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Simple Summary: Bees, ants, and other insects harvest antimicrobial resins from plants and use
this material for a variety of purposes, from nest construction to defense against predators and
pathogens. Resin use is thought to have facilitated the evolution of sociality in stingless bees, and
today, resin use remains fundamentally important for stingless bee colony function. Most species
use resin to build brood comb, storage pots for honey and pollen, and various protective structures
within the nest. Many also use resin to protect their nests from predators, fortifying nest entrances
with a barrier of sticky resin droplets or applying resin directly to would-be invaders. For some
species, the presence of resin inside the nest space can also influence the physical properties of the
bees themselves, enriching the chemical composition of the outermost layer of their exoskeleton, and
possibly shaping the communities of bacteria and fungi that are found on the bees, and in their nests.
This article brings together studies from a variety of fields to illustrate the importance of resin use for
stingless bee colony function and conservation, and to point towards areas of future research.

Abstract: Stingless bees (Meliponini) are highly social bees that are native to tropical and sub-tropical
ecosystems. Resin use is vital to many aspects of stingless bee colony function. Stingless bees use
resin to build essential nest structures, repel predators, and kill would-be invaders. Furthermore,
resin-derived compounds have been found to enrich the cuticular chemical profiles of many stingless
bee species, and resin may play an important role in shaping the microbial communities associated
with stingless bees and their nests. Despite its importance for colony function, previous reviews of
resin use by stingless bees are lacking. This topic grows increasingly urgent as changes in beekeeping
and land use practices occur, potentially diminishing stingless bees’ ability to incorporate resin into
the nest environment. In this article, we review existing literature on resin use by stingless bees and
discuss potential areas of future research.
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1. Introduction

Stingless bees (Meliponini) are highly social bees that are native to tropical and
sub-tropical ecosystems. With approximately 550 species known to science, stingless
bees comprise the largest and most diverse group of corbiculate bees (Euglossini, Apini,
Bombini, and Meliponini). They represent approximately 70% of all eusocial bee species [1],
and exhibit a dizzying diversity of morphologies, behaviors, and life histories. Their
geographic distribution spans five continents, and their colonies can range in size from
a few hundred to many thousands of individuals. Their nesting habits vary widely,
with some species nesting in tree cavities, others nesting inside active termite or ant
nests, and still others building subterranean nests up to three meters underground [2].
Humans have been in relationship with stingless bees for millennia through the practice
of stingless beekeeping, or meliponiculture [3–5]. In fact, stingless bee research often
draws from the local ecological knowledge that stingless beekeepers from indigenous
and rural communities have cultivated for generations. This includes information on the
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myriad medicinal uses for the resinous materials that beekeepers harvest from stingless
bee nests [6–9].

Stingless bees collect the sticky resins that plants secrete and use this material for a
variety of purposes. Most species use resin to build essential nest structures such as brood
comb, storage pots for honey and pollen, and various protective structures [2,10]. For
many species, resin is also an important part of nest defense; stingless bees use resin to
build barriers, trap predators, and kill would-be invaders [11–15]. For some species, the
presence of resin inside the nest space can also influence the physical properties of the bees
themselves and their microbial associates. Resin-derived compounds have been found to
enrich the cuticular chemical profiles of many stingless bee species [16], and resin may play
an important role in shaping the microbial communities associated with stingless bees and
their nests [17–20].

Despite the importance of resin use for stingless bee colony function, previous reviews
of this topic are lacking. In part, our understanding of resin use is limited because less than
half of all meliponine nests have been described by Western science [10]. Of these, only
a small number of species have been studied intensively, and few studies have focused
specifically on resin use (except see studies by the Leonhardt group, cited below). The
information we do have is difficult to generalize across species because stingless bees are
highly diverse, and resin use is a particularly variable trait. Lastly, as is the case for living
systems throughout the world, scientific literature represents only a limited portion of
human knowledge of stingless bees. Though there have been numerous recent efforts to
account for indigenous and local ecological knowledge of stingless bees [5,8,21], Western
science has historically excluded these knowledge systems, so a review of the existing
literature is limited in scope.

In spite of these challenges, this review brings together research from disparate fields
(e.g., natural history, chemical ecology, microbiology) to examine resin use in stingless
bees. Taken together, these studies highlight the centrality of resin use to stingless bee
colony function. In the following sections, we review existing literature on the role of resin
in stingless bee nest construction and defense, discuss resin foraging and resin handling
by stingless bees, and review studies on the effects of resin on bees’ cuticular chemical
profiles and their microbial associates. Finally, we point to gaps in knowledge that warrant
further study.

2. What Is Resin?

The chemistry, evolution, ecology, and ethnobotany of plant resins has been reviewed
by Langenheim [22]. Plants secrete resin from buds, wounds, fruits, and flowers to defend
themselves from herbivores and microorganisms, and, in some cases, to attract pollinators
and seed dispersers [22–25]. Resin can trap, immobilize, or deter predators, disinfect
wound sites, and help to guard against the proliferation of endophytic fungi [22]. This
versatile material is chemically complex. It consists of lipid-soluble mixtures of volatile and
non-volatile phenolic compounds (e.g., flavonoids, aromatic acids, and benzopyranes) and
terpenoids (e.g., mono-, di-, and sequiterpenes) that possess a variety of anti-inflammatory,
antifungal, antibacterial, and antiviral properties [22]. The specific chemical composition
of resin varies between plant species, and can even vary between individuals of the same
species [26]. Predators and pathogens are limited in their ability to evolve resistance to the
complex and variable mixture of bioactive compounds that resin contains.

A wide variety of animals—from humans to coatis to wood ants to bees—harvest resin
from plants and use this resource as a medicine, defense, and building material [22,25,27–29].
Many bee species use plant resins in nest construction; of these, the majority belong to the
families Megachilidae and Apidae. In fact, with the exception of bumblebees (Bombini),
almost all corbiculate bees harvest and make use of plant resins [30]. Resin use by honey
bees has received increasing attention in recent years (reviewed by Simone-Finstrom and
Spivak [31], Simone-Finstrom et al. [32], and Mountford-McAuley [33]). In stingless bees,
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resin use is even more extensive; many stingless bee species collect resin in copious amounts
and use it to support multiple aspects of colony function.

