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Simple Summary: Tenebrio molitor is a pest of stored grain, causing considerable damage. However,
its easy maintenance makes this species also interesting as a food source and as a model for physio-
logical, immunological, ecological and evolutionary studies. We used light and transmission electron
microscopy to study the morphology of circulating haemocytes. Prohaemocytes, plasmatocytes, gran-
ular cells and oenocytoids were described based on their morphological features and staining affinity.
Results are a baseline for further study aimed to clarify the structure and function of haemocytes
in insects.

Abstract: The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated
at molecular and physiological levels, but information on morphological and functional characteris-
tics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated
overview of the morphology of circulating immune cells from mealworm beetle adults, using light
and transmission electron microscopy. Based on their affinities for May–Grünwald Giemsa stain,
haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions
allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular
cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circu-
lating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation,
turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical
tests revealed differences in the distribution of carbohydrates among cell types underling the great
plasticity of the immune response and the direct involvement of circulating immune cells in the
resource allocation. In addition, our results provide a detailed morphological description of vesicle
trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability
of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.

Keywords: apoptosis; autophagy; electron microscopy; exosome; haemocyte morphology; insect
immunity; mitosis; vesicular trafficking

1. Introduction

Insects rely on physical barriers, such as the cuticle, as well as cellular and humoral im-
mune responses to counteract parasites and pathogens in their natural environments [1,2].
Cellular defences involve haemocytes, which play a crucial role in the pathogen clearance
by phagocytosis, nodule formation, encapsulation and cytotoxic reactions [3–6]. Haemocyte
types have mostly been characterised referring to their morphological, histochemical and
functional features [7] or based on monoclonal antibodies and genetic markers [8]. The most
common morphological types are prohemocytes, granular cells, plasmatocytes, spherule
cells and oenocytoids, occurring in species belonging to diverse insect orders [5,9–13]). Hu-
moral effectors are an efficient part of the innate immune response and include production
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of antimicrobial peptides, activation of prophenoloxidase (proPO) and production of reac-
tive oxygen species [11,14]. These effectors cooperate in species-specific pathways activated
to lead the recognition and neutralisation of pathogens [15]. In Drosophila melanogaster,
phagocytic plasmatocytes, PO-containing crystal cells and lamellocytes are involved in
parasite encapsulation [4,16,17]. In Lepidoptera, phagocytic granulocytes, capsule-forming
plasmatocytes, spherule cells and PO-containing oenocytoids have been identified [4].

Insects such as Diptera, Lepidoptera and Coleoptera are largely used as alternative
models to vertebrates in physiological, ecological and toxicological studies because of
the absence of ethical restriction, short lifecycle and easy maintenance under laboratory
conditions [18,19]. Due to strong structural and functional similarities in the innate immune
system of insects and vertebrates [20,21], studies of insect immunity could lead to a better
understanding of the evolution of innate immune systems [22]. Moreover, it represent
a model to test chemicals [15,23–25] and bioactive molecules, including antimicrobial
peptides [26] for ecotoxicological and biomedical applications.

The mealworm beetle Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae) is a
pest of stored grain facilities. On the other hand, mealworm larvae are used as a source
of proteins [27,28] and fatty acids [29] for animal husbandry [30] and human nutrition
(EU Regulation 2017/983). Moreover, they are able to ingest and biodegrade plastic prod-
ucts [31,32]. Given the growing interest in their use as food and feed, there have been a
number of reports investigating the cellular and humoral immune effectors of T. molitor
in relation to the wide range of pathogens that can reduce its survival and reproductive
success, as reviewed [33]. Haemocyte-mediated cellular responses to biotic challenges have
been extensively studied focusing on genes encoding components of the T. molitor immune
system [34–36]. To date, few studies have addressed the morphological and functional
variability of haemocytes in T. molitor. A previous analysis using phase contrast microscopy
has shown three different cell types named oenocytoids, plasmatocytes and cystocytes [37].
Scanning electron microscopy, performed to investigate abdominal haemopoietic tissues
in adults, has displayed three main morphologically distinct types of haemocytes, i.e.,
prohaemocytes, granulocytes and plasmatocytes [38]. The response of haemocytes to biotic
(Staphylococcus aureus) and artificial (latex beads) challenges, investigated across devel-
opmental stages, has highlighted a fourth morphological type of circulating haemocytes
named oenocytoids [39].

The aim of this study is to characterise the circulating haemocytes of T. molitor based
on morphological and cytochemical analyses by using light and transmission electron
microscopy. We focused our attention on the ultrastructure of subcellular compartments
within the different populations of circulating haemocytes to update and enhance the
general knowledge of their morphological variability.

2. Materials and Methods
2.1. Insects

T. molitor specimens were obtained from a laboratory stock population maintained at
the Morphofunctional Entomology Laboratory, Dept. of Biology, Ecology and Earth Science
of the University of Calabria. Mealworm beetles were reared at 60% relative humidity (rh)
under a natural photoperiod and room temperature (23 ± 2), with an ad libitum diet of
organic wheatmeal and fruit. In this study, adults, 7–10 days after eclosion were used.

2.2. Cytochemical Analyses and Light Microscopy (LM)

Before haemolymph collection, beetles were anaesthetised in a cold chamber at 4 ◦C
for three minutes. To prepare haemocytes for wet and permanent mount staining, the
haemolymph (3 µL for each specimen) was collected from beetles (n = 12) by using a
29-gauge needle at the ventral level of the pro-mesothorax articulation. It was mixed
with 3 µL of phosphate buffer (PBS, 10 mM pH 7.4; Merck Life Science, Milan, Italy), put
on a poly-L-lysine-coated slide and processed according to the cytochemical methods
indicated below. Except for the in vivo Neutral Red assay, slides were mounted with Eukitt
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mounting medium (Merck Life Science, Milan, Italy) and examined under a Zeiss Primo
Star microscope under immersion oil at 1000× magnification. Light microscopic images of
selected areas were acquired with a Redmi note pro 9 mobile phone camera connected to
the ocular at a resolution of 6000 × 8000 pixels.

• May-Grünwald Giemsa staining. To characterise the basic cellular morphology, ad-
herent haemocytes were first fixed in pure May-Grünwald stain (Merck, Darmstadt,
Germany) for 3 min. Then, slides were stained with a May-Grünwald solution (1:1
in distilled water) for 5 min, followed by a Giemsa staining (Merck) (1:20 in distilled
water) for 5 min. Slides were rapidly rinsed in the distilled water, mounted and
observed as indicated before. The identification of morphological cell types was based
on differences in size, morphology and staining affinity.

• Phenoloxidase (PO)-haemocyte activity. PO-positive haemocytes were detected by
using the method previously described in Ling et al. [40]. Briefly, as the ethanol can
irreversibly activate pro-PO into PO and fix haemocytes, 1 mg/mL of L-DOPA (3,4-
dihydroxy-L-phenylalanine, Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 35%
ethanol and the solution added to adherent haemocytes. The slides were incubated
for 60 min, in dark condition, at room temperature. Control was run simultaneously
by adding haemocytes with 35% ethanol. Finally, slides were rinsed with distilled
water, mounted and observed as indicated before.

• Periodic acid–Schiff (PAS) staining. To detect carbohydrates, haemocytes were fixed
adding a solution of 2.5% glutaraldehyde and 1% paraformaldehyde in 0.1 M phos-
phate buffer, pH 7.4, with 1.5% sucrose. Smears were stained with a Periodic Acid-
Schiff Kit according to the manufacturer’s protocol (P.A.S. acc.Hotchkiss-Mc Manus kit,
Diaphat, Bergamo, Italy). Positive cellular compartments containing polysaccharides
or glycogen stained violet to pink.

• Neutral red assay. A stock solution of Neutral Red (Sigma-Aldrich) was prepared
by dissolving 20 mg of the powdered dye in 1 mL of dimethyl sulphoxide (DMSO;
Merck Life Science, Milan, Italy). Slides with haemolymph were incubated for 1 min
in a humid chamber to allow haemocyte adhesion, then 40 µL of a working solution
(Neutral Red 175 mM in PBS) prepared from the stock, was added. The retention
of the neutral red in acidic intracellular compartments such as lysosomes (red) was
observed in vivo under LM and acquired as indicated before.

