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Simple Summary: Locust outbreaks around the world regularly affect vast areas and millions of 

people. Mapping and monitoring locust habitats, as well as prediction of locust outbreaks is essen-

tial to minimize the damage on crops and pasture. In this context, remote sensing has become one 

of the most important data sources for effective locust management. This review paper summarizes 

remote sensing-based studies for locust management and research over the past four decades and 

reveals progress made and gaps for further research. We quantify which locust species, regions of 

interest, sensor data and variables were mainly used and which thematic foci were of interest. Our 

review shows that most studies were conducted for the desert locust, the migratory locust and Aus-

tralian plague locust and corresponding areas of interest. Remote sensing studies for other destruc-

tive locust species are rather rare. Most studies utilized data from optical sensors to derive NDVI 

and land cover for mapping and monitoring the locust habitats. Furthermore, temperature, precip-

itation and soil moisture are derived from thermal infrared, passive and active radar sensors. Ap-

plications of the European Sentinel fleet, entire Landsat archive or very-high-spatial-resolution data 

are rare. Implementing new methods (e.g., data fusion) and additional data sources could provide 

new insights for locust research and management. 

Abstract: Recently, locust outbreaks around the world have destroyed agricultural and natural veg-

etation and caused massive damage endangering food security. Unusual heavy rainfalls in habitats 

of the desert locust (Schistocerca gregaria) and lack of monitoring due to political conflicts or inacces-

sibility of those habitats lead to massive desert locust outbreaks and swarms migrating over the 

Arabian Peninsula, East Africa, India and Pakistan. At the same time, swarms of the Moroccan lo-

cust (Dociostaurus maroccanus) in some Central Asian countries and swarms of the Italian locust 

(Calliptamus italicus) in Russia and China destroyed crops despite developed and ongoing monitor-

ing and control measurements. These recent events underline that the risk and damage caused by 

locust pests is as present as ever and affects 100 million of human lives despite technical progress 

in locust monitoring, prediction and control approaches. Remote sensing has become one of the 

most important data sources in locust management. Since the 1980s, remote sensing data and ap-

plications have accompanied many locust management activities and contributed to an improved 

and more effective control of locust outbreaks and plagues. Recently, open-access remote sensing 

data archives as well as progress in cloud computing provide unprecedented opportunity for re-

mote sensing-based locust management and research. Additionally, unmanned aerial vehicle 

(UAV) systems bring up new prospects for a more effective and faster locust control. Nevertheless, 

the full capacity of available remote sensing applications and possibilities have not been exploited 

yet. This review paper provides a comprehensive and quantitative overview of international re-

search articles focusing on remote sensing application for locust management and research. We re-

viewed 110 articles published over the last four decades, and categorized them into different aspects 

and main research topics to summarize achievements and gaps for further research and application 

development. The results reveal a strong focus on three species—the desert locust, the migratory 
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locust (Locusta migratoria), and the Australian plague locust (Chortoicetes terminifera)—and corre-

sponding regions of interest. There is still a lack of international studies for other pest species such 

as the Italian locust, the Moroccan locust, the Central American locust (Schistocerca piceifrons), the 

South American locust (Schistocerca cancellata), the brown locust (Locustana pardalina) and the red 

locust (Nomadacris septemfasciata). In terms of applied sensors, most studies utilized Advanced Very-

High-Resolution Radiometer (AVHRR), Satellite Pour l’Observation de la Terre VEGETATION 

(SPOT-VGT), Moderate-Resolution Imaging Spectroradiometer (MODIS) as well as Landsat data 

focusing mainly on vegetation monitoring or land cover mapping. Application of geomorphological 

metrics as well as radar-based soil moisture data is comparably rare despite previous acknowledge-

ment of their importance for locust outbreaks. Despite great advance and usage of available remote 

sensing resources, we identify several gaps and potential for future research to further improve the 

understanding and capacities of the use of remote sensing in supporting locust outbreak- research 

and management. 

Keywords: locust monitoring; locust outbreak; remote sensing; locust habitat; locust pest 

 

1. Introduction 

Locust and grasshopper pests have been destroying agriculture and affecting human 

lives by causing major food security challenges since ancient times and serious outbreaks 

are documented both in historical sources and modern literature [1–4]. There are approx-

imately one dozen serious pest locust and grasshopper species, which are capable of mi-

grating great distances and are destructive to crops, pastures and other green vegetation 

during their gregarious phase [5,6]. Locusts differ from other insects because their popu-

lation can grow rapidly, forming dense bands and swarms [4]. In the solitarious phase, 

locusts are an important part of ecosystems. However, a change in environmental condi-

tions and growth in population may initiate the gregarious phase, which can lead to an 

outbreak [4]. Furthermore, locust population dynamics are also influenced by land man-

agement [7]. For locust phase polyphenism and population density research, we refer the 

reader to [8–11]. 

One of the most destructive species, the desert locust (Schistocerca gregaria), is respon-

sible for the most dramatic and sudden outbreaks and plagues in the 20th and 21st centu-

ries [4,12]. Low populations of the desert locust are usually present at any time across a 

vast recession area of 16 million km2, stretching from West Africa to Southwest Asia [13]. 