3. Resin Use by Stingless Bees
3.1. Nest Construction

Nest construction strategies vary widely across stingless bee species, with different
species building nests in different spaces. Some species build exposed nests adhered to
tree branches, others make use of existing cavities including hollow trees, termite nests, or
electric light posts, and others build subterranean nests deep underground [1,2,34]. Nest
construction materials range from fecal matter to soil to human-made products such as
wet paint and adhesives [10]. Though nest construction varies both across and within
species [35], almost all stingless bees use resin in some part of their nest.

Resin is an effective construction material for several reasons. Resins are malleable
when secreted but harden over time, so they can be shaped to build durable structures [22].
They are also water insoluble, so they can be used to create waterproof nest spaces and
water-tight storage pots [29,36]. Lastly, the antimicrobial properties that resins possess
may help regulate the microbial communities found inside stingless bee nests, preventing
food spoilage and pathogen attack [29]. In fact, the use of antimicrobial resins in nest
construction may have been central to the evolution of sociality in stingless bees.

For many insects and other organisms, managing microbial communities is a key part
of building and maintaining a successful nest. These efforts are particularly important
in tropical environments, where conditions favor the proliferation of microbes, and in
social insect societies, where the risk of disease transmission is increased due to large
numbers of genetically similar individuals living in close proximity [29,37]. Many insects
use antimicrobial compounds to prevent the spoilage of food and the spread of pathogens.
These compounds can be self-produced (e.g., many stinging insects apply antimicrobial
venom to their cuticle and nests [38,39]), symbiont-produced (e.g., beneficial microbes
secrete antimicrobial compounds that prevent the spoilage of food stores [40]), or envi-
ronmentally acquired (e.g., bees, ants, and other insects bring foreign materials—such as
antimicrobial resin—into their nests [28,41]). Since the use of foreign materials allows for
new forms of nest construction, this evolutionary adaptation is thought to have facilitated
a massive range expansion and diversification for bees [42]. Because resins help preserve
food stores and enable the construction and defense of resource-rich nest spaces, resin use,
specifically, is thought to have facilitated the social evolution of stingless bees in tropical
ecosystems [29] (p. 388) and the subsequent diversification of stingless bee species [43]. A
molecular phylogeny constructed by Rasmussen and Camargo [35] supports this hypothe-
sis, indicating that ancestral Trigona species likely used resin to build their nests. Today,
resin use persists as a crucial component of nest construction for stingless bees.

Most stingless bees mix resin with wax to produce cerumen, which is the material they
use to build brood combs, honey and pollen pots, and various other structures inside the
nest (except see Schwarzula sp. [44] and Trigona australis [45]) (Figure 1). Because it contains
both wax and resin, cerumen has sometimes been equated with honey bee propolis [46].
However, cerumen serves as the primary construction material within the stingless bee
hive, so it is actually closer in function to beeswax, though it differs from beeswax in several
important ways. Rather than forming part of a permanent comb structure, cerumen is
continuously reworked and recycled within the nest. The physical properties of cerumen
can vary. This is likely due, at least in part, to the variable proportions of wax and resin
the material contains. Cerumen can be soft, flexible, and light brown in color (possibly
containing more wax and less resin) or rigid, brittle, and dark brown or black in color
(possibly containing less wax and more resin) [47]. Although there has not yet been a
comparative study of cerumen characteristics across species, Roubik [10] noted that the
cerumen produced by certain small stingless bees (e.g., genera Hypotrigona, Trigonisca,
Schwarzula, and Plebeia) contains little to no resin, and is closer to pure wax. Schwarzula
sp. appear to use no resin at all, instead farming scale insects within the nest cavity and
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mixing their wax with self-produced wax to form a cerumen equivalent [44]. At the other
end of the spectrum, the resin content of cerumen in some species can surpass 40% [2]. The
factors that influence the amount of resin that different stingless bee species incorporate
in cerumen—and in other parts of the nest—are not yet understood. Blomquist et al. [48]
suggested that excluding resin may help some species cope with the high temperatures in
the spaces where they nest, but this hypothesis has yet to be confirmed.
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Figure 1. Nest structures such as brood comb and honey and pollen pots are made of cerumen, a
mixture of wax and resin. The batumen is a wall-like structure that surrounds and protects many
stingless bee nests; it is often made of resin. Photo by Miguel Angel Guzmán Díaz.

In addition to using resin to produce cerumen, stingless bees incorporate resin into
the nest environment in the form of deposit-resins, propolis, and geopropolis (defined
below), and in structures such as the nest entrance and batumen (Table 1). These terms
are often conflated in the literature, with propolis being used as a catch-all to describe any
resinous material inside the nest, aside from cerumen. However, it is useful to distinguish
between these terms, since a single nest may contain multiple types of resin-rich materials
and resin-based structures, each serving a different purpose.

Deposit-resins, also referred to as resin deposits or viscous propolis deposits [10,49,50],
are resin caches located on the nest floor or walls [51]. For some species, these caches serve
as temporary storage where resins accumulate until they can be incorporated into other nest
structures or used for defensive purposes (e.g., Trigona (Trigona) p. pallens [52]; Tetragonisca
angustula (Latreille) and Plebeia spp. [29,50]). Unlike most resin, which hardens upon contact
with air, deposit-resins remain viscous for a prolonged period of time. This property could
have to do with the resin source; deposit-resins may contain a greater proportion of floral
resins, which are slow to harden [53]. Alternatively, or additionally, the prolonged viscosity
of deposit-resins could result from chemical processing. While definitive research on
this topic is lacking, a comparative analysis of the morphology of head salivary glands
and intramandibular glands of bees of various ages suggests that Plebeia emerina workers
modify deposit-resins using secretions, which might help to maintain their viscosity [50].

Propolis refers to the resins that stingless bees bring back to the nest and mix with
small amounts of salivary gland secretions and, purportedly, wax [49]. Numerous studies
report that stingless bee propolis is more chemically diverse than honey bee propolis
(reviewed by Popova et al. [9]). As with honey bees, many stingless bee species use
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propolis to seal cracks and crevices throughout the nest. For colonies managed in box hives,
bees often seal cracks with a layer of propolis so thick that beekeepers must pry the lid
from the hive body in order to access the nest (Figure 2). Though most studies state that
propolis contains wax, the extent to which stingless bees incorporate wax in propolis is
unclear. The amount of wax in A. mellifera propolis is known to be highly variable, and
reports of wax content often lack precision [54]. In a detailed study of stingless bee resin
handling, Gastauer et al. [55] observed resin deposition in six bee species, but noted no
mixing of resin with wax. It is possible that propolis produced by difference species and
for different purposes could contain variable amounts of wax, and in some cases no wax at
all, but this has yet to be verified.