2.3. Transmission Electron Microscopy (TEM)

Haemocytes were fixed and embedded as previously described [41]. Briefly, the last
two abdominal segments of cold anaesthetised beetles were laterally cut and sterile PBS was
slowly injected pricking the neck membrane through a 29-gauge needle. The haemolymph
was quickly dropped from the abdomen into a microcentrifuge tube containing fixative
(2.5% glutaraldehyde and 1% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, with
1.5% sucrose). A pool of 20 µL of haemolymph was collected from five different samples
and kept at 4 ◦C overnight. All samples were centrifuged at 1700× g for 5 min and
the supernatant removed. The pellets were rinsed in PBS with 1.5% sucrose, post-fixed
with 1% osmium tetroxide in 0.1 M PBS for 2 h at 4 ◦C, then rinsed in the same buffer.
The dehydration of pellets in a graded acetone series was followed by embedding in
epoxy resin (Merck Life Science, Milan, Italy). Ultrathin sections, cut with a PT-PC Power
Tome Ultramicrotome (RMC Boeckeler, Groot-Ammers, The Netherlands, were examined
with a Jeol JEM 1400 Plus electron microscope (Microscopy and Microanalysis Centre,
CM2, Laboratory of Transmission Electron Microscopy—University of Calabria, Italy) at
60 kV. Measurements were taken from the digitised images using ImageJ and processed as
means ± standard error.
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3. Results
3.1. Morphology and Ultrastructure of Haemocytes

Four populations of circulating haemocyte types are identified in the haemolymph of
T. molitor comparing their staining properties and morphology under light microscopy after
May-Grünwald Giemsa staining (Figure 1A–Q), and ultrastructural analyses (Figures 2–7).

Prohaemocytes are immature and blast-like-cells in the haemolymph (Figure 1A–D).
They appear variable in size, from 5 to 8 µm in diameter, depending on the maturation
degree, and spherical in shape. The nucleus/cytoplasm ratio is 0.8 in section. The imma-
ture chromatin of the central eosinophilic nucleus is coloured from pink to violet (after
May-Grünwald Giemsa staining). A limited layer of neutral cytoplasm without granules
surrounds the nucleus. TEM analyses show a well-defined euchromatic nucleus, from
4 to 6 µm in diameter, and one or more prominent nucleoli, a homogeneous cytoplasm
filled with a very low number of organelles such as mitochondria and rough endoplasmic
reticulum (RER) (Figure 2A).

Plasmatocytes appear as elongate or spindle-shaped cells from 9 to 15 µm in length
and from 3 to 5 µm in diameter in the ultimate stage of differentiation (Figure 1F–H).
Their cytoplasm is neutral to basophilic (blue after May-Grünwald Giemsa staining) with
small granules. Ultrathin sections of plasmatocytes show the lobate euchromatic nucleus
(2.6 × 3.3 µm in diameter) with a well-developed nucleolus (Figure 2B–D). Numerous
organelles such as a well-developed RER, Golgi complexes and numerous elongate mi-
tochondria (up to 1 µm) occur in the cytoplasm (Figure 2B,D). A low number of electron
lucent vacuoles 1 µm in diameter are also present (Figure 3B,C). The plasmatic membrane
extends a variable number of filopodia (Figure 2B).

Oenocytoids are compared to the other cell types encountered in the haemolymph.
They are elliptical cells characterised by an eccentric nucleus. The nucleus/cytoplasm
ratio is approximatively 0.4 in section (Figure 1J–L). The cytoplasm appears homogeneous
and neutral or slightly basophilic (blue) in LM. The ultrastructural analyses show cells,
approximately 5 × 15 µm in diameter, with few organelles in the cytoplasm such as
small mitochondria, free ribosomes, rough endoplasmic reticulum, Golgi complex and
some multivesicular bodies (Figure 2F,G). The nucleus (4 µm in diameter) is small and
heterochromatic.

Granular cells are usually elongated, with an acidophilic nucleus (red after May-
Grünwald Giemsa method staining) (Figure 1N–Q) and the cytoplasm slightly basophilic
(blue). Ultrathin sections show cells from 8 to 11 in length and from 3 to 6 in width
(Figure 2D,E). The main distinctive feature is the presence in the cytoplasm of large
granules, which are electron dense round vesicles with a diameter from 0.4 µm to 0.9 µm,
storing homogenous or structured tubular elements (Figure 2D,E).
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Figure 1. Light micrographs of haemolymph smears from T. molitor, May-Grünwald Giemsa stained. The metachromasia 
reveals specific morphological properties of different types. (A–D) Prohaemocytes. (E) Early plasmatocytes with large 
cytoplasm and heterochromatic nucleus. (F–H) Plasmatocytes as elongate cells with mature chromatin and eosinophilic 
cytoplasm (F), or spindle-shaped (G,H) with small basophilic granules in the cytoplasm. (I) Immature oenocytoid with 
eccentric nucleus and eosinophilic granules. (J–L) Differentiated oenocytoids with low nuclear-to-cytoplasmic ratio and 
homogenous cytoplasm. (M) Intermediate figure with basophilic cytoplasm and eosinophilic granules. (N–O) Circulating 
granular cells appear elongated in shape with large basophilic granules or round in shape and with eosinophilic granules 
(P), easily lysed and degranulated (Q). Bars: 5 μm. 

