24 is the only enzyme contributing to the desmosterol-
to-cholesterol-conversion, an inhibitor of DHCR24, azacosteterol, was added to the diets
of crickets [31,32]. The addition of azacosterol in diets can result in accumulation of
desmosterol in vitro and in vivo, as stated in the previously published researches conducted
on mammals and insects [32–34]. As what we had predicted, diet coated with azacosterol
caused the accumulation of desmosterol in fat body and anterior midgut in crickets by
inhibiting DHCR24 activity (Figures S2 and S3). This indicated that GbDHCR24 is the
only enzyme that can convert desmosterol to cholesterol in crickets. The observation is
consistent with the findings in Manduca sexta larvae after feeding on a diet containing
azacosterol ranging from 16.5 ppm to 260 ppm wet weight and β-sitosterol at 260 ppm wet
weight over 20 days [7,35]. All tested concentrations of azacosterol seemed to have caused
impairment of DHCR24 activity.

Apart from the desmosterol-to-cholesterol-conversion, GbDHCR24 might also facili-
tate reduction of another sterol substrate. It has been reported that reactions of DHCR24
also include the conversion from 7-dehydrodesmosterol to 7-dehydrocholesterol and the
conversion from 5α-cholesta-7,24-dien-3β-ol to lathosterol [36]. In all anterior midgut sam-
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ples collected from crickets fed with diets containing azacosterol, a peak corresponding to
7-dehydrodesmosterol was detected (Figure 5). Azacosterol might have inhibited the con-
version from 7-dehydrodesmosterol to 7-dehydrocholesterol. Indeed, 7-dehydrocholesterol
was detected in all anterior midgut samples, even in the crickets that fed on diet without
azacosterol. 7-dehydrocholesterol was probably a product of the conversion facilitated
by GbDHCR24.

In conclusion, we demonstrated that the two-spotted cricket possessed two homo-
logues of DHCR24, GbDHCR24-1 and GbDHCR24-2. We confirmed that GbDHCR24-1 in
the two-spotted cricket can convert desmosterol to cholesterol mainly in anterior midgut.
The present data also showed that GbDHCR24 seemed to be the only enzyme that can
convert desmosterol to cholesterol in the two-spotted cricket. The present data indicated
that omnivorous insects might be able to utilise phytosterols to meet their cholesterol re-
quirement via the desmosterol-to-cholesterol-conversion as a stepping stone. Additionally,
the discovery of the new intermediate may reveal more clues on the sterol conversion
pathway in the two-spotted cricket.

Supplementary Materials: The following tables and figures are available online https://www.mdpi.
com/article/10.3390/insects12090782/s1, Table S1: Details of sequences used in the phylogenetic
analysis, Table S2: Fragmentation of TMS derivatives of cholesterol, cholesterol-d7 and cholesterol-d6,
Figure S1: Mass spectra of TMS derivatives of commercial samples of cholesterol and cholesterol-d7,
Figure S2: Effects of different amounts of azacosterol on the enzyme activity in the 15,300× g-pellet
fraction extracted from fat body and anterior midgut, Figure S3: Effects of azacosterol on the amount
of desmosterol in fat body and anterior midgut, Figure S4: The efficiencies of the knockdown of
GbDHCR24s, Figure S5: The alignment of GbDHCR24 showing the predicted phosphorylation sites.
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