Table 1. Resin-rich materials and nest structures.

Cerumen A mixture of wax and resin that stingless bees use to build brood combs,
honey and pollen pots, and other nest structures

Deposit-resins Caches of resin stored by some species on the floor or walls of their nests
(also known as resin deposits or viscous propolis deposits)

Propolis Resin mixed with small amounts of salivary gland secretions and wax and
used to seal cracks and crevices throughout the nest

Geopropolis Resin mixed with soil, silt, and/or sand particles

Batumen A wall-like structure that often contains resin; many species build a
batumen to separate the inner nest environment from the external world

Nest entrances For some species, nest entrances consist of hardened resin tubes, which can
extend both inside and outside the nest
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Figure 2. (a) Even in wooden box hives, many colonies seal cracks with a thick layer of propolis.
(b) To access these colonies, beekeepers often use a hive tool to pry the lid from the hive body; excess
propolis is sometimes lost in this process.

Some stingless bees use geopropolis in place of pure propolis. Geopropolis is a
mixture of plant resins and soil. This mixture can consist of up to 90% soil, silt, and sand
particles [56]. It is less malleable than pure propolis, but serves a similar function inside
the nest [57]. Some studies use the terms propolis and geopropolis interchangeably, or
state that geopropolis is the propolis of stingless bees [58], but these are actually distinct
materials, differentiated by the presence or absence of soil [9].

Propolis and geopropolis are often incorporated into other nest structures such as the
nest entrance and batumen. Nest entrances commonly consist of hardened resin tubes,
which can extend both inside and outside the nest. Internally, these convoluted maze-like
structures are often designed to thwart enemy intruders [10]. The batumen, also called the
external involucrum [59], is a wall-like structure that many stingless bee species build to
separate the inner nest environment from the external world. This structure is usually made
of resin and can also include mud, seeds, wood, feces, and other materials [10]. Batumen
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construction is a variable trait among stingless bee species. Some species construct sturdy
batumen walls measuring up to 10 cm in thickness (e.g., Melipona spp. [10]); others build
no batumen at all (e.g., Hypotrigona and Trigonisca spp. [47]). When present, the batumen
can take many forms. In one comparative study of stingless bee nest architecture, Wille and
Michener [47] described several batumen types, and noted their presence or absence for 145
stingless bee species found in Costa Rica. According to this study, exposed batumen is a hard
outer layer that surrounds and protects exposed or partially exposed nests. Batumen plates
are sturdy plates that surround and protect nests within a cavity, allowing the bees to adjust
the cavity size to suit the needs of the colony (e.g., genera Melipona and Cephalotrigona;
Meliponula bocandei) [10]. Lining batumen is a thin, continuous resinous lining, generally
less than 2 mm in thickness, similar to the so-called propolis envelope that A. mellifera
colonies use to coat the rough inner surfaces of the hollow tree cavities where they nest [60].
Laminate batumen consists of multiple layered sheets. The channels found in laminate
batumen allow bees to move between layers, and may also facilitate air flow and water
evaporation [10,47]. In addition to providing a protective shield, these various types of
batumen may serve to waterproof the nest cavity and help control fungal growth [47].

3.2. Defense

Bees contend with a variety of predators and parasites. Some examples include lizards,
spiders, ants, wasps, assassin bugs, beetles, phorid flies, and parasitic stingless bees from
the genus Lestrimelitta [11,29]. Since stingless bees are unable to sting, they rely on a variety
of other strategies to defend their nests. Defensive strategies vary across species and
include such behaviors as hiding, building cryptic nests, biting, and burrowing in hair.
Stingless bees also employ resin in a variety of ways to deter, trap, and kill predators and
parasites. Here, we categorize resin-based defenses in two groups: (1) structural defenses,
where bees build resinous structures or add fresh resin to existing structures to prevent
invasion, and (2) direct defenses, where bees apply resin to the bodies of their enemies or
to their own bodies to defend their nests.

3.2.1. Structural Defenses

Many stingless bee species (e.g., genera Lepidotrigona, Scaura, Tetragona, Tetragonula,
and Trigonisca) fortify their nest entrances with a barrier of fresh resin droplets [10]
(Figure 3). This sticky material serves as a defense that is both mechanical and chemi-
cal in nature (reviewed by Leonhardt [16]). The terpenoid compounds commonly found in
resin repel many predators [10,14,22,61]. The predators (largely ants) that do attempt to
advance across the resin droplets often become trapped in the sticky material [62], and are
only able to breech the barrier when they use the bodies of other ants to bridge the so-called
resin “moat” [2,63,64]. Over time, the resin droplets harden, their adhesive and repellant
properties likely diminish, and fresh stores must be applied [62,65]. For some species
(e.g., Trigona cilipes, Tetragonilla collina, and related species), the continuous application of
fresh resin results in long, slender entrance tubes [10]. In the case of one remarkable species,
nest entrance resin produces a dazzling architectural effect. The minute, tear-drinking
stingless bee Pariotrigona klossi (Schwarz) builds a nest entrance consisting of dozens of
tubelets that branch like coral. Each tubelet is adorned with strings of clear resin beads
which together resemble the “quartz pendants of a chandelier” [63]. For invading ants, this
resinous terrain is difficult to navigate when hardened, likely impassable when fresh, and
may also be visually disorienting, further deterring ant attack.
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Figure 3. Many stingless bee species surround their nest entrances with (a) a barrier of resin
droplets (b) or a continuous layer of resin to repel and trap would-be intruders. Photos by Héctor
Morales Urbina.