Migrating downwind, the desert locust breed sequentially where winter, spring and sum-

mer rains are falling [14]. Warm weather conditions and unusual heavy rainfalls com-

bined with a lack of monitoring created perfect conditions for the recent 2019/2020 out-

break, which was evident in large occupied areas across East African countries, the Ara-

bian Peninsula, Pakistan and India [15,16]. Apart from desert locust outbreaks, there were 

local outbreak occurrences of the Moroccan locust (Dociostaurus maroccanus) in parts of 

Central Asia, the Italian locust (Calliptamus italicus) in parts of East Russia, the South 

American locust (Schistocerca cancellata) in parts of Paraguay and Argentina, the African 

migratory locust (Locusta migratoria migratorioides) in Botswana, Namibia, Zambia and 

Zimbabwe as well as Yellow-spined bamboo locust (Ceracris kiangsu) in parts of Vietnam, 

Laos and China [17]. Furthermore, an unexpected Moroccan locust outbreak during sum-

mer 2019 and 2020 destroyed several thousand hectares of crops in Sardinia, Italy [18]. 

These recent large-scale as well as local outbreak events of different locust species around 

the world underline the actual presence of locust pest risk for food security, their destruc-

tive effects and the importance of functioning locust management services. 

Outbreaks of locust and grasshopper are either chronic (e.g., grasshoppers in the Af-

rican Sahel and grasshoppers/locusts in China) or episodic, with alternating periods of 

invasion and recession (e.g., the Australian plague locust and the desert locust) [4]. Locust 
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outbreaks have many negative effects on land management, food security and the natural 

environment, ranging from total damage of crops and grazing fields to negative effects 

from control measurements when using insecticides. In Figure 1, we summarize general 

effects of locust outbreaks. In particular, the damage to crops and chemical contamination 

caused by control measurements have short- to long-term negative impacts [4,19]. 

 

Figure 1. Schematic sketch of locust interaction during the gregarious phase (outbreak) with the natural environment, 

agriculture and human settlements. Information extracted from [3,4,20]. 

Due to the size of the impact, locust management and control are essential. Locust 

management is complex and requires a multi-disciplinary approach including entomol-

ogy, biology, and ecology, with aspects of spatial distribution modelling, climate analysis, 

weather prediction, organism behavior and interaction with other species (e.g., birds and 

grazing sheep), control using chemical insecticides or bio-agents as well as remote sensing 

applications. The latter has become one of the most important sources providing valuable 

information within locust management. Meanwhile, there is a wide range of existing pas-

sive (employ natural sources of energy) and active (emit a controlled beam of energy and 

detect the amount of energy reflected back to the sensor) Earth Observation (EO) sensor 

systems. For a detailed introduction to remote sensing, we refer the reader to [21–23]. The 

most important sensor characteristics are the spectral resolution (number of spectral 

bands), spatial resolution (smallest unit-area indicating the minimum size of objects that 

can be detected), temporal resolution (time between two observations of one and the same 
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location) and spatial coverage (total area covered by one image). For this review, im-

portant sensor types can be categorized into optical sensors (covering visible, near infra-

red (NIR) and short-wave infrared (SWIR) spectrum) and sensors covering thermal infra-

red (TIR). Spaceborne radar (RAdio Detection and Ranging) remote sensing includes pas-

sive and active systems. While active sensors are usually characterized by higher-spatial-

resolution, passive microwave sensors operate on coarser spatial resolution [24]. The elec-

tromagnetic radiation spectrum with important bands used in satellite remote sensing 

(SRS) is shown in Figure 2. 

 

Figure 2. Electromagnetic radiation spectrum with bands used in satellite remote sensing (SRS) (from [25]). 

Remote sensing-based research and case study applications were important drivers 

to improve our understanding of locust-relevant ecological and environmental condi-

tions. Since the 1980s, information acquired from remote sensing data has accompanied 

many locust management activities and contributed to improved and more effective con-

trol of locust outbreaks and plagues around the world. Nevertheless, locust outbreaks still 

cause devastation and hunger, despite technological progress and improvement in moni-

toring and control. One of the reasons is the ineffective monitoring, management or pop-

ulation control in some locust habitats, e.g., due to lack of available resources and tech-

nology [15]. Environmental changes (e.g., land use alterations) and weather variability 

within the locust habitats can create optimal conditions for locust breeding, which needs 

to be realized and control undertaken in time. Otherwise, such changes may lead to in-

creased population, causing a transition from the solitarious phase to the gregarious phase 

and therefore initiate a locust outbreak. Therefore, continuous monitoring during the sol-

itarious phase is essential. Apart from short- to mid-term variability of important ecolog-

ical variables, the effect of climate change is also considered to be a factor for more fre-

quent and severe outbreaks [26–28].  

The Food and Agriculture Organization (FAO) has been successfully introducing 

standardized monitoring methods and data collection when remote sensing data and ap-

plications play an essential role. Remote sensing data related to locust outbreaks was first 

introduced by Pedgley [29] and Hielkema [30] and was later implemented in FAO opera-

tive desert Locust Information Service (DLIS). Hielkema at al. [31] and Hielkema and 

Snijders [32] focused on Meteosat cloud imagery to estimate rainfall, and on Landsat and 

AVHRR-based estimation of vegetation development. The Australian Plague Locust 

Commission (APLC) is another organization successfully utilizing remote sensing data to 

support locust management [33,34]. Since then, FAO and APLC and different research 

projects have contributed to a steady progress in implementing remote sensing-based 
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products. In general, remote sensing can provide different kinds of information at differ-

ent critical moments within the locust life cycle. Figure 3 represents a typical locust life 

cycle and sketches where remote sensing technologies have been applied in the past and 

present or have the potential for future applications. These applications can be summed 

up in following overarching topics: 

 Mapping and monitoring the locust habitat state and environmental conditions 

which promote the transition process between the solitarious and gregarious phases. 

