Next Article in Journal
The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees (Apis mellifera L.)
Previous Article in Journal
Application of Remote Sensing Data for Locust Research and Management—A Review
Article

Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability

1
Department of Biology, Division of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
2
Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
*
Authors to whom correspondence should be addressed.
Academic Editor: Andrés Millán
Insects 2021, 12(3), 234; https://doi.org/10.3390/insects12030234
Received: 12 February 2021 / Revised: 4 March 2021 / Accepted: 8 March 2021 / Published: 10 March 2021
Freshwater biodiversity is facing a severe crisis due to many different human-caused impacts, such as climate change, pollution, habitat alterations, etc. Aquatic insects are one of the most important bioindicators used in freshwater ecological quality assessment systems, yet knowledge on diversity dynamics of their communities is incomplete. In the current study, we compare and evaluate performance of different diversity measures, i.e., commonly used simple diversity indices vs. novel complex measures incorporating ecological information of species (feeding behavior and stream zonation preferences). As a target group, we chose caddisflies, a species-rich, aquatic insect order, in different habitats of an anthropogenically unimpacted, connected karst barrage lake/riverine system. In line with our hypothesis, the complex diversity measures were more efficient in ranking and distinguishing different habitats, particularly the ones with similar communities. We also constructed a novel measure to rank the habitats by sensitivity to climate change, based on diversity of caddisfly communities and vulnerability of species inhabiting them. As expected, the springs were ranked as most vulnerable habitats. Our study further underlines the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities.
Freshwater biodiversity is facing a severe crisis due to many human impacts, yet the diversity dynamics of freshwater communities and possibilities of assessing these are vastly unexplored. We aimed at emphasizing different aspects of portraying diversity of a species-rich, aquatic insect group (caddisflies; Trichoptera) across four different habitats in an anthropogenically unimpacted, connected karst barrage lake/riverine system. To define diversity, we used common indices with pre-set sensitivity to species abundance/dominance; i.e., sensitivity parameter (species richness, Shannon, Simpson, Berger-Parker) and diversity profiles based on continuous gradients of this sensitivity parameter: the naïve and non-naïve diversity profiles developed by Leinster and Cobbold. The non-naïve diversity profiles show diversity profiles with regard to the similarity among species in terms of ecological traits and preferences, whereas the naïve diversity profile is called mathematically “naïve” as it assumes absolute dissimilarity between species that is almost never true. The commonly used indices and the naïve diversity profile both ranked the springs as least diverse and tufa barriers as most diverse. The non-naïve diversity profiles based on similarity matrices (using feeding behavior and stream zonation preferences of species), showed even greater differences between these habitats, while ranking stream habitats close together, regardless of their longitudinal position. We constructed the Climate Score index (CSI) in order to assess how diversity and species’ vulnerability project the community’s resistance and/or resilience to climate change. The CSI ranked the springs as most vulnerable, followed by all habitats longitudinally placed below them. We highlight the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities. View Full-Text
Keywords: diversity profile; non-naïve diversity profile; similarity matrix; sensitivity parameter q; climate change vulnerability diversity profile; non-naïve diversity profile; similarity matrix; sensitivity parameter q; climate change vulnerability
Show Figures

Figure 1

MDPI and ACS Style

Pozojević, I.; Ivković, M.; Cetinić, K.A.; Previšić, A. Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability. Insects 2021, 12, 234. https://doi.org/10.3390/insects12030234

AMA Style

Pozojević I, Ivković M, Cetinić KA, Previšić A. Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability. Insects. 2021; 12(3):234. https://doi.org/10.3390/insects12030234

Chicago/Turabian Style

Pozojević, Ivana, Marija Ivković, Katarina A. Cetinić, and Ana Previšić. 2021. "Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability" Insects 12, no. 3: 234. https://doi.org/10.3390/insects12030234

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop