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Simple Summary: The post-mortem interval of human cadavers may be estimated based on insect
evidence. In order to identify scientific challenges that pertain to these estimations, I review forensic
entomology literature and conclude that research on the development and succession of carrion
insects, thermogenesis on cadavers and the accuracy of PMI estimates are of primary importance to
advance this field.

Abstract: During death investigations insects are used mostly to estimate the post-mortem interval
(PMI). These estimates are only as good as they are close to the true PMI. Therefore, the major chal-
lenge for forensic entomology is to reduce the estimation inaccuracy. Here, I review literature in this
field to identify research areas that may contribute to the increase in the accuracy of PMI estimation.
I conclude that research on the development and succession of carrion insects, thermogenesis in
aggregations of their larvae and error rates of the PMI estimation protocols should be prioritized.
Challenges of educational and promotional nature are discussed as well, particularly in relation to
the collection of insect evidence.

Keywords: forensic entomology; carrion insects; development; succession; validation

1. Introduction

Carrion insects living in human cadavers can be highly useful for the estimation of
the post-mortem interval (PMI) [1,2]. Methods for PMI estimation based on insect evidence
are developed, validated, improved and applied by forensic entomologists. This field is
growing with a constant increase in the number of scientific publications and countries where
entomology-based estimation of PMI is regularly used in death investigations [3,4]. As a
maturing field, forensic entomology contains several weaknesses and under-researched areas.
These challenges are the focus of this article.

A PMI estimate is only as good as it is close to the true PMI. The accuracy of estimation
is most important, particularly for the end users of insect evidence. Therefore, the major
general challenge for the field is to reduce the estimation inaccuracy. Its sources are related
to both the collection and analysis of insect evidence (Figure 1). I divided this paper into
sections devoted to the collection of insect evidence, research on insect development and
succession, reconstructing temperature conditions, analysis of challenging evidence and
validation of the protocols for PMI estimation.
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Figure 1. Sources of inaccuracy in the estimation of the post-mortem interval (PMI) based on insect evidence. Green circles 
represent the sources, their size represents importance of the sources. Pictures of insects were made by Anna Mądra-
Bielewicz (Poznań, Poland). 

2. Collection of Insect Evidence 
Errors in the collection of insect evidence are certainly among the most important 

sources of the inaccuracy in PMI estimation. Death scene samples frequently misrepresent 
cadaver entomofauna. However, it is difficult to discern how bad these samples usually 
are and what the consequences of sampling errors are for the estimation of PMI. In most 
cases insects are collected by law enforcement officers or medical examiners, and rarely 
by entomologists. In a recent case, insects were sampled by police officers with the medi-
cal examiner and independently by entomologists, which enabled—in this paper—the 
comparison of samples taken by non-experts and experts [5]. The sample taken by non-
experts was distinctly less diverse and did not contain insect evidence, based on which 
PMI has finally been estimated (see Tables 1 and 2 in [5]). If PMI was estimated in this case 
using only the non-expert sample, no meaningful maximum PMI would be derived, alt-
hough the minimum PMI would be similar to the one estimated based on the expert sam-
ple (unpublished data). Another kind of error in the collection of evidence is the error of 
preservation. Insects may be preserved improperly, for example using an unsuitable pre-
servative or a leaking container [6,7]. Such errors may limit the scope of possible analyses 
and in extreme cases may even destroy the evidence. Although there are no surveys of 
errors in the collection of insect evidence, I think that most experts share the opinion that 
insect samples frequently misrepresent cadaver entomofauna or are preserved improp-
erly. We should therefore discuss whether our guidelines for the collection of evidence 
are truly fit-for-purpose. 

Guidelines for the collection of insect evidence state that death scene samples should 
accurately represent cadaver entomofauna, i.e., all life stages of each important species 
that inhabit a cadaver should be represented in the sample [8–10]. Cadaver entomofauna 
may be very diverse and abundant, consisting of many life stages from many species, 
some in very large numbers. However, to estimate PMI only a small part of it is necessary. 

Figure 1. Sources of inaccuracy in the estimation of the post-mortem interval (PMI) based on insect evidence. Green
circles represent the sources, their size represents importance of the sources. Pictures of insects were made by Anna
Mądra-Bielewicz (Poznań, Poland).

2. Collection of Insect Evidence

Errors in the collection of insect evidence are certainly among the most important
sources of the inaccuracy in PMI estimation. Death scene samples frequently misrepresent
cadaver entomofauna. However, it is difficult to discern how bad these samples usually
are and what the consequences of sampling errors are for the estimation of PMI. In most
cases insects are collected by law enforcement officers or medical examiners, and rarely
by entomologists. In a recent case, insects were sampled by police officers with the
medical examiner and independently by entomologists, which enabled—in this paper—
the comparison of samples taken by non-experts and experts [5]. The sample taken by
non-experts was distinctly less diverse and did not contain insect evidence, based on
which PMI has finally been estimated (see Tables 1 and 2 in [5]). If PMI was estimated
in this case using only the non-expert sample, no meaningful maximum PMI would be
derived, although the minimum PMI would be similar to the one estimated based on the
expert sample (unpublished data). Another kind of error in the collection of evidence
is the error of preservation. Insects may be preserved improperly, for example using an
unsuitable preservative or a leaking container [6,7]. Such errors may limit the scope of
possible analyses and in extreme cases may even destroy the evidence. Although there
are no surveys of errors in the collection of insect evidence, I think that most experts
share the opinion that insect samples frequently misrepresent cadaver entomofauna or
are preserved improperly. We should therefore discuss whether our guidelines for the
collection of evidence are truly fit-for-purpose.