 Prediction of hatching time and possible outbreaks based on historical information, 

present vegetation monitoring and weather forecast. 

 Locust nymph bands and swarm monitoring with airborne or UAV-based sensors. 

 Post outbreak crop and vegetation damage assessment. 

 In addition to EO remote sensing, direct radar (X-band) observations of ‘migration in 

progress’ have been used for research on the migration systems of locusts and migra-

tory grasshoppers, particularly for the Australian Plague locust and the Senegalese 

grasshopper [35]. Insect-monitoring radars (IMRs) are currently used to supplement 

existing survey and monitoring programs of the Australian Plague locust [36]. 
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Figure 3. Upper: Representative life cycle of locust and grasshopper species including critical phases for locust manage-

ment and where remote sensing can provide support and provide data. (a) Red, green, blue (RGB) image taken by a UAV 

from 80 m height with visible vegetation damage caused by early stage of the Moroccan locust (South Kazakhstan, April 

2019). (b) Aerial image of bands of the Australian plague locust and visible caused damage (source: Figure 60 from [37], 

photos from Victorian Government Agriculture Department). (c) Bands of the Australian plague locust and damaged 

vegetation visible in airplane-taken RGB image from 400 m height (source: Figure 2 from [38]).  

This review aims to provide a comprehensive and quantitative overview on ‘satellite-

based’ remote sensing applications and research within critical phases for locust manage-

ment. Due to high potential for locust management, as well as similar principles in image 

interpretation and processing, we also included UAV and airborne-based studies. We aim 
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to summarize past and present developments and identify topics which still require fur-

ther research and scientific attention. This review is structured as follows: in Section 2. 

Materials and Methods, we present the applied literature search and categorize different 

publication-specific aspects and thematic foci which are reviewed and presented sepa-

rately. In Section 3. Results, we present the outcome for each aspect and summarize most 

important findings. In Section 4. Discussion, results are critically discussed, gaps and fur-

ther potential are stated. In Section 5. Conclusion, we summarize and underline main 

findings. 

2. Materials and Methods 

Locust pest research and management cover several scientific disciplines. Therefore, 

potential articles cover a broad range of journals. For this review, we systematically re-

viewed 110 scientific publications including remote sensing applications which were pub-

lished since 1980. The conducted literature search was based on the bibliographic digital 

database of Web of Science (last accessed on 15 December 2020) including Science Citation 

Index (SCI) journals and full-text conference contributions (Figure 4). For the literature 

search, we used specified terms and additional keywords including ‘locust’, ‘locust pest’, 

‘locust plague’, ‘locust outbreak’ and ‘grasshopper’ in combination with ‘remote sensing’ 

or ‘satellite’, ‘UAV’, ‘airborne’ as well as ‘habitat’, ‘monitoring’, ‘prediction’, ‘control’, and 

‘management’. This search query resulted in a very large number of research articles also 

including publications which are not related to locusts and grasshoppers (Orthoptera: 

Acrididae). Therefore, additional excluding keywords were applied. In a final step, we 

screened the resulting publications based on the following inclusion criteria which are 

relevant for this review: 

 Articles are related to locust and grasshopper species (Orthoptera: Acrididae). 

 Articles should be based or include EO, airborne or UAV data as one of the data 

sources. 

 Articles investigated either locust/grasshopper habitat, presence, or outbreak predic-

tion. 

 Articles are related to locust/grasshopper ecological modelling or population distri-

bution with EO-based input. 

 Articles related to locust/grasshopper damage monitoring/mapping with EO. 

The literature review workflow and number of studies for each step are summarized 

in Figure 4. 
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Figure 4. Workflow and literature searching criteria applied for this review. 

The total selected 110 studies were analyzed to extract relevant information for this 

review in two main aspects. The first aspect includes publication-specific information 

about “species of interest”, “region of interest”, “applied remote sensing sensor” and “de-

rived variables from remote sensing data”. Additionally, we extracted involved authors’ 

affiliation to investigate where main research is based compared to regions of interest. The 

second aspect includes thematical foci which were categorized into “habitat mapping”, 

“habitat monitoring”, “forecast of hatching/outbreak”, “damage assessment” as well as 

“review and general articles” without a specific data analyzing part (Table 1).  

Table 1. Categorization of research articles for this review. 