Some stingless bees also use resin and cerumen pieces to barricade the nest entrance at
night, or when disturbed (e.g., Meliplebeia tanganyilcae medionigra (Cockerell) and Plebeiella
lendliana (Fries) [10,66]. Some species (e.g., Melipona panamica, Melipona flavolineata, and
other Melipona species) even keep a designated resin ball on hand for this purpose [12].
When the colony is under attack, the bees roll the hardened resin ball into place and use
fresh resin to fasten it to the entrance to prevent invaders from breaching the nest. Over
time, discarded resin balls accumulate near the internal entrances of these nests [10,12].

Stingless bees that live in active termite or ant nests often surround their cavities with
a full defensive resin barrier. This allows them to inhabit otherwise hostile environments.
For instance, when some myrmecophilous stingless bees (e.g., Trigona moorei) initiate a nest,
they begin by building a provisional batumen structure to establish ant-free spaces. They
then expand this resinous shield as they burrow deeper into the ants’ nest [67]. A similar
behavior can be seen in Scaura latitarsus; these bees form their nest by excavating a cavity
in an active termite nest and lining that cavity with a continuous batumen shell [29].

3.2.2. Direct Defenses

In addition to using resin in nest structures to prevent invasion, many species also
apply resin directly to perceived threats. This behavior has been referred to as “resin daub-
ing” (see detailed description of Austroplebeia australis nest defense by Halcroft et al. [11]),
and it can lead to the immobilization or total mummification of predators [13]. When
certain species sense a threat, defending bees harvest resin and cerumen from deposit-
resins and/or other parts of the nest, carrying these materials in their mandibles and
corbiculae [11]. They then attack would-be invaders outside the nest (e.g., plastering resin
to human hair) [2], or trap and mummify intruders within the nest (e.g., immobilizing
parasitic fly pupae, ants, and various types of beetles) [2,13,14,68,69]. Curiously, some
stingless bee species also use “resin pellets” to kill virgin queens from their own colonies
when these are in excess [70].

Stingless bees do not just apply resin to the bodies of intruders; some species apply
resin to their own bodies as well (see also Section 3.5: Cuticular chemical profile). Several
stingless bee species have been observed leaving the nest with small amounts of both
viscous and hardened resin in their corbiculae [71,72]. While soft, sticky resin can be used
to entangle would-be invaders, the reason for carrying hardened resin is not entirely clear.
In Melipona subnitida, Harano et al. [72] observed that 11% of worker bees leaving the
nest carried resin in their corbiculae under normal (i.e., undisturbed) conditions. About
half of these carried soft, sticky resin loads, while the other half carried dry, hardened



Insects 2021, 12, 719 8 of 20

resin. When the nest was disturbed, the number of worker bees leaving the nest with
resin increased to 90%, with a majority (80%) of these carrying hardened resin. Both resin
bearers and nectar foragers were paint-marked, and their movements were monitored. The
short flight duration for resin bearers suggested that they were circling the nest, rather than
relocating resources to an alternative nest site in response to predator attack. The authors
speculated that, because of its repellant properties, hardened resin may serve as a type of
armor, deterring would-be predators from eating the resin bearers. Alternatively, the resin
bearers may sacrifice themselves for the benefit of the colony; after eating one unpalatable
resin bearer, a predator might be dissuaded from further predation. This is not the first
account of stingless bees carrying visible amounts of resin on their bodies for a purpose
other than resin-daubing. The cuticle of Tetragonula carbonaria is covered with resin, so
that the whole body is sticky; a thin layer of resin has been observed on the legs, head,
and thorax of Tetragonsica angustula, and Trigona (Tetragonula) melanocephala nectar foragers
have been observed leaving the nest with resin in their corbiculae [71,73–75]. However,
the study conducted by Harano et al. [72] provides the first detailed observation of bees
carrying hardened resin on their bodies as part of an apparent mobilized defense, taking a
piece of their nest with them for individual or collective protection.

Resin-based defenses can be triggered by both visual stimulation and chemical cues.
In Melipona flavolineata (Friese), the head secretions and mandibular gland extract of the
robber bee Lestrimelitta limao (Smith) elicited increased resin transport and the barricading
of the nest entrance tube with hardened resin balls [12]. In Tetragonilla collina, resin foraging
activity increased after nest entrances were damaged, and doubled after ant attack; worker
bees used resin to elongate their entrance tubes and fortify them with a barrier of resin
droplets [62].

Resins from different plant species are effective against different predators and
pathogens, and stingless bees may select resins based on their functional properties. This
means that access to diverse resin sources is important for stingless bee defense [15]. It is
not yet clear whether stingless bees alter resin resource preferences in response to pressure
from specific threats (i.e., collecting resins that are particularly effective in repelling small
hive beetles in response to a small hive beetle attack). It is also unclear whether stingless
bees use resin as a defense against bacterial or fungal pathogens (see also Section 3.6: Mi-
crobiota Associated with Stingless Bees). In A. mellifera, the presence of a propolis envelope
has been found to decrease the severity of multiple brood diseases [32]. Furthermore,
colonies increase resin collection when challenged with Ascosphaera apis, the causative
agent of the larval disease chalkbrood. This suggests that honey bee colonies use resin
to self-medicate in response to certain pathogens [32,76]. Similar behaviors may occur in
stingless bees, and numerous studies indicate that stingless bee resin inhibits the growth of
multiple microbes (reviewed by Bankova and Popova [77]). However, with the exception
of the bacterium Lysinibacillus sphaericus, which causes broods to degenerate, there are no
known examples of pathogenic microbes in stingless bee colonies (Heard 2016; as cited
in [16]). Consequently, the antimicrobial activity of resin is generally tested against human
pathogens, so its effect on microbes associated with stingless bee colonies is unknown.

3.3. Resin Foraging

Although resin is essential to many aspects of stingless bee nest construction and
defense, little is known about how stingless bees obtain this vital resource. Some informa-
tion on resin foraging can be gleaned from studies on general foraging behavior [78–81],
but there are few studies that examine resin foraging in stingless bees specifically (except
see [24,62,65]).

Resin foragers make up <10% of the foraging force for many species (e.g., Tetragonula
minangkabau, Heterotrigona itama, Trigonella moorei, Melipona bicolor bicolor, Trigona sapi-
ens, and Trigona hockingsi) [24,82,83], and are often outnumbered by pollen foragers
(e.g., Melipona bicolor schencki (Gribodo), Trigona iridipennis (Smith), and Melipona fascic-
ulata (Smith)) [78,81,84]. However, some species collect copious amounts of resin, with
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resin foragers outnumbering pollen foragers (e.g., Melipona asilvai [79]). For Tetragonula car-
bonaria, resin foragers can account for up to 50% of the foraging force [85]. For Tetragonilla
collina, up to 90% of foragers have been observed returning with resin, likely during periods
of nest construction [62]. This is in stark contrast to A. mellifera, where resin foragers make
up only 1–3% of the foraging force [33].

A variety of environmental (e.g., temperature, light intensity, humidity, resource
availability) and colony (e.g., population size, developmental stage) conditions influence
resin foraging frequency at the colony level, and these factors have different effects on
different species [86]. For example, for some species (e.g., Trigona iridipennis, Melipona asilvai,
Melipona bicolor schencki, and Melipona colimana) resin foraging activity fluctuates seasonally,
but for other species (e.g., Melipona fasciculata), resin foraging is constant throughout the
year [78,79,81,84,87]. Seasonal changes in resin collection could be related to many variables,
such as resource availability, fluctuating pathogen pressure, and colony developmental
stage [81], but these are largely unexplored. For some species (e.g., Melipona bicolor bicolor),
resin foraging increases with colony strength (as determined by comb diameter) [83]. For
others, resin collection may be intense in the early stages of colony development and then
taper off once the structural components of the nest are established [62]. For species that use
resin-daubing or resin barriers as a form of defense, pathogen pressure can lead to increased
resin foraging [62]. Finally, there is some evidence that certain species (e.g., Plebeia emerina)
hoard resin stores, possibly in preparation for periods of resin scarcity, or in preparation
for increased predator or parasite pressure [49].

Resin collection is primarily carried out by worker bees [88]. Curiously, Boongird and
Michener [34] observed resin and pollen loads on the hind tibiae of male stingless bees from
several species in Thailand (Tetragonula fuscobalteata (Cameron), Tetragonula (Tetragonula)
pagdeni (Schwarz), Tetragonula collina (Smith), and Heterotrigona (Tetrigona) apicalis (Smith)).
It is unclear whether and how resin-bearing males contribute to colony function, but since
they were not seen depositing their loads in storage pots or on other nest structures, the
authors concluded that male bees do not contribute significantly to resin foraging.

At an individual level, it is unclear what factors drive a forager to choose resin
foraging over nectar or pollen foraging. In Melipona beecheii, Biesmeijer and Tóth [89]
found that half of observed foragers specialized in just one resource throughout their
foraging career, and the other half alternated between pollen, nectar, resin, and mud [89].
This result is consistent with Inoue et al. [82], who examined foraging behavior in three
Sumatran stingless bee species (Trigona (Tetragonula) minangkabau (Sakagami and Inoue),
Trigona (Heterotrigona) itama (Cockerell), and Trigona (Trigonella) moorei (Schwarz)) and
found approximately 50% of foragers to be one-material specialists. In A. mellifera, foragers
initiate resin collection when they detect a need for it inside the nest (e.g., by sensing a
rough surface, crevice, or draft of cool air), and use the waggle dance to recruit additional
resin foragers [90]. It is unclear whether stingless bees respond to similar stimuli, and
whether and how they recruit other bees to collect resin.

When foraging, stingless bees use both visual and olfactory cues to discover and
distinguish between resin sources. Specifically, they home in on particular combinations
of volatile mono- and sesquiterpenes [26]. This sensory capacity allows stingless bees to
discover new resin sources quickly, sometimes locating artificially induced tree wounds
within a matter of minutes [65]. When certain resin sources are highly preferred, as occurs
in the seed-dispersal mutualism between the Eucalypt tree Corymbia torelliana and the
stingless bee Tetragonula carbonaria, even minor experimental modifications to a resin
odor (i.e., changes in single mono- or sesquiterpenes) resulted in reduced visitation. This
demonstrates that stingless bees are capable of learning complex scents and responding to
multiple compounds within the resin bouquet, and may be more selective for resin sources
than floral sources [16,23].

After locating a resin source, stingless bees use their mandibles to gather resin from
plant buds, leaves, flowers, or bark. They then use the tarsi and basitarsi on their front and
middle legs to load this sticky material onto their corbiculae [55,88] (see Supplementary
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Materials). They repeat this process until they have amassed a sizable resin load, which
they carry back to the nest. Some stingless bees induce plants to secrete resin by biting plant
tissues and collecting the resin that seeps from the resulting wound [47,91]. Howard [65]
reported that foragers of certain species can milk an active resin source for days or weeks
at a time. In fact, since resin foraging can damage tissues, some stingless bees (e.g., Trigona
fuscipennis and Trigona nigerrima) have been considered pests for agricultural crops [92].
Many stingless bee species collect resin in groups and vigorously defend preferred resin
resources. Some species have been observed fighting to the death over resin, stealing ceru-
men from other nests, or harvesting materials from abandoned nests [62,65]. Howard [65]
suggested that these behaviors indicate that resin is a precious resource for many stingless
bee species, and that resin resource availability is likely a limiting factor for colony growth.

Stingless bees demonstrate clear preferences for some resin-producing plants, and
neglect others [15,24,62]. The factors that determine stingless bees’ resin preferences are
unknown. As discussed, bees may target certain plants based on the potency of the antimi-
crobial or repellent properties their resins possess [15]. Morphological parameters likely
also dictate the resources that each species can access. Some minute species (e.g., Trigona
jatiformis) seek out resin sources that are too small to be seen with the naked eye; the
resin they collect is only identifiable once it has been accumulated in the bees’ corbicu-
lae [65]. Larger bees likely neglect minute resin sources, but may be more likely to use their
mandibles to induce plant injury to encourage resin flow. Smaller bees often take advantage
of the resin sources tapped by larger species, either collecting alongside the larger bees,
attempting to supplant them, or waiting until the larger bees have abandoned the resin
source [65]. So far, these behaviors have been examined through the lens of competition,
but the interdependence implicit in these interactions is both fascinating and noteworthy.
The fact that certain bee species depend on other bee species for access to resin resources
could have implications for stingless bee conservation.