Figure 1. Light micrographs of haemolymph smears from T. molitor, May-Grünwald Giemsa stained. The metachromasia
reveals specific morphological properties of different types. (A–D) Prohaemocytes. (E) Early plasmatocytes with large
cytoplasm and heterochromatic nucleus. (F–H) Plasmatocytes as elongate cells with mature chromatin and eosinophilic
cytoplasm (F), or spindle-shaped (G,H) with small basophilic granules in the cytoplasm. (I) Immature oenocytoid with
eccentric nucleus and eosinophilic granules. (J–L) Differentiated oenocytoids with low nuclear-to-cytoplasmic ratio and
homogenous cytoplasm. (M) Intermediate figure with basophilic cytoplasm and eosinophilic granules. (N–O) Circulating
granular cells appear elongated in shape with large basophilic granules or round in shape and with eosinophilic granules
(P), easily lysed and degranulated (Q). Bars: 5 µm.
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Figure 2. Transmission electron micrographs of haemocyte cross sections from T. molitor. (A) 
Prohaemocyte. (B) Plasmatocytes (Pl) and a granular cell (Gr). (C) Longitudinal section of 
plasmatocytes. (D) Granular cells (Gr) with electron-dense granules (ly) in the cytoplasm and 
plasmatocytes (Pl) with an evident Golgi apparatus (g). (E) Granular cell with granules (ly) storing 
homogenous electron-dense material. (F) Oenocytoid. (G) Detail of the oenocytoid showing 
multivesicular body (asterisk) and Golgi complex (g); n: nucleus, nu: nucleolus, rer: rough 
endoplasmic reticulum, white arrowheads: mitochondria. Bars: 5 μm (B); 2 μm (C–F); 1 μm (A); 500 
nm (G). 

Figure 2. Transmission electron micrographs of haemocyte cross sections from T. molitor. (A) Pro-
haemocyte. (B) Plasmatocytes (Pl) and a granular cell (Gr). (C) Longitudinal section of plasmatocytes.
(D) Granular cells (Gr) with electron-dense granules (ly) in the cytoplasm and plasmatocytes (Pl)
with an evident Golgi apparatus (g). (E) Granular cell with granules (ly) storing homogenous
electron-dense material. (F) Oenocytoid. (G) Detail of the oenocytoid showing multivesicular body
(asterisk) and Golgi complex (g); n: nucleus, nu: nucleolus, rer: rough endoplasmic reticulum, white
arrowheads: mitochondria. Bars: 5 µm (B); 2 µm (C–F); 1 µm (A); 500 nm (G).
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A high level of cell-to-cell variability is found within these four populations of haemo-
cytes. Intermediate cell stages sharing features related to different types are commonly
recorded at LM (Figure 1E,I,M) and TEM analyses (Figure 3). The variability concerning
the cytoplasmic compartment suggests cellular maturation throughout different functional
stages (Figure 3A–E). In some cases, the rough endoplasmic reticulum (RER) is well-
developed and filled the cytoplasm indicating an active protein biosynthesis (Figure 3A,D).
Filopodia appear as finger-like processes at the plasmatic membrane level (Figure 3C). Lipid
droplets closely associated with mitochondria and endoplasmic reticulum (Figure 3B,C)
are found in the population of haemocytes identified as plasmatocytes. Electron-dense
granules closely associated with mitochondria are evident in the cytoplasm of haemo-
cytes identified as granular cells (Figure 3E). A number of vesicles are evident in the
cytoplasm (Figure 4A–E) close to the trans cisterna of the Golgi complex (Figure 4A) likely
related to the cellular vesicular trafficking, which involves endo (Figure 4B,C) and exocytic
(Figure 5E) pathways, lysosomes and early and late endosomes including multivesicular
bodies (MVBs) (Figure 4A,C–F). MVBs (approximatively 1 µm in diameter) were clearly
identifiable adjacent to the plasma membrane trapping numerous intraluminal vesicles
(44 ± 1 nm in diameter, n = 35) (Figure 4A,B,E,F). The mechanism for packing of bioactive
molecules into exosomes, through vesicles budding and pinching off into the MVBs lumen,
appears evident at different developmental levels in the cytoplasm (Figure 4D–F). MVBs
are located close to the Golgi complex at the crossroads between the biosynthetic and endo-
cytic routes of haemocytes (Figure 4A,E). Intraluminal vesicles are released in extracellular
space by exocytic fusion of MVBs with the plasma membrane (Figure 5D). A variable
number of granules occur in the cytoplasm. The primary type is an electron-dense round
membrane-limited inclusion able in storing (Figure 5A,B,D) and exocyting (Figure 5E) en-
zymes, very abundant in the haemocytes identified as granular cells. The second type is
an electron-opaque granule including densely packed microtubular elements (Figure 5C).
Granules storing glycogen are also evident (Figure 5E). In the nucleus, the amount of
heterochromatin is most abundant in cells that are less or not active.