Publication-Specific Aspects Thematic Foci 

Species of interest Habitat mapping (static) 

Region of interest (country level) Habitat monitoring (temporal) 

Sensor and used variables, scales Outbreak/Hatching prediction (future) 

Authors’ affiliation (country level) Damage assessment (past) 

 Review articles (general) 

3. Results 

3.1. Development over Time 

In this section, we recap the historical development of studies related to locust re-

search and management applying remote sensing data (Figure 5). The first studies were 

published by Pedgley [29] and Hielkema [30] using Landsat Multi-Spectral Scanner (MSS) 

data to detect the presence of green vegetation in desert locust habitats in northwest Af-

rica. After recognizing the potential of satellite imagery, the 1980s and 1990s were domi-

nated by a few experimental studies and pioneer research on how remote sensing data 
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analysis and application could be utilized to provide valuable information for locust man-

agement and to be implemented into operational services. Referring to locust plagues, 

Hielkema [39] introduced satellite remote sensing for desert locust habitat monitoring as 

“a new technology to an old problem”. McCulloch and Hunter [40], Bryceson and Wright 

[41], Bryceson and Bryceson et al. [33,42–44] investigated the usage of Landsat MSS im-

agery to identify and monitor habitats of the Australian plague locust. Tucker et al. [45] 

introduced the potential of AVHRR and Landsat datasets to forecast desert locust activity. 

Further feasibility studies followed for the Senegalese grasshopper (Oedaleus senegalensis) 

[46–48], the brown locust [49], and the Moroccan locust [50]. 

At the beginning of the new millennia, there was a slight increase in publications and 

a trend towards more specific studies related to outbreaks between 1999 and 2001 in Cen-

tral Asia, Russia, China, Australia as well as desert locust outbreak in 2003–2005 in West 

Africa. This increase is visible in a first significant accumulation of studies from 2004 with 

the peak in 2008. The second peak of studies in 2013/2014 is related to a special issue “Ad-

vances in Remote Sensing Applications for Locust Habitat Monitoring and Management 

in the Journal of Applied Remote Sensing” with a total of 14 studies. The peaks in 2018 

and 2020 can be related to an open source policy and accessibility of different satellite data 

archives and following new approaches (e.g., soil moisture and ecological niche model-

ling), as well as overall increased public and research interest and available funding prob-

ably related to recent severe outbreaks. 

In general, it is clear that remote sensing application studies, at least those published 

in the English language, were rather rare until the start of the new millennium, mostly 

driven by research developments in collaboration between research centers and universi-

ties with FAO and APLC for monitoring and prediction service for the desert locust and 

the Australian plague locust. Afterwards, the academic interest involving EO data in-

creased in the past two decades. Nevertheless, a significant development observed in 

other disciplines, e.g., related to new available EO data sources (e.g., Sentinel fleet) or 

opening long term archives (especially Landsat) is not evident. The observed accumula-

tion of studies is related to locust outbreaks rather than technological advances and avail-

ability of remote sensing data. However, recent analysis related to soil moisture [51–54] 

as well as ecological niche modelling [5,55,56] based on several data sources were the fo-

cus of investigation and showed promising results. 

In terms of the investigated temporal scale, 18% of all studies were conducted only 

for one image representing the conditions at the time of overfly (mono-temporal). A total 

of 71% of studies were conducted for several images representing several states at differ-

ent time steps or temporal development (multi-temporal, see also Figure 5). Within multi-

temporal studies, we can further discriminate between studies which applied multiple 

mono-temporal processing steps to mirror the state at these dates (28%), and studies ap-

plying time-series analyses (43%). Studies marked as “NA” (11%) are reviews and general 

articles without a specific data analysis part.  
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Figure 5. Total number of studies dealing with locust or grasshoppers applying remote sensing data (Mono-temporal = 18%, Multi-

temporal = 71%, NA = 11%, see text for definitions of terms). 

Figure 6 shows the investigated time periods. It is obvious that most multi-temporal 

studies focus only on few years rather than longer time periods. In total, there are only 18 

studies which cover at least ten or more years (added citation in Figure 6). 
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Figure 6. Temporal coverage of investigation within reviewed articles (green: mono-temporal studies, blue: multi-tem-

poral studies; references indicate studies analyzing ten or more years). 

3.2. Publication-Specific Aspects 

3.2.1. Species of Interest 

Two species dominate the publications, i.e., the desert locust (33%) and the migratory 

locust (27%) (Figure 7). The migratory locust includes approximately ten subspecies 

which slightly differ biologically and morphologically, yet are characterized by similar 

ecological requirements [57]. Therefore, we consider this species as one overarching 

group. The third most investigated species is the Australian plague locust (14%). Few 

studies were found for the Senegalese grasshopper (6%), the Italian locust (5%), the brown 

locust (4%) and rangeland grasshoppers (e.g., Heiroglyphus nigrorepletus, Oedaleus decorus 

asiaticus, Rhammatocerus schistocercoides; 4%). Studies for other destructive species such as 

the Central and South American locusts (1%), the Moroccan locust (1%) and the red locust 

(1%) are rare. The category General (5%) does not focus on specific species but rather sum-

marizes review papers including several species or general research which is relevant for 

more than one species (e.g., climate change). 
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Figure 7. Total number of studies categorized by locust and grasshopper species. Note: the category migratory locust includes 

all subspecies, e.g., the Oriental, African and Asian migratory locusts. 