Guidelines for the collection of insect evidence state that death scene samples should
accurately represent cadaver entomofauna, i.e., all life stages of each important species that
inhabit a cadaver should be represented in the sample [8–10]. Cadaver entomofauna may be
very diverse and abundant, consisting of many life stages from many species, some in very
large numbers. However, to estimate PMI only a small part of it is necessary. Usually, we
choose the most developmentally advanced life stage of the most successionally advanced
species, and even if the PMI estimate is based on a larger number of taxa, this is usually no
more than two or three [11]. Therefore, in most cases a representative sample is redundant,
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and for this reason we should reshape guidelines for the collection of insect evidence and
abandon our commitment to the true representativeness of death scene samples. I believe
it is possible to develop guidelines that are user-friendly, quick to implement and that yield
more fit-for-purpose samples, i.e., the most developmentally and successionally advanced
insects only (Table 1). Insects are usually collected by the law enforcement officers with
basic skills in entomology, whereas guidelines for the collection of insect evidence are
usually addressed to entomologists. Therefore, we should provide guidelines for non-
entomologists that specify what insect evidence they should look for and where it can be
found, with pictures of the evidence and related preservation protocols.

Table 1. A sketch of guidelines for the collection of insect evidence on a death scene. To make them useful to non-
entomologists, they should be combined with pictures of insect evidence and protocols suitable for the preservation of
particular pieces of evidence.

State of a Cadaver
Insect Evidence

What to Look For Where to Look For

Relatively fresh Eggs or larvae of flies Natural orifices (particularly of the
head), wounds

Signs of putrefaction (bloating,
marbling, etc.) Larvae of flies Natural orifices, wounds, interface

cadaver/ground

Signs of active decay (large masses of
insect larvae, stench of decay, leakage of

decomposition fluids, etc.)
1. Larvae (particularly post-feeding)

of flies
2. Larvae of beetles

1. Larval masses, the surface of soil
(outdoor scenarios) or the floor (indoor
scenarios) in the vicinity of a cadaver
2. Larval masses, clothes and cadaver

surface, the soil in the vicinity of a
cadaver (outdoor scenarios, soil samples

are recommended), the floor in the
vicinity of a cadaver (indoor scenarios)

Signs of advanced decay (exposed bones;
greasy by-products of active decay,

darkening of the remaining skin, etc.)
1. Puparia (full and empty) of flies

2. Larvae and pupae of beetles
3. Larvae of late-colonizing flies (e.g.,

skipper flies)

1. The soil in the vicinity of a cadaver
(outdoor scenarios, soil samples are

recommended), the floor (under carpets
or furniture) in the vicinity of a cadaver
(indoor scenarios), pockets and foldings
of clothes, cadaver surface (all scenarios)

2. Larval masses, clothes and cadaver
surface, the soil in the vicinity of a

cadaver (outdoor scenarios, soil samples
are recommended), the floor in the

vicinity of a cadaver (indoor scenarios)
3. Larval masses, the surface of soil

(outdoor scenarios) or the floor (indoor
scenarios) in the vicinity of a cadaver

Signs of minimal insect infestation (e.g.,
massive putrefaction or mummification) All types of insect evidence

Natural orifices, wounds, clothes and
cadaver surface, the soil (outdoor

scenarios) or the floor (indoor scenarios)
in the vicinity of a cadaver

3. Insect Development

Most frequently, forensic entomologists estimate the age of immature insects collected
on a death scene and use this information as the minimum PMI [12]. The reference
developmental data for the species that was collected on a death scene is necessary for
such estimation. Because developmental data may vary between geographical populations
of insects, it is recommended to use reference data from the closest population [10,13–15].
Although there is constant progress in this field, with new species and populations gaining
developmental data, still much research needs to be done. A review of developmental
datasets available for insect species colonizing cadavers in central Europe reveals that
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among the most extensively researched are cosmopolitan species that colonize cadavers
shortly after death and that were frequently reported from indoor cases (Table 2). Although
several important species have many datasets (e.g., Lucilia sericata or Calliphora vicina),
there are still species that regularly breed in cadavers but for which no dataset has been
published (e.g., Lucilia caesar, Hydrotaea ignava or Necrobia violacea) or only single datasets
are available (e.g., Stearibia nigriceps, Necrodes littoralis, Omosita colon or Necrobia rufipes).
These species should become the hot taxa for forensic entomology research in Europe. The
understudied species ought to be identified also for other geographical regions.

Another point that needs our attention is the lack of standards and guidelines for
developmental studies in forensic entomology. Several elements of the protocol for such
studies were found to affect the quality of the resultant developmental data [16–19]. In
addition, there is unnecessary variation in the type of development data provided and
the way they are presented in publications. Standard research protocols emerge in mature
sciences and I feel it is time to start this discussion in forensic entomology.

Table 2. Developmental datasets available for the species that breed in large vertebrate cadavers in central Europe (species
list compiled based on [20–25]).