3.4. Resin Handling

Once resin foragers return to the hive, they unload resin from their corbiculae on
their own, or with the help of another worker [50,55,88]. The often brightly colored resin
loads are mixed with wax to form cerumen, or incorporated into other nest structures.
The terpenoid compounds in resin become oxidized over time, causing them to darken
in color [93]. Unloading and processing resin is a laborious task; bees must be careful
to manipulate this material without getting stuck. In one study, it took Plebeia lucii and
Frieseomelitta varia foragers seven to thirteen minutes to unload resin back at the hive. Most
of this time was spent removing resin residue from their tarsi [55].

How do stingless bees handle the sticky substance that they use to immobilize and
kill their enemies, without harming themselves? Stingless bee body parts do not appear to
possess inherently anti-adhesive properties. Gastauer et al. [94] used electron microscopy
and adhesive force experiments to compare the mandibles of stingless bee Tetragonisca
angustula and the trochanter of invader ant Camponotus sericeiventris. They determined
that resin actually adheres more to the smooth bee mandible than it does to the scaled
ant trochanter. This suggests that stingless bees must utilize a lubricating substance
(e.g., secretions or nectar) to reduce adhesion of resin to mandibles.

Some studies suggest that the ability to produce lubricating substances and avoid
adhesive hazards is associated with bee age and physiological development. In T. angustula,
Plebeia emerina, and Trigona (Hypotrigona) grihodoi, resin handling is a task reserved for
advanced-age workers [49,88,95]. An examination of the head salivary and intramandibular
gland morphology of P. emerina suggested that when workers reach a certain developmental
stage, they begin to produce secretions that help maintain propolis viscosity and allow
the bees to handle this material without getting stuck [49]. The development of the head
salivary and intramandibular glands late in life does not occur in all stingless bee species,
and may occur only in bees that maintain viscous propolis stores or deposit resins within
the hive.
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There is some evidence for a genetic basis for “propolis preparation”—presumably
resin handling—in Melipona quadrifasciata [96]. In one study, young bees (1–5 days old) from
ten different source colonies were tagged and introduced into three different observation
hives, with each observation hive containing bees from all ten source colonies. Their
activities were observed for 35 days. Resin foraging was similar across source colonies, but
bees from certain source colonies were significantly more prone to participate in propolis
preparation [96]. This study was limited in that observation colonies were made up of
workers from a single age cohort. Stingless bee workers demonstrate plasticity, with
workers changing tasks based on the needs of the colony. In several species, resin handling
occurs late in life, so the lack of older bees in observation hives may have influenced
the resin handling behavior of the young bees in this experiment. If this is the case, the
higher incidence of propolis preparation observed in bees from certain source colonies may
indicate higher levels of plasticity, and not necessarily a genetic predisposition to resin
handling, but this possibility warrants further investigation.

3.5. Resin Shapes the Cuticular Chemical Profile of Some Stingless Bees

For some stingless bee species, the presence of resin inside the nest space can also
influence the physical properties of the bees themselves. The outer layer of the insect
cuticle is made up of lipid compounds that serve a variety of functions. These compounds
help protect insects from predators, desiccation, and abrasion, and they also play a role
in nestmate recognition and other forms of communication [97]. The so-called cuticular
chemical profile consists of compounds that are polar (e.g., alcohols, esters, ketones, aldehy-
des, and oxidized terpenes) and non-polar (e.g., n-alkanes, alkenes, and methyl-branched
alkanes) [98]. These compounds can be self-produced or environmentally acquired [74].
Some stingless bee species acquire certain cuticular compounds (e.g., terpenoids, such as
such as mono-, sesqui- and triterpenes) from resin [93,98–101].

Among social insects, stingless bees are the only group known to enrich their cuticular
chemical profile with resin-derived compounds [16,74]. To our knowledge, this has not been
examined in A. mellifera. This trait appears to have emerged separately in multiple stingless
bee lineages. It occurs in more evolutionarily derived genera and is generally absent
from more basal genera (e.g., Melipona and Plebeia), with at least one exception [102,103].
Despite overlap in foraging behavior (i.e., different species often utilize many of the same
resin sources) the uptake of resin-derived compounds results in species-specific terpenoid
profiles that are consistent across diverse geographic regions [65,98,99,103,104]. The overlap
between the nest entrance chemical profile and the cuticular chemical profile of multiple
stingless bee species suggests that these compounds are most likely derived from the resin
present in the nest environment [99,104]. Leonhardt et al. [104] suggested that some kind
of filter mechanism must enable the uptake of certain compounds while excluding others.
Resin collected from the corbiculae of stingless bees is not chemically different from resin
collected by researchers directly at resin wounds. Thus, if resin is modified, this must occur
within the hive [104]. Different stingless bee species may possess different enzymes or
microbial associates that alter the incoming resins, resulting in the species-specific selective
uptake of terpenoid compounds. Additionally, or alternatively, genetically determined
species-specific differences in cuticular chemistry could determine which compounds ‘bind’
to the bee [104]. Further research is needed to understand how and why certain resin-
derived compounds enrich the cuticular chemical profile of certain stingless bee species,
and to further elucidate the implications this has for colony function.

Recent studies have demonstrated that a resin-enriched cuticular chemical profile can
help protect bees from predators and may reduce interspecific aggression, facilitating nest
aggregations. Resin confers repellant properties to the cuticle of some stingless bee species,
adding to the effects of the genetically determined repellent compounds that the bees
produce themselves [74]. The repellent properties of cuticular terpenoids were observed
in a study that compared two species—Tetragonula carbonaria, a bee that collects extensive
amounts of resin, whose cuticular compounds are 50% resin-derived, and Austroplebeia
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australis, a bee that collects minimal resin, whose cuticular compounds are just 1% resin-
derived. In behavioral assays, high-resin T. carbonaria bees repelled predator ants, but
low-resin A. australis did not. Washing both bee species diminished the ants’ preference,
suggesting that repellant properties can be attributed to the resin-derived compounds
found on the bees’ cuticle [74].