3.2.2. Area of Interest 

In this section, we would like to pay attention to countries and regions of interest 

which were in focus of reviewed publications (Figure 8). Obviously, the area of interest is 

related to the species and its habitat distribution. Nevertheless, several species habitats 

cover large areas and invasion regions across several countries. For example, the countries 

of the Sahel region, especially Burkina Faso, Chad, Ethiopia, Eritrea, Mauritania, Mali, 

Niger, Nigeria, Senegal, Somalia, and Sudan are particularly susceptible to the desert lo-

cust [5]. In general, the desert locust breeds extensively in arid and semi-arid zones ex-

tending from West Africa through the Middle East to Southwest Asia including the Ara-

bian Peninsula, Pakistan and India. The habitat of the Italian locust spreads across Europe, 

Russia, Central Asia and China [58]. The different subspecies of the migratory locust such 

as the Asia, Oriental and African locusts are found in temperate and tropical zones of the 

eastern hemisphere [57]. On the contrary, the Australian plague locust, is only found in 

Australia.  

Most studies focused on study areas in China (26%), followed by Australia (13%), 

Mauritania (12%), Uzbekistan (7%) and Kazakhstan (5%). There are no studies for the Ara-

bian Peninsula, Pakistan and only one for India, although those regions are highly vul-

nerable, e.g., to desert locust outbreaks. English-language publications using remote sens-

ing for locust research or management were barely found for North and South America, 

South-East Asia and Europe. This may be due to minor risk of locust outbreaks (e.g., in 

case of Europe) or that applications use data sources apart from remote sensing, e.g., field 

and station measurements (e.g., in case of North America) [59–61]. 
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Figure 8. Regions of interest of reviewed studies. Comments indicate the most destructive locust species and their distri-

bution [3,8].  

3.2.3. Sensors and Variables 

In this section, we quantify the studies based on different sensor types, derived var-

iables and metrics. The reviewed publications show a distinct dominance with 57% of 

using optical instruments only (Figure 9). This dominance is due to the fact that the detec-

tion of green vegetation and its density is of high importance for locust habitat monitoring 

as well as for damage assessment. With few exceptions the authors used data from 

AVHRR, MODIS, Landsat and SPOT-VGT sensors. Applications of radar sensors were 

found in 6% and in combination with other sensors in an additional 20% of the studies 

(optical/radar 10%, optical/radar/TIR 5%, radar/TIR 5%). Passive and active radar sensors 

are applied for soil moisture, precipitation and wind estimations.  

The category of sensors including thermal infrared (TIR) is related to temperature 

estimation which is, together with rainfall, important for monitoring as well as for hatch-

ing and outbreak prediction. In combination, there were 16% of studies using TIR (opti-

cal/radar/TIR 5%, radar/TIR 5%, TIR 3%, optical/TIR 3%). There were no studies using 

satellite-based hyperspectral sensors and only two studies (2%) referring to data from air-

borne and UAV cameras.  
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Figure 9. Total number of studies and remote sensing sensor types used. 

Among variables, parameters and metrics, we found that vegetation indices (39%), 

precipitation (14%), land cover classification (13%), temperature (11%) and soil moisture 

(9%) are dominant (Figure 10). Within the vegetation indices (VI), the Normalized Differ-

ence Vegetation Index (NDVI) was applied in most cases with only few exceptions (e.g., 

Enhanced Vegetation Index (EVI)). Furthermore, the usage of geomorphological metrics 

derived either from optical or SAR data have shown great potential [62] but its application 

was found only in 5% of studies. Moreover, very few studies use the Leaf Area Index (LAI) 

(5%) or fraction of vegetation Cover (fCover) (4%). 
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Figure 10. Satellite-based studies categorized into used/derived parameters/variables. 

3.3. Thematic Foci 

As described in the introduction, remote sensing can add valuable information at 

different critical time steps of the locust life cycle (Figure 3). This depends on temporal as 

well as on spatial scale. For example, ecological niche modeling considers species-relevant 

variables and are mostly applied on regional to continental scales with up to 1 km spatial 

resolution by utilizing long-term climate data (e.g., WorldClim [63] or National Centers 

for Environmental Modeling (NCEP)/National Center for Atmospheric Research (NCAR) 

reanalysis data [64]) and environmental variables such as soil structure or terrain. Con-

trary, the damage on vegetation by instar nymphs can only be assessed with high to very-

high-spatial-resolution (VHR) satellite sensors with a spatial resolution of few ten meters 

up to centimeters. Overall, the literature review revealed five major thematic categories 

(Figure 11): 

 Habitat mapping and ecological niche modeling as static state description of poten-

tial habitat where locust might breed. 

 Habitat monitoring as temporal description focusing on variable environmental pa-

rameters relevant for locust development. 

 Outbreak and hatching prediction as forecast component for future. 
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 Damage and loss assessment as post outbreak evaluation. 

 Overarching review and general research papers. 

The thematic categorization of reviewed studies was performed by examining the 

major objectives and presented results. If the objective of a study was to map or describe 

habitat or ecological niche of a locust species, it is grouped into the category “habitat map-

ping”. The major result can be categorical habitat maps for a certain time or time period, 

as well as probability assessment about which areas are more prone to locust breeding. 

Studies which focus on monitoring or detecting changes of ecological parameters over 

time are grouped in “habitat monitoring”. Here, the focus is on analyses at high temporal 

frequency or operational monitoring of ecological parameters which affects locust life cy-

cle and potentially contribute to early warning. Studies focusing on forecast are grouped 

in “outbreak and hatching prediction”. For these three categories, there are studies which 

might include components in line with two or even three described categories. For exam-

ple, most studies grouped into “outbreak and hatching prediction” also contain monitor-

ing aspects because it is an important tool to predict outbreaks and many forecast ap-

proaches are constructed based on statistical relationship between historical field data and 

relevant ecological and meteorological parameters. In these cases, we categorize based on 

the most important outcome. The grouping into “damage assessment” and “review and 

general” was more straight forward due to none intersecting objectives. 