Family Species Number of Published
Datasets Country of a Population’s Origin References

Calliphoridae Calliphora vicina 18 US,AT,GB,RU,CA,DE,IT,EG [26–43]

Calliphora vomitoria 7 US,GB,RU,DE [26,29,31,33,37,44,45]

Chrysomya albiceps 9 BR,RU,AT,ZA,CO,IR,EG [14,26,39,46–51]

Lucilia caesar - - -

Lucilia sericata 27 US,FI,IT,GB,RU,CA,AT,CO,IR,EG,TR,FR,EC,KR,CN [26–28,30,31,33,36,48,52–70]

Phormia regina 7 US,RU,CA,MX [26–28,31,71–73]

Protophormia terraenovae 7 US,GB,RU,AT,CA [26,31,33,44,74–76]

Sarcophagidae Sarcophaga argyrostoma 3 AT,DE,TR [29,77,78]

Sarcophaga caerulescens - - -

Muscidae Hydrotaea dentipes - - -

Hydrotaea ignava - - -

Hydrotaea pilipes - - -

Fanniidae Fannia canicularis 2 US,PL [79,80]

Fannia scalaris - - -

Fannia leucosticta - - -

Piophilidae Stearibia nigriceps 1 RU [26]

Silphidae Necrodes littoralis 2 PL [81,82]

Thanatophilus rugosus 1 DZ [83]

Thanatophilus sinuatus 1 CZ [84]

Histeridae Margarinotus brunneus - - -

Saprinus planiusculus - - -

Saprinus semistriatus - - -

Staphylinidae Aleochara curtula - - -

Creophilus maxillosus 5 US,CN,PL [85–89]

Philonthus politus - - -

Dermestidae Dermestes frischii 3 GB,ES,IT [90–92]

Dermestes lardarius 2 GB [93,94]

Dermestes murinus - - -

Nitidulidae Omosita colon 1 CN [95]

Cleridae Necrobia rufipes 1 CN [96]

Necrobia violacea - - -

Pteromalidae Nasonia vitripennis 5 AT,US,AU,CN,BR [97–101]

AT—Austria, AU—Australia, BR—Brazil, CA—Canada, CN—China, CO—Colombia, CZ—Czech Republic, DE—Germany, DZ—Algeria,
EC—Ecuador, EG—Egypt, ES—Spain, FI—Finland, FR—France, GB—United Kingdom, IR—Iran, IT—Italy, KR—Republic of Korea,
MX—Mexico, PL—Poland, RU—Russian Federation, TR—Turkey, US—United States and ZA—South Africa.
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4. Insect Succession

There are several forensic reasons to study insect succession on cadavers. First, these
studies yield inventories of carrion insects for habitats and geographical locations that form
a starting point for any further research in forensic entomology. Such inventories were
published for many habitats and locations around the world (recently reviewed in [102]),
but there are still white spots on this map.

Second, succession studies provide reference data on the pre-appearance interval
(PAI) and the presence interval (PI) of particular insect taxa. Such data are essential to
use insects that colonize cadavers late in decomposition, as their PAI may be longer than
the development interval, and to get meaningful PMI it may be necessary to combine
insect age with the PAI [5,11,103]. PAI may also support estimates of maximum PMI
when insect evidence is absent [104,105]. PAI may be estimated using the temperature
models for PAI [106]. However, such models are available only for some taxa, and for
several important taxa (e.g., blow flies) PAI may not be estimated using the temperature
data [107,108]. In such cases, insect succession studies with animal cadavers (preferably
large pigs [102]) yield the best PAI reference data (e.g., average seasonal PAIs). As for the
PI, it has a more complex causal background than PAI, its predictions are inherently related
with larger inaccuracy (Figure 1) and currently it may be approximated only based on the
reference data from succession studies. Although in some habitats and locations robust PAI
or PI datasets are available for many taxa, usually there is shortage of such data (Table 3).
In particular, indoor habitats need more attention. Therefore, pig decomposition studies to
yield PAI and PI data of forensically relevant insects should be one of the priority research
areas in forensic entomology.

Third, decomposition experiments using pig cadavers may be useful to validate
the PMI estimation protocols [109]. Such experiments are especially suitable as proof-of-
concept studies or initial validation studies [102]. Although validation of new methods is a
priority in forensic sciences [110], datasets on the performance of insect-based methods for
PMI are very limited. Validation using pig cadavers (ultimately also human cadavers [102])
should be another primary research area in forensic entomology (Section 6 of this article).

There are guidelines for decomposition studies in forensic entomology [102,111–115].
Still, however, more standardization is necessary, particularly in terms of the sampling
frequency, insect identifications and the presentation of the results (summarized in [116]).
We need to remember that PAI and PI data for particular taxa are necessary when results of
the study are to be used for the estimation of PMI. Therefore, the data for immature insects
should be prioritized. When only a few cadavers were used, a daily occurrence matrix may
be the best choice to present the results in a forensically useful way [117,118]. When more
cadavers were investigated, it may be necessary to present insect occurrences in a synthetic
way, but still raw data from individual cadavers (or seasonal averages) should be given on
the PAI and PI of particular insect taxa (e.g., [119]).

Table 3. Datasets on the pre-appearance interval (PAI) and the presence interval (PI) of the species that breed in large
vertebrate cadavers in central Europe (species list compiled based on [20–25]). I reviewed datasets derived from experiments
performed in Europe and on pig cadavers only.