Insects 2021, 12, 423 8 of 18
Insects 2021, 12, x  8 of 18 
 

 

 
Figure 3. Transmission electron micrographs of haemocyte cross sections from T. molitor. (A) Intermediate haemocyte 
stage showing a large nucleus and a well-developed rough endoplasmic reticulum (rer). Granules with electron dense 
material (black arrow) are visible in the cytoplasm. (B) Plasmatocytes showing numerous small electron-lucent lipid 
droplets (ld) and an autophagic body (ab). (C) Transversal section of immature plasmatocytes showing an electron-lucent 
vesicle (ld) and a multivesicular body (mvb); plasmatic membrane is prolonged in a filopodium (f). (D) Intermediate cell 
stage without granules showing numerous mitochondria (white arrowheads), Golgi complex (g) and rough endoplasmic 
reticulum (rer). (E) Granular cell showing electron-dense granules (ly) and electron-lucent vesicles (ld). n: nucleus, nu: 
nucleolus, p: peroxisome. Bars: 2 μm (D); 1 μm (A–C); 500 nm (E). 

Figure 3. Transmission electron micrographs of haemocyte cross sections from T. molitor. (A) Intermediate haemocyte stage
showing a large nucleus and a well-developed rough endoplasmic reticulum (rer). Granules with electron dense material
(black arrow) are visible in the cytoplasm. (B) Plasmatocytes showing numerous small electron-lucent lipid droplets (ld)
and an autophagic body (ab). (C) Transversal section of immature plasmatocytes showing an electron-lucent vesicle (ld)
and a multivesicular body (mvb); plasmatic membrane is prolonged in a filopodium (f). (D) Intermediate cell stage without
granules showing numerous mitochondria (white arrowheads), Golgi complex (g) and rough endoplasmic reticulum (rer).
(E) Granular cell showing electron-dense granules (ly) and electron-lucent vesicles (ld). n: nucleus, nu: nucleolus, p:
peroxisome. Bars: 2 µm (D); 1 µm (A–C); 500 nm (E).
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Figure 4. Transmission electron micrographs of cytoplasmic compartment in T. molitor haemocytes. (A) Cytoplasmic compartment 
showing Golgi complex (g) with secretory vesicles (sv), early endosome (ee), multivesicular body (mvb) and rough endoplasmic 
reticulum (rer). (B) Magnification of plasmatic membrane showing a phagocytic process through pseudopodium formation (black 
arrowhead). (C) Cross section showing a pinocytotic process through the plasmatic membrane invagination (black arrow). In the 
cytoplasm, macroautophagic processes are evident. Phagophores (ph) appear in a cup-shaped structure that engulfs a portion of the 
cytoplasm to form an autophagic body. (D–F) Multivesicular bodies (mvb) limiting intraluminal vesicles (iv) at the early (D,E) and 
late (A,C,F) level of the biogenesis process. Arrows (D,E) indicate intraluminal vesicles formed by budding of the limiting membrane 
of late endosomes. ld: lipid droplet, n: nucleus, p: peroxisome, white arrowheads: mitochondria. Bars: 1 μm (D); 500 nm (A–C,E,F). 