 

Figure 11. Total number of studies categorized in major research topics. 

3.3.1. Habitat Mapping Studies 

Identifying habitat and possible breeding sites is one of the most important tasks for 

implementing cost- and time effective pest control [5]. Since the introduction of Landsat 
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and AVHRR sensors, identifying potential locust habitats has been an essential priority 

for locust management services to prioritize monitoring. We identified two main ap-

proaches which have been used to map, model or classify suitable habitats of locust spe-

cies, i) land cover-based habitat mapping and ii) habitat suitability assessment or model-

ling-based ecological niche estimation. The most important information and outcomes are 

summarized in following subsections for each approach. 

Land Cover-Based Habitat Mapping 

The first approach utilizes land cover classification methods. The outcome of land 

cover-based mapping are usually categorical maps of land cover or vegetation classes, 

which also might be converted into risk or habitat suitability classes (e.g., high, middle, 

low). At the beginning, researchers, e.g., McCulloch and Hunter [40], classified locust hab-

itats using Landsat MSS data at a 90 m spatial resolution by visual image interpretation. 

Based on expert knowledge about the ecology of different species and preferred vegeta-

tion types, habitats can be described by different land cover types. In this way, it is possi-

ble to indirectly assess the suitability for locust breeding. This strategy has been widely 

applied, especially for migratory locust species which breed in wetlands with reed vege-

tation (e.g., Phragmites australis). These habitats are highly dynamic in terms of inundation, 

which defines the locust population density and therefore triggers outbreaks. Sivanpillai 

et al. [65] applied unsupervised classification approach using 30 m spatial resolution 

Landsat images in Ili river delta (Kazakhstan) to identify land cover classes which provide 

favorable conditions for the Asian migratory locust. A similar strategy was used in 

Latchininsky et al. [66] and Sivanpillai and Latchininsky [67] for selected Landsat images 

in Amudarya delta (Uzbekistan). In Sivanpillai and Latchininsky [68] the authors identi-

fied common reed areas as potential Asian migratory locust habitats in Amudarya delta 

based on time-series analysis of MODIS 8 day NDVI composites (250 m spatial resolution) 

between April and September which represented the phenology of reed vegetation. In the 

same study region, Navratil and Wilps [69] applied an object-based classification ap-

proach using one SPOT-5 image (10 m spatial resolution) to identify reed vegetation den-

sities and categorize them into potential habitat functions such as feeding and breeding 

habitats. In this way, Navratil and Wilps demonstrated the potential of higher-spatial-

resolution imagery as well as segmentation-based classification methodology. Later, Löw 

et al. [70] analyzed MODIS EVI time series (250 m spatial resolution) between 2003 and 

2014 to derive land cover for the entire Amudarya delta and relating it to migratory locust 

breeding sites. In this study, the authors utilize annual temporal signature to achieve high 

classification accuracy for each year. The classification results are finally used to derive 

potential risk categories and in this way support locust management.   

Additionally, research efforts on habitat mapping have been conducted for the mi-

gratory locust in several study sites in China. Q. Liu et al. [71] applied land cover classifi-

cation-based approach to derive potential habitats in Yellow River delta based on one 

Landsat TM (Thematic Mapper) image. Li et al. [72] used 14 HJ-1 CCD images (30 m spa-

tial resolution) to derive NDVI time series to produce a land cover classification map and 

convert it to potential habitats of Asian migratory locusts in Hebei Province. Zheng et al. 

[73] applied decision tree-based classification for six Landsat Operational Land Imager 

(OLI) images in the Dongying region to derive Oriental migratory locust habitat in 2015. 

Shi et al. [74] analyzed time series of MODIS and Landsat data between 2000 and 2016 to 

estimate annual changes in Oriental migratory locust habitat. Recently, Zhao et al. [75] 

identified land cover and land use changes in Oriental migratory locust habitats for entire 

China. They classified multi-annual Landsat TM, Enhanced Thematic Mapper (ETM) 

composites generated from data between 1993 and 1997, 2003 and 2007 and 2015 and 2018 

to compare the habitat status in the years 1995, 2005 and 2017 concluding that Oriental 

migratory locust habitats decreased due to the change in land use. Geng et al. [76] intro-

duced a Patch-based Analytic Hierarchy Process (PB-AHP) and Habitat Suitability Index 

(HSI) model based on MODIS and Landsat time series to analyzing Oriental migratory 



Insects 2021, 12, 233 18 of 39 
 

 

locust habitat factors in Tianjin province that affect locust oviposition and growth. The 

habitat factors included vegetation coverage, land cover classification, soil moisture, soil 

salinity and land surface temperature. The PB-AHP model was used to derive weight co-

efficients for each habitat factor and the degree of patch scale suitability by quantitative 

analysis of landscape structure and in this way map locust habitat at different suitability 

levels. 

On the contrary to reed vegetation for the migratory locust, the detection of plant 

species which are favored by other locust species is more challenging due to the spectral 

characteristics of most optical sensors. Therefore, studies for other locust species rather 

focus on the general state of vegetation as a proxy for favorable breeding or invasion areas. 