Family Species
PAI PI—Seasonal Data

(Country/Habitat/Season/Stage) References

Temperature Model Seasonal Data
(Country/Habitat/Season/Stage)

Calliphoridae Calliphora vicina -

PL/F/S/A,L1
IT/Ou/u/Au,W/A
AT/Ou/u/S,Su/A

PT/Ou/u/S,Su,Au,W/A
PT/Ou/u/S,Au,W/O,L1,P

ES/I/S,Su,Au,W/O

PL/F/S/A,L
IT/Ou/u/Au,W/A
AT/Ou/u/S,Su/A

PT/Ou/u/S,Su,Au,W/A
PT/Ou/u/S,Au,W/E,L,P

ES/I/S,Su,Au,W/E

[22,119–122]
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Table 3. Cont.

Family Species
PAI PI—Seasonal Data

(Country/Habitat/Season/Stage) References

Temperature Model Seasonal Data
(Country/Habitat/Season/Stage)

Calliphora vomitoria -

PL/F/S,Su,Au/A,L1,L3
IT/Ou/u/Au,W/A

AT/Ou/u/S/A
PT/Ou/u/S,Su,Au,W/A
PT/Ou/u/S,W/O,L1,P

ES/I/S/O

PL/F/S,Su,Au/A,L
IT/Ou/u/Au,W/A

AT/Ou/u/S/A
PT/Ou/u/S,Su,Au,W/A

PT/Ou/u/S,W/E,L,P
ES/I/S/E

[22,25,119–123]

Chrysomya albiceps -

IT/Ou/u/Su,Au/A
AT/Ou/u/Su/A

PT/Ou/u/Su,Au/A
PT/Ou/u/Su,Au/O,L1,P

ES/I/S,Su,Au/O

IT/Ou/u/Su,Au/A
AT/Ou/u/Su/A

PT/Ou/u/Su,Au/A
PT/Ou/u/Su,Au/E,L,P

ES/I/S,Su,Au/E

[22,120–122]

Lucilia caesar -

PL/Ou/r/S,Su/A,L3
PL/F/S,Su,Au/A,L1,L3
IT/Ou/u/Su,Au,W/A
PT/Ou/u/S,Su,Au/A

PT/Ou/u/S,Su,Au/O,L1,P

PL/F/S,Su,Au/A,L
IT/Ou/u/Su,Au,W/A
PT/Ou/u/S,Su,Au/A

PT/Ou/u/S,Su,Au/E,L,P

[21,25,119–121,123]

Lucilia sericata -

PL/Ou/r/S,Su/A
IT/Ou/u/Su,Au,W/A
PT/Ou/u/S,Su,Au/A
PT/Ou/u/Au/O,L1,P

ES/I/S,Su,Au/O

IT/Ou/u/Su,Au,W/A
PT/Ou/u/S,Su,Au/A
PT/Ou/u/Au/E,L,P

ES/I/S,Su,Au/E

[21,120–122]

Phormia regina A

PL/Ou/r/S,Su/A
PL/F/S,Su,Au/A,L1
AT/Ou/u/S,Su/A

PL/F/S,Su/L3

PL/F/S,Su,Au/A,L
AT/Ou/u/S,Su/A [21,22,25,107,119,123]

Protophormia terraenovae - AT/Ou/u/S,Su/A AT/Ou/u/S,Su/A [22]

Sarcophagidae Sarcophaga argyrostoma - - - -

Sarcophaga caerulescens - - - -

Muscidae Hydrotaea dentipes A
PL/F/S,Su,Au/A
PT/Ou/u/S/A
PL/F/S,Su/L1

PL/F/S,Su,Au/A
PT/Ou/u/S/A
PL/F/S,Su/L

[25,107,119,121,123]

Hydrotaea ignava A

PL/Ou/r/S,Su/A,L3
PL/F/S,Su,Au/A

PT/Ou/u/S,Su,Au/A
PL/F/S,Su/L1
PL/F/Su/L3

PL/F/S,Su,Au/A
PT/Ou/u/S,Su,Au/A

PL/F/S,Su/L
[21,25,107,119,121]

Hydrotaea pilipes - PL/Ou/r/S,Su/A
PL/F/S,Su,Au/A PL/F/Su,Au/A [21,25,123]

Fanniidae Fannia canicularis - IT/Ou/u/Au,W/A IT/Ou/u/Au,W/A [120]

Fannia scalaris - - - -

Fannia leucosticta - - - -

Piophilidae Stearibia nigriceps A,O

PL/Ou/r/S,Su/A,L3
PL/F/S,Su,Au/A,L1

IT/Ou/u/Au/A
PT/Ou/u/S,Su,Au/A

PT/Ou/u/Su/E
PT/Ou/u/S,Su,Au/L1,P

PL/F/S,Su/L3

PL/F/S,Su,Au/A,L
IT/Ou/u/Au/A

PT/Ou/u/S,Su,Au/A
PT/Ou/u/Su/E

PT/Ou/u/S,Su,Au/L,P

[21,25,107,119–121,123]

Silphidae Necrodes littoralis A,L1 PL/Ou/r/S,Su/A,L1
PL/F/S,Su,Au/A,L1 PL/F/S,Su,Au/A,L [21,25,103,119,123,124]

Thanatophilus rugosus -
PL/F/S,Su,Au/A

IT/F/W/A
PL/Ou/r/S/L3

PL/F/Su,Au/A
IT/F/W/A

PL/Ou/r/S/L3
[25,120,123,125]

Thanatophilus sinuatus A,L1

PL/Ou/r/S,Su/a
PL/F/S,Su,Au/A
IT/Ou/u/W/A

PT/Ou/u/S,Au,W/A
PL/Ou/r/S/L3

PL/F/S,Su,Au/A
IT/Ou/u/W/A

PT/Ou/u/S,Au,W/A
PL/Ou/r/S/L3

[21,25,119,120,124–126]

Histeridae Margarinotus brunneus A
PL/Ou/r/S,Su/A

PL/F/S,Su/A
PT/Ou/u/S,Su,Au,W/A

PL/F/S,Su/A
PT/Ou/u/S,Su,Au,W/A [21,25,119,124,126]

Saprinus planiusculus A PL/F/S/A PL/F/S/A [119,124]

Saprinus semistriatus A PL/Ou/r/S,Su/A
PL/F/S,Su,Au/A PL/F/S,Su,Au/A [21,25,119,123,124]
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Table 3. Cont.