Figure 4. Transmission electron micrographs of cytoplasmic compartment in T. molitor haemocytes. (A) Cytoplasmic
compartment showing Golgi complex (g) with secretory vesicles (sv), early endosome (ee), multivesicular body (mvb)
and rough endoplasmic reticulum (rer). (B) Magnification of plasmatic membrane showing a phagocytic process through
pseudopodium formation (black arrowhead). (C) Cross section showing a pinocytotic process through the plasmatic
membrane invagination (black arrow). In the cytoplasm, macroautophagic processes are evident. Phagophores (ph) appear
in a cup-shaped structure that engulfs a portion of the cytoplasm to form an autophagic body. (D–F) Multivesicular bodies
(mvb) limiting intraluminal vesicles (iv) at the early (D,E) and late (A,C,F) level of the biogenesis process. Arrows (D,E)
indicate intraluminal vesicles formed by budding of the limiting membrane of late endosomes. ld: lipid droplet, n: nucleus,
p: peroxisome, white arrowheads: mitochondria. Bars: 1 µm (D); 500 nm (A–C,E,F).
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Figure 5. Transmission electron micrographs of cytoplasmic compartment in T. molitor haemocytes. (A,B) Details showing 
enlarged rough endoplasmic reticulum (rer), elongated mitochondria (white arrowheads) with evident cristae, autophagic 
body (ab), a granule (ly) storing homogeneous electron dense content and a multivesicular body (mvb). (C) Granules 
storing tubular elements. (D) Exosomes (black harrow) released in extracellular space by exocytic fusion of the 
multivesicular body with the plasma membrane. The asterisk indicates a microautophagic process. A lysosome 
invaginates and forms a bud sequestering cytoplasmic materials. (E) Degranulation process through the release of electron 
dense content in the extracellular medium. (F) Granule storing glycogen (gl) are closely adherent to a mitochondrion 
(white arrowhead). g: Golgi complex, n: nucleus, rb: residual body. Bars: 500 nm (A–D,F); 200 nm (E). 

Figure 5. Transmission electron micrographs of cytoplasmic compartment in T. molitor haemocytes. (A,B) Details showing
enlarged rough endoplasmic reticulum (rer), elongated mitochondria (white arrowheads) with evident cristae, autophagic
body (ab), a granule (ly) storing homogeneous electron dense content and a multivesicular body (mvb). (C) Granules storing
tubular elements. (D) Exosomes (black harrow) released in extracellular space by exocytic fusion of the multivesicular
body with the plasma membrane. The asterisk indicates a microautophagic process. A lysosome invaginates and forms a
bud sequestering cytoplasmic materials. (E) Degranulation process through the release of electron dense content in the
extracellular medium. (F) Granule storing glycogen (gl) are closely adherent to a mitochondrion (white arrowhead). g:
Golgi complex, n: nucleus, rb: residual body. Bars: 500 nm (A–D,F); 200 nm (E).
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Ultrathin sections show also haemocytes with large autophagic compartments
(Figure 6A–C). The different phases of the macroautophagic pathway are evident in
the ultrathin sections from phagophores enveloping organelles (Figures 4C and 5A) to
autophagosome (Figure 6A–D) that fuses with lysosomes (Figure 5A) forming autolyso-
somes (Figure 6B,C). Autolysosomes contain digested cellular material and organelles
at different stages of degeneration (Figure 6B–D). Moreover, the lysosome membrane
pinches off into the organelle lumen and engulfs cytoplasmic material forming microau-
tophagic bodies (Figure 5D). Myelin-like figures, which represent the results of autophagic
degradation of membranous cellular components were evident (Figures 5F and 6A). Apop-
totic (Figure 7A–C), degranulated (Figure 7D) and necrotic haemocytes (Figure 7E) occur-
ring in the haemolymph are entrapped from other circulating haemocytes (Figure 7E,F).
Cells occurring in various phases of mitotic division (Figure 8A–C) indicate a turnover
of haemocytes.
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Figure 6. Ultrastructure of autophagic processes in T. molitor haemocytes. (A) Cytoplasm showing an
autophagic body (ab) with electron dense myelinic figures inside. (B) Magnification of the cytoplasm
showing lysosome (ly) at different stages of maturation, fusing with phagosome, featured by electron
lucent appearance and storing amorphous content. (C) Residual body (rb) storing packed membranes
and an autolysosome (au). (D) Detail of a residual body, electron dense content with evident myelinic
figures. n: nucleus, rer: rough endoplasmic reticulum, white arrowheads: mitochondria. Bars: 1 µm
(A–C); 500 nm (D).
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Figure 7. Ultrastructure of cell death in T. molitor haemocytes. (A) A cluster of apoptotic haemocytes.
The chromatin condensed in patches under the inner nuclear envelope, nucleus and the plasma
membrane blebbing is followed by separation of cell and nuclear fragments into apoptotic bod-
ies. (B) Detail of (A) showing numerous macroautophagic body (ab) containing myelinic figures.
(C) Apoptotic cell showing condensed chromatin near nuclear pores, enlarged mitochondria (white
arrowhead) and macroautophagic bodies (ab). (D) Necrotic haemocytes with vacuolated cytoplasm,
releasing cellular content in the extracellular environment. (E) Haemocyte at the early stage of
necrosis, showing swelling of the external nuclear envelope and mitochondrial cristae, adhering
trough the plasmatic membrane to other haemocytes (black arrowhead). (F) Cross section shows
a phagocytic haemocyte wrapping a necrotic cell through prolongations of the cytoplasm (black
arrowhead). au: autolysosome, n: nucleus, rer: rough endoplasmic reticulum, white arrowheads:
mitochondria. Bars: 2 µm (A–F); 1 µm (B).
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Figure 8. Light microscopy images of haemocyte semithin sections from T. molitor, showing mitotic
stages. (A) Metaphase. (B) Telophase, (C) Cytokinesis. Bars: 5 µm.