For example, Bryceson [43] utilized Landsat MSS data to determine the location of Aus-

tralian plague locust eggbeds based on vegetation greenness as areas favorable for inva-

sion and land cover type as areas favorable for oviposition. She concluded, however, that 

using only NDVI information without land cover information (e.g., woods, forest versus 

grassland and shrubland) remains problematic. In this context, Bryceson [43] shows a high 

correlation between low NDVI values (−0.13 to 0.04 range) and localized nymph bands for 

certain land cover types (grasses and forbs and natural pasture). De Miranda et al. [77] 

used Landsat images to map the static state, and AVHRR-based NDVI time series to map 

the dynamic development of the biotopes of one grasshopper species (Hammatocerus 

schistocercoides) in Mato Grosso, Brazil. Dreiser [78] and Voss and Dreiser [79] produced 

detailed habitat maps for selected pilot regions within the recession area of the desert lo-

cust in Sudan, Mali, Mauritania and Niger using Landsat data, field observations and ex-

pert knowledge. Another approach was introduced by Lazar et al. [62], who integrated 43 

years of field data in combination with selected Landsat images to classify main breeding 

sites of the desert locust during solitary phase. Their approach focused on identifying ge-

omorphological structures such as wadis. The results for the pilot region in southern Al-

gerian Sahara show that wadies contained 81% of observed laid egg pods according to the 

field data archive. Lazar et al. [62] suggested ignoring the vegetation dynamics and focus-

ing on correlations between breeding areas of solitary locusts and specific geomorpholog-

ical features such as wadis. On the other hand, the study states also that 19% of laid eggs 

within the test region were outside of such areas. Therefore, such approach should be 

applied in combination with vegetation dynamics to account for all suitable areas.  

A unique human-locust species inter-connection example can be found by examining 

the Italian locust. The Italian locust prefers sagebrush (Artemisia spp.) which also grows 

on fallow and abandoned fields, overgrazed pastures, as well as along roads and other 

man made structure [58,80]. However, when crop fields are plowed, the egg pods of the 

Italian locust are destroyed mechanically. Therefore, land management practice and aban-

doned fields as well as artificial landscapes directly influence areas favorable for Italian 

locust breeding. In this context, Sivanpillai et al. [81] presented a case study for mapping 

Italian locust habitats in Northern Kazakhstan. The authors used an Advanced Wide Field 

Sensor (AWIFS) scene at spatial resolution of 56 m to discriminate active and abandoned 

fields to identify potential breeding areas. Furthermore, Liao et al. [82] investigated three 

critical development stages for the Italian locust relevant to locust density—breeding 

stage, incubation stage and development stage—to assess a risk index in Xinjiang, China. 

The authors identified soil texture, vegetation species and geographic elevation as rela-

tively temporal static geophysical properties and combined them with dynamic soil mois-

ture, vegetation coverage, air temperature and rainfall variables. Finally, suitability index 

was derived for each development stage and combined to a locust plague risk index (LRI). 

Modelling-Based Habitat Suitability Mapping 

Another approach to identify habitats is based on spatial distribution models (SDM) 

or ecological niche models (ENM) by combining locust presence locations (derived from 

ground surveys) and different sets of environmental variables. ENM are usually based on 
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machine learning algorithms to correlate a set of environmental conditions to species pres-

ence and absence records and thus predict its suitable habitats [5]. The output of such 

models reflects habitat suitability by fitting a probability distribution for selected species 

over a specific region of interest. 

Aragón et al. [83] estimated climatic favorable areas for different locust species dis-

tribution and outbreaks in Spain, utilizing bioclimatic variables derived from WorldClim 

data and historical outbreak records. The authors tested several SDMs and summarized 

that temperature annual range, precipitation of the coldest annual quarter and estimated 

Acrididae richness had the highest influence modelling historical outbreak results. Fur-

thermore, the authors used the Global Land Cover 2000 product (based on SPOT-4 im-

agery) to derive land use and assess the risk in economic important regions. Zhang et al. 

[84] selected key habitat factors by intersecting field data with different environmental 

variables such as soil properties, MODIS NDVI, geomorphological parameters derived 

from digital elevation model (DEM) to finally map the potential occurrence of grasshop-

pers (Oedaleus decorus asiaticus) in the Inner Mongolia steppe. Relevant climate variables 

influencing oviposition, overwintering and incubation were considered within a fuzzy 

evaluation model (multi-objective linear weighted function). 

Malakhov et al. [55] pointed out that their model is able to identify areas where, at a 

certain time, a successful development of locust eggs is most probable, rather than to pre-

dict the actual oviposition areas. For locust management, however, the question “which 

areas provide favorable conditions for egg survival” is even more critical. Based on their 

analysis for the Asian migratory locust in Ili river delta (Kazakhstan), the ambient air tem-

perature; the temperature of the soil during the cold season of the year, soil moisture, and 

the presence of reed vegetation which was classified from MODIS data were most im-

portant variables to map optimal oviposition areas. Similarly, Malakhov and Zlatanov [85] 

developed an ENM for the Moroccan locust combining a total of 74 variables (including 

satellite-based NDVI and Soil Water Index) and this way identifying favorable condition 

for egg pods survival. The output reveals that 58% of key variables describe winter and 

spring conditions, which relates to most vulnerable life stage of this species (embryogen-

esis and nymph development) [85]. 