Family Species
PAI PI—Seasonal Data

(Country/Habitat/Season/Stage) References

Temperature Model Seasonal Data
(Country/Habitat/Season/Stage)

Staphylinidae Aleochara curtula - PL/F/S,Su/A
IT/Ou/u/W/A IT/Ou/u/W/A [25,120]

Creophilus maxillosus A,L1

PL/Ou/r/S,Su/A,L1
PL/F/S,Su,Au/A,L1
IT/Ou/u/Au,W/A

PT/Ou/u/S,Su,Au,W/A

PL/F/S,Su,Au/A,L
IT/Ou/u/Au,W/A

PT/Ou/u/S,Su,Au,W/A

[21,25,119,120,123,124,
126,127]

Philonthus politus A PL/F/S,Su,Au/A
IT/Ou/u/Au/A IT/Ou/u/Au/A [25,120,124]

Dermestidae Dermestes frischii - PL/Ou/r/S,Su/A,L1
PT/Ou/u/S,Su,Au/A PT/Ou/u/S,Su,Au/A [21,126]

Dermestes lardarius - - - -

Dermestes murinus - PL/F/S,Su,Au/A
PL/F/S/Lm PL/F/Su,Au/A [25,123]

Nitidulidae Omosita colon - - - -

Cleridae Necrobia rufipes A IT/Ou/u/Su,W/A
PT/Ou/u/Su,Au/A

IT/Ou/u/Su,W/A
PT/Ou/u/Su,Au/A [120,124,126]

Necrobia violacea A

PL/Ou/r/S,Su/A
PL/F/S,Su/A

PT/Ou/u/S,Su,Au,W/A
PL/F/S/L3

PT/Ou/u/S,Su,Au,W/A
PL/F/S/L3 [21,25,119,124,126]

Pteromalidae Nasonia vitripennis - AT/Ou/u/S/A AT/Ou/u/S/A [22]

A—adult stage PAI or PI, O—oviposition PAI, E—egg PI, L1—first instar larvae PAI, L—larval PI, L3—third instar larvae PAI or PI,
Lm—mature larvae PAI or PI, P—puparial/pupal PAI or PI. S—spring, Su—summer, Au—autumn, W—winter. I—indoor habitats, Ou/u—
outdoor, urban habitats, Ou/r—outdoor, rural habitats, F—forests. AT—Austria, ES—Spain, IT—Italy, PL—Poland, and PT—Portugal.

5. Temperature Conditions

The succession and development of insects on cadavers is largely dependent on the
temperature [124,128,129]. When estimating PMI from insect succession or development,
it is necessary to reconstruct temperature conditions. The accuracy of the PMI estimation
depends largely on the accuracy of the reconstructed temperature conditions. This source
of error is one of the most important.

Forensic entomologists frequently use temperature data from the local weather sta-
tions. Weather station temperatures can be corrected to adjust them to the peculiarities
of a death scene [130–134]. Such corrections are based on the regression analysis between
recordings made on a death scene and recordings from the station and for this reason they
may be unfeasible [135]. Moreover, some authors indicate that the correction protocol
has uncertain benefits for the accuracy of PMI estimation [135,136]. From the other side,
there are robust experimental data indicating that the protocol improves the death scene
temperatures [130,132–134]. It was found beneficial in casework, as well [5,132], although
it was used infrequently [134]. The protocol may be impractical and its use may have a
minor risk of deteriorating the death scene temperatures; however, it is the best tool we
have and we should try to use it more frequently, particularly on outdoor death scenes. We
need to remember that the protocol makes the weather station temperatures closer to the
cadaver’s ambient temperatures only. Therefore, the corrected temperatures may still be
far from the true temperatures experienced by the insects, because the protocol accounts
for peculiarities of a death scene in terms of the factors that affect ambient air temperature
only. In order to take into account other important factors a different approach is needed.

Some authors modelled temperature conditions in parked vehicles [137], contain-
ers [138] or specific urban and semi-natural habitats (e.g., cellars, attics or trailers) [139]. A
model was also derived to extract heat profiles representing the temperatures experienced
by insect populations growing on cadavers [140]. Charabidze and Hedouin [135] devel-
oped an algorithm to correct temperatures through a qualitative analysis of thermal-specific
aspects of the case. The analysis consisted of six stages, starting from the conditions on a
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cadaver and moving towards the outside of the body. This research area is growing and
both quantitative and qualitative approaches may be useful here.

The last factor that needs much more of our attention is the insect-driven thermogenesis.
It has been discovered and extensively studied in aggregations of blow fly larvae [141–152].
Recently, insect-driven thermogenesis has been also reported for carrion beetles Necrodes
littoralis L. (Silphidae), with evidence that heat is produced within the feeding matrix, which
is formed by adult and larval beetles through spreading their exudates over the cadaver
surface [153]. Thermogenesis in larval aggregations may be more common among carrion
insects, and because it may substantially shorten the development interval, it should be factored
when reconstructing temperature conditions [151,153].

When large aggregations of fly larvae (with elevated temperature) are present on
a cadaver, Charabidze and Hedouin [135] suggest to use the minimum development
time for the feeding stage of each species. Unfortunately, minimum times needed to
reach the post-feeding phase in large aggregations of larvae are not available for any
species. Accordingly, it may be tempting to use minimum development times from the
laboratory development studies, as there are many such datasets (Table 2). However, in
such studies minimum development times are recorded at high and constant temperatures
that may be suboptimal for the insects. Experiments using the tracking of blow fly larvae
within aggregations indicated that they have a strong preference for the hottest part of
the aggregation [154]. This finding prompted the authors to state that the maximum
temperatures of the aggregation represent the actual temperatures experienced by the
larvae [154]. More recent data demonstrated that larvae continuously move between the
periphery and the inside of the aggregation, with individual larvae spending from 16 to
68% (mean 43%) of their time at the aggregation periphery [155]. The periphery has a
lower temperature than the inside of the aggregation [154]. For this reason, the heat gain
of individual larvae may be smaller than if they were feeding for the whole time in the
hottest part of the aggregation. The maximum temperature of the aggregation probably
overestimates the true temperatures experienced by the larvae. Perhaps the heat benefit of
the aggregated larvae is somehow related to the temperatures selected by the larvae along
a thermal gradient [143,154,156]. Further research using tracking techniques to monitor
heat benefits and the development time of individual larvae within large aggregations will
be necessary to find the minimum development times or the optimal temperatures for the
larvae that develop in an aggregation.

6. Challenging Evidence

All insect evidence can be challenging in some cases, and some types are always
challenging. The puparia of flies and pupae of beetles are informative pieces of insect
evidence, particularly on decomposed cadavers [5,11]. However, they are difficult to
identify and it is difficult to estimate their age.

The identification of insect evidence is a necessary first step in any analysis. Significant
progress has been recently made in this field, with several forensically important fly taxa
gaining excellent identification keys for adult insects [13,157–161] and larvae [162–164].
Puparia should be the next step. Although some groups of carrion flies have useful descrip-
tions of puparia [165], there is no forensically useful key for this type of insect evidence
in any family of flies. This area is much less developed in the case of the forensically
important beetles. There is just a single identification key for the larvae of beetles that colo-
nize cadavers [166] and a single key for the adult carrion beetles (Silphidae) that frequent
cadavers [167]. Although some descriptions of larval identification features have been
published for forensically important species [168,169], this group needs more attention.
Otherwise, we will still have to base our identifications on the taxonomic references that
may be inaccessible to forensic entomologists with no experience in beetle taxonomy.

It is difficult to estimate the age of the fixed puparia of flies and pupae of beetles. The
most promising techniques for aging such evidence consist of the qualitative morphological
analyses of the intra-puparial forms of the flies [30,35,36]. Intra-puparial development has
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been documented for many forensically important species [35,65,78,170–175]. Although
these techniques have obvious advantages (e.g., they cover most of the intra-puparial de-
velopment, they are generally non-destructive, low-cost and they need a stereomicroscope
only), they have also important disadvantages (e.g., they are qualitative in nature and
therefore less accurate and they are also impractical due to the need to have an expert
knowledge in the intra-puparial morphology) [82]. Recently, a simple-to-use technique has
been developed for aging pupae of the carrion beetle Necrodes littoralis by means of the
quantification of the eye-background contrast, with very encouraging results of the initial
validation [82]. Similar quantitative techniques should be developed in other forensically
important insects.

Empty puparia (i.e., hardened outer shells that remain upon the completion of im-
mature development of some flies) are frequently collected on cadavers with long PMI,
and their examination may provide an estimate of the minimum PMI [176]. This type of
insect evidence poses specific difficulties. When estimating minimum PMI based on the
empty puparium, it is necessary to take the post-eclosion interval (PEI) into account. The
interval starts when an adult fly emerges from the puparium and ends when the empty
puparium is being collected. PEI may be longer than the minimum PMI estimated based
on the puparium. Although techniques to estimate PEI are being developed [177–179],
they are far from the implementation to forensic casework. In a recent PMI simulation
study, seasonal patterns of changes in PMI following various PEIs were revealed for the
empty puparia of two species of flies, demonstrating that the simulation studies may guide
estimation of the minimum PMI based on such challenging evidence [176].

7. Validation of the PMI Estimation Protocols

Forensic entomologists developed several methods for the estimation of PMI based on
insect development [26,41,180–182] or succession [103,105,115,117,118,128,183]. As there
are contemporary reviews of these methods [1,184], in this article I focus only on their
validation (Table 4). Validation of a protocol for the estimation of PMI is of key importance,
as it may demonstrate that the protocol provides robust evidence when used in a forensic
context. Validation studies may also provide PMI errors that could be used to present a
PMI estimate as a meaningful interval. Sometimes entomologists provide point estimates
for PMI (e.g., [185,186]). The inaccuracy of the PMI estimate that usually has many and
diverse sources, but which is inherently related to every analysis of insect evidence, should
be explicit in casework. This may be accomplished by providing ranges for PMI. Therefore,
an interval estimate for PMI should be a standard way to present the results of the insect
evidence analysis. If we knew robust errors, they could be used to transform any PMI
estimate (a point or a range) into a highly informative interval that takes into account all
sources of inaccuracy. The error of estimation is the difference between the estimated and
true PMI, expressed as a percentage of the true or estimated PMI (hereafter error I and II).
If such errors were calculated for a reliable sample of PMI estimations, i.e., a large sample
of forensic case reports with known true PMI or a large sample of PMI estimations for
experimentally used human cadavers, they might robustly approximate the accuracy of
the PMI estimation protocol in a forensic context. I believe that such errors could also yield
a truly informative evaluation of the uncertainty in PMI estimates in casework.