3.2. Cytochemical and Cytoenzymatic Analyses

Haemocytes of T. molitor display diverse responses to cytochemical and cytoenzymatic
analyses (Figure 9). Granular cells and plasmatocytes are able to accumulate the neutral
red dye (Figure 9D), revealing acidic vacuolar compartments and the nature of granules
as lysosomes. The circulating haemocytes are only partly positive to the PAS reaction,
revealing a different distribution of carbohydrates among cell types (Figure 9H,I). PAS
reaction positivity is observed in the cytoplasmic compart outside of granules. Oenocytoids
(Figure 9I) are also recorded as PAS positive, while variable responses are observed for other
cell types. Cytoenzymatic analysis of haemocytes reveals the presence of prophenoloxidase
in almost all cell types. The strongest reaction of the zymogen activation is observed in
granular cells (Figure 9E,F), granules of which were stained orange/brown. The controls
did not show any reaction product (Figure 9G).
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Figure 9. Light microscopy images of haemolymph smears from T. molitor. (A–C) In vivo haemocytes.
(D) Haemocytes stained with neutral red to highlight lysosomes in red. (E–G) PO-haemocyte activity.
Haemocytes showing cytoplasmic localisation of phenoloxidase in granular cells (E,F) and control (G).
(H,I) PAS staining. Positive sites (arrowheads) indicating stored carbohydrates. Gr: granular cells;
Oe: oenocytoids; Pl: plasmatocytes; Pr: prohaemocytes. Bars: 5 µm.
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4. Discussion

This study provides a comprehensive description of the haemocyte ultrastructure in T.
molitor adults. The results highlighted four morphological types of circulating haemocytes
we referred to as prohaemocytes, plasmatocytes, granular cells and oenocytoids according
to a previous study carried out by using fluorescence and scanning electron microscopy [39].
Actually, circulating haemocytes have been described in a low number of coleopteran
species. Nevertheless, morphology and function are rather variable among the species
described so far with different life histories [42–44]. Four to seven morphologically distinct
types were identified, named prohemocytes, plasmatocytes, granular cells, coagulaocytes,
oenocytoids, adipohemocytes and spherulocytes in haemolymph of Coccinellidae [45],
Curculionidae [46], Melolonthidae [47], Scarabeaidae [10,48], Chrysomelidae [49] and
Carabidae [12,13,41,50]. Granular cells, plasmatocytes and oenocytoids have been indicated
as the main cell types involved in the phagocytosis in both adults and larvae [10,12,45,46,48].
Here, we found that granular cells are the main PO-positive circulating haemocytes of
T. molitor, as observed in previous studies [40,51,52]. Thus we assume that they may be
involved in the melanisation cascade or in aggregation processes, such as encapsulation
and nodulation of pathogens [53]. Moreover, the large amount of lysosomes found in the
granular cells confirmed the capability to internalise foreign organisms into a phagosome
as indicated in previous studies [39,54] and a role in removal and degradation of necrotic
cells and apoptotic bodies as observed in ultrathin sections.