Resin-derived terpenes present in the cuticle might also help facilitate nest aggre-
gations. These compounds may mask chemical differences between bee species, con-
tributing to reduced interspecific aggression [105]. One study compared aggressive be-
haviors between bees from the same nest aggregation, different aggregations, and non-
aggregated nests, and found that aggression was reduced between bees from associated
colonies [100]. The authors hypothesized that the presence of resin-derived terpenoids,
specifically sesquiterpenes, mediates reduced aggression. They experimentally manipu-
lated the chemical profile of Tetragonula melanocephala, a stingless bee whose cuticle lacks
sesquiterpenes, and found that applying either pure sesquiterpenes or an extract derived
from the sesquiterpene-rich cuticle of Tetragonula collina (an unusually peaceable bee) to
non-nestmates resulted in decreased aggression. Based on these results, the authors sug-
gested that sesquiterpenes may facilitate nesting aggregations in tropical environments,
but more research is needed to determine the precise role that resin-derived compounds
play in mediating complex inter- and intraspecies interactions.

While it is clear that resin-derived compounds contribute to the cuticular chemical
profile of many stingless bee species, and this profile is thought to influence nestmate
recognition [106,107], the impact of resin on nestmate recognition is less clear. When
Jones et al. [75] exposed Tetragonisca angustula workers to extracts made from nestmate and
non-nestmate resin or wax, all treatments resulted in decreased acceptance rates, regardless
of the material source. In the same study, Jones et al. [75] transferred resin stores from
donor colonies to recipient colonies to determine whether bees use in-hive resin stores as a
reference for recognition cues. They observed decreased acceptance of nestmates in donor
colonies after interference, but no change in non-nestmate acceptance by donors. They
also observed increased acceptance of non-nestmates in recipient colonies, and general
guard confusion. Based on these results, the authors concluded that wax and resin do not
contribute to nestmate recognition in T. angustula. However, it is possible that the artificial
transfer of resin-derived compounds (i.e., exposing bees to resin-enriched hexane extract
rather than raw wax or resin) impacted these results. Similarly, conducting behavioral
assays only a short time after transferring resin stores from donor colonies to recipient
colonies could have led to increased defensive behavior, muddling the nestmate recognition
findings. Further studies are needed to determine the potential relationship between nest
materials and nestmate recognition in stingless bees.

3.6. Microbiota Associated with Stingless Bees

There is growing interest in sequencing and understanding the functional significance
of the microbial communities associated with stingless bees and their nests [108–113]. The
antimicrobial activity of stingless bee resin has been studied extensively in a human health
context [9,114–118], and much stingless bee research mentions, in passing, that resin likely
plays a role in shaping the microbiota inside the nest. However, despite the demonstrated
importance of bacteria and fungi to stingless bee colony function [17,18,119], and the
assumed importance of resin in maintaining microbial balance [9,29], whether and how
resin modulates the microbial communities associated with stingless bees and their nest
spaces is understudied.

Recent studies provide some insight into these complex interactions. In A. mellifera
colonies, researchers have found that the presence of a propolis envelope stabilizes the mi-
crobial communities found in bees’ guts and on the cuticle of their mouthparts. The propolis
envelope is thought to support the proliferation of putatively beneficial bacterial associates,
and reduce the expression of pathogenic or opportunistic microbes [19,20]. However, the
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role of resin in shaping the microbiota associated with stingless bees (e.g., cuticular, gut,
whole-bee, and nest microbiomes) is less clear.

One recent study compared the bacterial communities associated with the interior
nest surfaces of four stingless bee species (Frieseomelitta varia, Melipona quadrifasciata, Tetrag-
onisca angustula, and Trigona spinipes) [113]. Differences in these bacterial communities
were attributed, in part, to the diverse materials that each species uses in nest construction
(e.g., clay, resin, wax, and feces). Unfortunately, this study did not include a detailed
characterization of nest architecture for the species in question, and it is unclear which
surfaces were swabbed for bacteria. Nevertheless, this study points toward the impor-
tance of understanding the complex microbial ecosystems that exist within the stingless
bee nest, and the broader role of nest construction materials, such as resin, in shaping
those ecosystems.

Leonhardt and Kaltenpoth [110] used sequencing to characterize the microbiota as-
sociated with three sympatric Australian stingless bee species, two that incorporate large
quantities of resin in their nest (Tetragonula carbonaria and Trigona hockingsii), and one that
uses almost no resin (Austroplebeia australis). DNA was extracted from six worker bees
from ten different colonies, and whole-bee microbiomes were compared. Species-specific
differences in microbial communities were observed. However, more species must be
sampled to determine whether these changes can be attributed to the presence or absence
of resin. Moreover, since many additional species-specific factors (e.g., genotype, diet,
external environment, and nest construction materials) can influence microbial commu-
nities [113,120], within species comparisons (i.e., comparing the microbial communities
associated with high-resin colonies vs. low-resin colonies, as occurred in A. mellifera studies)
may be instructive.

Another study examined the rate of mold growth on the bodies of some of the same
high-resin (T. carbonaria) and low-resin (A. australis) bees, to determine whether a resin-
rich environment confers antimicrobial properties to the stingless bee cuticle [74]. In
this study, the rate of mold growth was not found to differ between species. However,
it is possible that resin-poor A. australis has evolved compensatory physiological traits
(e.g., increased secretion of self-produced antimicrobials) to replace resin resources, as
proposed by Roubik [29]. If this is the case, the cuticle of both the resin-rich and resin-poor
species should possess antimicrobial compounds that inhibit the growth of mold, with
the difference being the source (self-produced versus environmentally acquired). Further
studies are needed to elucidate the impact of resin on the bacteria and fungi naturally
present on the stingless bee cuticle and within the stingless bee nest, and to determine how
the presence of resin relates to self-produced antimicrobial compounds.

Perhaps the most compelling example of the importance of microbial associates to
colony function is the mutualism between the stingless bee Scaptotrigona depilis and a
fungus of the genus Zygosaccharomyces [17,18]. This fungus exists in a dormant state in
the cerumen of S. depilis colonies. When it comes into contact with the liquid larval food
found inside the brood cells, it enters a growth phase, extending visible white mycelia from
the brood cell wall towards the larval food supply. Originally thought to be pathogenic,
these mycelia actually produce steroid precursors that S. depilis larvae require for pupa-
tion [17]. Since resin is a key ingredient in cerumen and since it inhibits the growth of
some but not all microbes, it is likely that the presence of resin helps support the growth
of Zygosaccharomyces. This mutualism is just one visible example of countless probable
stingless bee-microbe associations that could prove essential to colony function.