Most of the validation studies in forensic entomology were proof-of-assumptions or
proof-of-concept studies (Table 4). Experiments fully validating the estimation protocols
were rare. Only a few such datasets have been published; most used pig cadavers and
were replicated moderately, at most. Human cadavers in anthropology research facilities
(i.e., body farms) could be used more extensively for that purpose. The estimation of PMI
for such cadavers using mock crime scenarios could provide robust validation data. This
research design is surprisingly underutilised at body farms.

Similarly, validations using casework data were infrequent (Table 4). In order to use
the casework data for the validation, a true PMI needs to be specified based on a confession
or a witness statement about when the victim was last seen alive, or other non-insect
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evidence. Although the non-insect evidence only approximates the true PMI sensu stricto,
this is the only way to use casework data for the validation. However, published case
reports rarely provide information on the true PMI sensu largo. In order to calculate the
errors of insect-based protocols for PMI, I analyzed relevant case reports where the PMI was
estimated based on insect development (Table 5) and separately based on insect succession
(Table 6). Due to the imperfections of the data used, resultant errors need to be treated
with caution. They are only rough approximations of the true errors of the insect-based
protocols for PMI.

Table 4. Validation of the protocols for the estimation of PMI based on insect evidence.

Type of the Validation Aims
Development-Based Protocols Succession-Based Protocols

Number of Studies References Number of Studies References

Proof-of-assumptions
study 1

Testing validity of the
assumptions that are at
the root of the protocol

26 [14,17–19,27,29,30,34,41,55–
57,61,144,145,176,187–196] 56 [20,21,24,25,103,107,113,119,

122,124,127,128,197–240]

Proof-of-concept study 1
Testing validity of the
protocol as used in a

simplified setting
12 [30,73,81,82,87–89,241–245] 3 [103,127,128]

Experimental validation
with non-human

cadavers

Testing validity of the
protocol as used for

non-human cadavers in
an experimental setting

6 [109,241,246–249] 6 [105,106,183,249–251]

Experimental validation
using human cadavers

Testing validity of the
protocol as used for

human cadavers in an
experimental setting

0 1 [183]

Validation using
casework data 1

Testing validity of the
protocol as used in
forensic casework

7 [46,118,182,185,252–254] 6 [5,108,118,186,255,256]

1 Selected studies were referenced.

There were surprisingly large differences between the cases. Errors I (differences
between the true and estimated PMI expressed as the percentage of the true PMI) ranged
from 0 to 83% for the development-based estimates (Table 5) and from 2 to 43% for
the succession-based estimates (Table 6). Surprisingly, average errors were larger for
the development-based estimates (22.3%) than the succession-based estimates (13.4%).
Although the average difference between the true and estimated PMI was almost four
times lower for the development-based estimation than the succession-based estimation
(1.5 and 5.6 days respectively, Tables 5 and 6), the latter type of the estimation was usually
used for cadavers with a much larger PMI (Table 6); therefore, it had lower errors, which
are relative values. Differences between the true and estimated PMI increased with the
increase in the true PMI, and this relationship was particularly apparent when plotted for
the development-based estimates (Figure 2).

Summarizing, the protocols for the estimation of PMI based on insect evidence usually
lack errors and their validity has been rather poorly demonstrated in a true forensic context.
Therefore, validation studies using pig or human cadavers and casework data should be
prioritized in forensic entomology. I think this is our greatest challenge.



Insects 2021, 12, 314 11 of 21
Insects 2021, 12, x 13 of 22 
 

 

 
Figure 2. Differences between the true and estimated PMI plotted against the true PMI for the esti-
mations based on insect development that were referenced in Table 5. 

Summarizing, the protocols for the estimation of PMI based on insect evidence usu-
ally lack errors and their validity has been rather poorly demonstrated in a true forensic 
context. Therefore, validation studies using pig or human cadavers and casework data 
should be prioritized in forensic entomology. I think this is our greatest challenge. 

8. Conclusions 
Although the set of challenges elucidated in this article is somehow subjective, I be-

lieve that most forensic entomologists would construct similar sets. Some challenges 
should focus more of our attention, with priority for the resultant research. This applies, 
in particular, to the validation research, as well as to development and succession re-
search. Studies on thermogenesis in larval aggregations on cadavers should be prioritized 
as well. There are also highly important challenges of educational and promotional na-
ture. Although we should look for more optimal guidelines for insect sampling on a death 
scene, and this is a scientific task, improvement in the samples taken by a law enforcement 
personnel depends equally or even more on the promotion of forensic entomology among 
its end-users and on the education of the officers or medical examiners that collect insect 
evidence on death scenes. 

Funding: This research received no external funding. 

Acknowledgments: I thank the anonymous reviewers for their comments that helped to improve 
the manuscript. Thanks are also extended to Anna Mądra-Bielewicz (Poznań, Poland) for pictures 
of insects that were used in Figure 1. 