The haemocyte classification is still a controversial topic and limitations to perform
a comparative analysis among the low number of species so far described are partly due
to the differences of investigation methods besides the species-specific variability [42].
Moreover, there is an intrinsic cell-to-cell variability related to the haemocyte function that
is misidentified as an indicator of morphological diversity. Previous studies hypothesised
a separate immutable cell lines differentiating from haemopoietic organs or circulating
prohaemocytes [4,55,56]. However, cytochemical and ultrastructural analyses performed in
T. molitor allowed us to observe phenotypic variation within each cellular population. This
variability deals with the assumption of a limited number of circulating haemocyte types in-
volved in cellular defences, that we considered different stages with separate functions. As
a result, prohaemocytes are only less differentiated cells, as observed in our ultrastructural
analyses, instead of multipotent stem cells, coherently with previous studies [13,17,57,58].
Indeed, the conversion of already differentiated circulating haemocytes into another cell
type has been observed in vitro in plasmatocytes of T. molitor, Periplaneta americana, Galleria
mellonella [59], D. melanogaster [60] and in prohemocytes of Bombyx mori [61]. Previous
studies showed that morphological features, such as the size of nucleoli indicate a high
proteosynthetic activity closely related to the ability of a cell to differentiate into another
cell type [62,63]. According to this finding, haemocytes here indicated as plasmatocytes,
which show prominent nucleoli in an euchromatic nucleus and a well-developed rough
endoplasmic reticulum, should be considered as one of the earliest stages of functionally
differentiated cells. On the contrary, oenocytoids should have lowered potential to turn
into another type. Thus, we assume that the morphological differences observed among
and within the cellular populations of T. molitor may be closely related to the variation of
the cell function during its life cycle. This hypothesis is supported by the high number of
haemocytes found in both smears and ultrathin sections, showing very similar subcellular
structure and micro and macroautophagic activities involved to maintaining the regular
homeostatic turnover of organelles [64,65]. Moreover, the evidence of mitotic circulating
cells suggests that haemocyte proliferation occurs to replace apoptotic and necrotic haemo-
cytes and not just as a response following infection as observed in D. melanogaster [58].
Future studies may include techniques such as single cell RNA-sequencing to reveal hidden
complexity and achieve a more fine-grained characterisation of haemocyte types related
to their function as predicted from gene expression patterns. However, up to now, this
technique has to our knowledge only been applied to a few insect model organisms such
as D. melanogaster [66] and Anopheles gambiae [67].
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The PAS positive-stained cells and ultrastructure of granules storing glycogen and
lipids indicated that haemocytes of T. molitor may be involved in the regulation of car-
bohydrate and lipid levels in the haemolymph. As observed in larvae of D. melanogaster,
lamellocytes become dependent on a massive supply of carbohydrates to perform the
encapsulation of parasitoid wasp eggs [68]. Thus, autophagy also promotes cellular home-
ostasis by facilitating nutrient utilisation. The sequestration of polysaccharide such as
glycogen in the autophagosomes and its subsequent degradation in the autolysosomes is a
selective process activated under conditions of demand for massive production of glucose
as observed in vertebrates [69] and insects [70]. Indeed, the plasticity of the immune
response requested to face pathogens during the insect life has maintenance costs [71] and
leads to a systemic metabolic switch, redirecting the metabolic resources to the activated
immune system. As neuropeptides play an important immunotropic role in the regula-
tion of the insect cellular and humoral responses promoting the mobilisation of energetic
sources, such as the breakdown of glycogen into circulating carbohydrates [72,73] and
lipid [74], T. molitor may be a useful model to study the endocrine regulation of the immune
responses in insects.

The large number of MVBs found in the cytoplasmic compartment provided evidences
of a cell-to-cell communication involving exosomes. MVBs are late endosomes containing
intraluminal vesicles, formed through direct inward budding of their limiting membranes,
that move up to the cell surface, fuse with the plasma membrane and release single-
membrane exosomes outside the cell [75]. In insects, the role of exosomes in cell polarity
and intracellular communication is a new emerging topic [76–82]. Exosomes have been
isolated for the first time from the haemolymph of Allomyrina dichotoma (Coleoptera:
Scarabaeidae) [83]. Thus, further investigation on the molecular content of these vesicles in
T. molitor will improve knowledge about cell-to-cell communication.

This study contributes to increasing knowledge on the function and morphology of
haemocytes in T. molitor. The ultrastructure will be a baseline for further studies aimed to
clarify the relationship between structure and function of the subcellular compartment in
haemocytes and their role to transfer information through the haemocoel. Moreover, our
findings validate the suitability of haemocytes in T. molitor to study cellular evolutionary
conserved processes, such as vesicular trafficking and macro and microautophagy.
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