Though further research is needed, this evidence, alongside recent discoveries demon-
strating that propolis helps shape the gut and mouthpart microbiomes of A. mellifera,
suggests that resin may help stabilize and/or support microbial communities that could
prove essential to stingless bee colony function.
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4. Future Studies

Existing research demonstrates that resin use is vital to stingless bee colony function.
Resin is essential to nest construction and defense, and many species invest substantial
effort in resin foraging and handling. Resin-derived compounds influence the cuticular
chemical profiles of many stingless bee species, and resin likely shapes the microbial
communities associated with stingless bees and their nests. Further research is needed in
each of these individual areas, and at their intersections.

What are the causes and consequences of different levels of resin use by different
species, and by different colonies of the same species? Some stingless bees invest vast
amounts of energy in resin collection, some collect only the minimum necessary to build
nest structures, and there is at least one example of a stingless bee that does not use resin at
all [44]. Differences in resin use can occur even when many major variables (e.g., species,
location, and hive structure) remain constant. Roubik [10] attributed individual variation
in nest architecture—including the thickness of the resinous batumen surrounding the
nest—to three possible causes: (1) nest age, (2) bee genetics, and (3) micro-environment
(e.g., predators, parasites, symbionts, rain, wind, and sun). Further studies are needed to
evaluate the effects of each of these factors on resin use, and to determine how differences in
resin use impact colony function, cuticular chemical profile, and the microbial communities
associated with stingless bees. For example, if resin contributes significantly to colony
function, do low-resin species or low-resin colonies compensate physiologically for the
lack of resin in their space (e.g., through increased antimicrobial secretions or increased
diversification of self-produced cuticular chemical compounds) [29]? More broadly, might
examining tradeoffs between the secretion of antimicrobial compounds and the collection
of antimicrobial materials help inform our understanding of the evolution of social insects?
For example, is it possible that intensive resin use emerged in stingless bees following
the loss of the stinging apparatus, and the antimicrobial venom that may have accompa-
nied it [38]? Mixing secreted and collected materials for nest construction is common in
invertebrates, but the selective pressures that favor secretion versus collection are poorly
understood, and have not been examined in stingless bees [121].

How does the presence and prevalence of resin in the nest space impact other aspects
of the stingless bee nest ecosystem and colony function? Since resin is present throughout
the nest in the form of cerumen and is in direct contact with both brood and food stores, it
is possible that resin-derived compounds may leech into stingless bee honey and pollen,
enriching these food sources with phytochemicals [16]. Honey produced by A. mellifera
has been found to contain phytochemicals that likely originate from propolis [36]. Does
resin also contribute phytochemicals to stingless bee honey? Does the amount of resin
that bees incorporate in the nest environment affect the quantity or type of resin-derived
compounds found in the honey? If resin-derived phytochemicals are an important part
of the stingless bee diet, then how might certain beekeeping practices (e.g., introducing
sugar syrup or A. mellifera honey in periods of dearth, or removing excess resin stores from
a colony to facilitate colony management) impact stingless bee health?

As previously mentioned, the microbiota associated with stingless bees and their nests
is a vast and fascinating area, the advancement of which could inform questions relating
to the chemical ecology of stingless bees, among other aspects of colony function. For
example, do the resin-derived compounds that comprise the cuticular chemical profiles
of some stingless bee species impact their cuticular microbiome? How does this affect the
ability of the cuticular chemical profile to repel predators, reduce aggression, etc.? Does
the cuticular microbiome, in turn, influence the cuticular chemical profile? Does resin help
shape the microbiota associated with stingless bees and their nests? How does this impact
colony function?

There are interesting points of overlap—and important differences—in resin use by
honey bees and stingless bees. These points of comparison could inform future research in
both study systems. For instance, does resin use constitute a social immunity mechanism
in stingless bees [28]? Does resin use inhibit the growth of microbial pathogens within
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the stingless bee nest space? Does the presence of resin help modulate the stingless bee
immune system, as occurs in A. mellifera? If so, how does immune expression compare in
high-resin and low-resin species? Future stingless bee research could draw from recent
honey bee research [31,32] to investigate these questions. In turn, honey bee research could
draw from stingless bee research to investigate, for example, whether A. mellifera foragers
use olfactory cues to locate resin sources, as occurs in stingless bees, and whether the
presence of a propolis envelope influences the cuticular chemical profile of A. mellifera.

Underlying all of these questions is the need for more research on the natural history
of stingless bees. Many of the predominant natural history studies in this field date back
over half a century and cover a relatively small number of species. While informative,
these studies cannot be considered representative because stingless bees are so diverse,
and resin use is such a variable trait. More research is needed to add further breadth to
the foundational studies that figure so strongly into current conceptions of resin use in
stingless bees. In this pursuit, and in other areas of future research, there is an impor-
tant opportunity to partner with and follow the leadership of the stingless beekeepers,
indigenous communities, and stewards of local ecological knowledge that have been in
relationship with stingless bees for generations.

5. Conclusions

Understanding the role of resin use in stingless bee colony function grows increasingly
urgent as changes in beekeeping and land use practices occur, potentially diminishing
stingless bees’ ability to incorporate resin into their nest environment [3,4,15]. In recent
decades, the massification of beekeeping operations and the transportation of stingless
bee colonies to monocrop fields for pollination services has expanded [122], and—among
other deleterious effects—these changes could limit bees’ access to diverse resin sources,
potentially inhibiting nest construction and defense and influencing their cuticular chemical
profiles [123] and microbial associates [124]. Bees are already known to substitute resin for
human-made products such as wet paint, adhesives, and asphalt [10,125]. As the role of
resin likely extends beyond its adhesive properties, the extent to which such substitutions—
potentially driven by resin resource scarcity—impact stingless bee colony function in the
long term is cause for concern.

A deeper understanding of the importance of resin use for stingless bee colony func-
tion could lend support to the conservation of resin-rich non-floral resources that might
otherwise be overlooked [43]. Since bees depend on diverse resin sources to carry out a
variety of functions, targeted conservation efforts could bolster stingless bees’ ability to
defend against pathogens, parasites, and predators, and support colony health in ways
we cannot yet anticipate [15]. In this context, it is crucial to review and expand upon the
many varied studies of resin use in stingless bees so we can understand and appreciate its
importance for colony function and stingless bee health.
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