Conflicts of Interest: The author declares no conflict of interest. 

References 
1. Villet, M.H.; Amendt, J. Advances in entomological methods for death time estimation. In Forensic Pathology Reviews; Turk, E.E., 

Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 213–237. 
2. Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. 
3. Lei, G.; Liu, F.; Liu, P.; Zhou, Y.; Jiao, T.; Dang, Y.-H. A bibliometric analysis of forensic entomology trends and perspectives 

worldwide over the last two decades (1998–2017). Forensic Sci. Int. 2019, 295, 72–82, doi:10.1016/j.forsciint.2018.12.002. 
4. Tomberlin, J.K.; Benbow, M.E. Forensic Entomology: International Dimensions and Frontiers; CRC Press: Boca Raton, FL, USA, 2015. 
5. Matuszewski, S.; Mądra-Bielewicz, A. Post-mortem interval estimation based on insect evidence in a quasi-indoor habitat. Sci. 

Justice 2019, 59, 109–115. 
6. Sanford, M.R.; Pechal, J.L.; Tomberlin, J.K. Rehydration of forensically important larval Diptera specimens. J. Med. Entomol. 

2011, 48, 118–125. 

Figure 2. Differences between the true and estimated PMI plotted against the true PMI for the
estimations based on insect development that were referenced in Table 5.

Table 5. Errors of the protocols for the estimation of PMI based on insect development.

Reference N
True PMI 1

(days)

Difference
True-Estimated PMI

2

(days)

Error I 3

(%)
Error II 4

(%) Remarks

Mean Range Mean Range Mean Range Mean Range

Goff et al.,
1988 [252] 2 5.5 5–6 0.375 0.25–0.5 6.65 5–8.3 6.95 4.8–9.1 -

Kashyap, Pillay,
1989 [185] 16 4.9 0.5–9 0.438 0–1 13.74 0–50 11.65 0–33.3

No mention
of tempera-

ture
data

Grassberger et al.,
2003 [46] 1 17 - 3 - 17.65 - 20 - -

Reibe et al., 2010
[182] 1 4 - 0.125 - 3.125 - 3.03 - -

Pohjoismäki et al.,
2010 [253] 7 10.6 5–19 4.57 2.5–7 48.96 21.1–83.3 144.2 26.7–500

Single
average
tempera-

ture
assumed in

all cases
(24 ◦C)

Bugelli et al., 2015
[254] 4 4.0 2–6 0.94 0.5–1.5 23.75 20–25 31.25 25–33 -

N—a number of PMI estimations in a dataset. 1 PMI determined based on non-insect evidence (a confession, a witness statement
about when the victim was last seen alive, etc.). 2 An absolute difference between the true PMI and the PMI estimated based on insect
development. When the estimated PMI was presented as an interval, I calculated absolute differences between the true PMI and the
lower and upper limit of the estimated interval and then averaged them to get the difference between the true and estimated PMI. 3 Error
I = (the difference between the true and estimated PMI/true PMI) × 100. 4 Error II = (the difference between the true and estimated
PMI/estimated PMI) × 100. When the estimated PMI was presented as an interval, a midpoint of the interval was used in denominator.
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Table 6. Errors of the protocols for the estimation of PMI based on insect succession.

Reference N True PMI 1

(days)
Estimated
PMI (days)

Difference
True-

Estimated
PMI 2 (days)

Error I 3 (%) Error II 4 (%) Remarks

Goff et al., 1986 [256] 1 20 19–20 0.5 2.5 2.6 -

Goff and Odom, 1987 [186] 1 53 ≥52 1 1.9 1.9 -

Goff and Flynn, 1991 [255] 1 38 34–39 2.5 6.6 6.8 -

Schoenly et al., 1996 [118] 2
11 10.5–11 0.25 2.3 2.3 -
36 34–36 1 2.8 2.9

Archer, 2014 [108] 1 21 16–34 9 42.9 36 -

Matuszewski and
Mądra-Bielewicz, 2019 [5] 1 72 30–64 25 34.7 53.2 Less reliable

true PMI

N—a number of PMI estimations in a dataset. 1 PMI determined based on non-insect evidence (a confession, a witness statement about
when the victim was last seen alive, etc.). 2 An absolute difference between the true PMI and the PMI estimated based on insect succession.
When the estimated PMI was presented as an interval, I calculated absolute differences between the true PMI and the lower and upper
limit of the estimated interval and then averaged them to get the difference between the true and estimated PMI. 3 Error I = (the difference
between the true and estimated PMI/true PMI) × 100. 4 Error II = (the difference between true and estimated PMI/estimated PMI) × 100.
When the estimated PMI was presented as an interval, a midpoint of the interval was used in denominator.

8. Conclusions

Although the set of challenges elucidated in this article is somehow subjective, I
believe that most forensic entomologists would construct similar sets. Some challenges
should focus more of our attention, with priority for the resultant research. This applies, in
particular, to the validation research, as well as to development and succession research.
Studies on thermogenesis in larval aggregations on cadavers should be prioritized as
well. There are also highly important challenges of educational and promotional nature.
Although we should look for more optimal guidelines for insect sampling on a death
scene, and this is a scientific task, improvement in the samples taken by a law enforcement
personnel depends equally or even more on the promotion of forensic entomology among
its end-users and on the education of the officers or medical examiners that collect insect
evidence on death scenes.
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