Recently, Kimathi et al. [5] used maximum entropy model and desert locust field data 

to derive potential breeding areas across affected countries in East Africa. They used long-

term temperature and precipitation (based on 1970–2000 data from WorldClim2) to calcu-

late the long-term mean for December, January, February and March as well as an average 

soil moisture and soil sand content (at a depth of 5–15 cm). Furthermore, they included a 

10 day composite vegetation greening onset product which is based on SPOT and MODIS 

data to assess vegetation development within modelled breeding areas. However, the au-

thors stated that additional detailed assessment of temporal variation in vegetation prev-

alence and vegetation type could improve the accuracy of the model [5]. 

3.3.2. Habitat Monitoring Studies 

In the following, we summarize studies which focused on the temporal monitoring 

of environmental conditions, which determine the phase change as well as the timing of 

hatching. In this way, those studies focus on information about temporal dynamics rather 

than a static habitat status or potential species distribution as described in the previous 

section. Another main difference to previous section is that following studies potentially 

contribute to operative service or enable immediate decisions as part of early warning 

system (e.g., sending field teams for on ground monitoring or control measurements). The 

majority of habitat monitoring studies were focusing on precipitation and soil moisture 

monitoring as well as assessing vegetation change. 

Early research conducted by Cherlet et al., Hielkema et al., Hielkema, Hielkema and 

Snijders, Tucker et al. [31,32,45,86,87] discussed different approaches on how Meteosat or 

AVHRR data can be utilized for monitoring desert locust habitats especially during reces-
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sion periods as well as for the Senegalese grasshopper [46–48]. The geostationary Mete-

osat satellites provides data to monitor weather system over large areas at very high fre-

quency. The identification of “cold” rain-bearing clouds, based on threshold approach in 

thermal infrared (TIR) channel, enables the location of areas where sufficient rainfalls and 

soil moisture can lead to egg hatching [86,88]. In Hielkema et al. [87] the potential breeding 

activity factor (PBAF) was introduced as a function of amount of pixels for four different 

NDVI ranges. Based on these research, remote sensing applications were implemented 

into FAO monitoring systems (Africa Real Time Environmental Monitoring Information 

System (ARTEMIS)) and build the base for instructions and guidance for national and 

regional desert locust management offices in affected countries. In this context, the esti-

mation of precipitation has been the main aspect for locust and grasshopper monitoring. 

Dinku et al. [89] evaluated and compared seven different satellite-based rainfall detection 

products, which are based on thermal infrared (TIR) observations and long microwave 

(LM) rainfall estimation. The authors concluded, that in arid and semi-arid areas, a signif-

icant overestimation of rainfall occurrences turned out as the main weakness. Nowadays, 

24-h, 10 days and monthly rainfall cumulative products which are generated by Climate 

Prediction Center MORPHing (CMORPH) algorithm are used for operative monitoring 

[90]. 

Recent research to monitor (i) vegetation, (ii) soil moisture, and (iii) studies which 

investigate combination of several ecological import variables are summarized in follow-

ing three subsections. 

Monitoring Vegetation Change 

In the last 15 years, there was increased development in monitoring vegetation. Ma-

jor focus was placed on temporal scale and relation of vegetation indices variability to 

locust development. 

Ceccato [91] combined 10 day NDVI composites at 1 km spatial resolution from 

SPOT-VGT with spectral bands to analyze favorable conditions of the desert locust for 

reproduction and development. They discussed the issues of significant commission and 

omission errors critically and recommended to add selected spectral bands (e.g., RED, 

NIR, SWIR) to reduce the commission error or to add MODIS data to detect sparse vege-

tation, which was omitted due to coarser spatial resolution of SPOT-VGT NDVI data. Fur-

thermore, Ceccato et al. [92] presented useful applications of decadal rainfall satellite 

products and MODIS 16 day NDVI data to monitor the climate variability and its integra-

tion into early warning systems for desert locust management. 

Tratalos and Cheke [93] found that in arid regions, coarse-scale NDVI rather corre-

lates with precipitation than with locust population. Chen and Li [94] analyzed LAI de-

rived from Landsat images and presence of the Oriental migratory locust and stated a 

significant linear relationship between LAI and the occurrence of locust density. 

In Pekel et al. [95], the authors addressed the previously stated issues with high omis-

sion and commission errors in arid regions and developed a more reliable multi-temporal 

approach based on MODIS data and a colorimetric transformation to identify vegetated 

areas in near real time. The color transformation projects the red, green, blue (RGB) bands 

to hue, saturation and value (HSV) where hue appears as a qualitative spectral index, and 

its temporal variations can be interpreted as land cover change. Cressman [13] reported 

that the technology for green vegetation estimation is useful and accurate in terms of op-

eration and usability in early warning system for desert locust monitoring. There, the op-

erational use of NDVI and EVI 16 day composites from MODIS data seems to provide 

sufficient information to detect changes in ecological conditions, specifically greening and 

drying vegetation. Cressman [13] also referred to a color space-transformed HSV product 

developed by Pekel et al. [95], which is able to mirror the development of vegetation; 

moreover, he pointed out that 11 periods of 10 day composites correspond roughly to the 

length of one desert locust generation. The Pekel et al. [95] approach is also used opera-

tionally for FAO early warning systems and daily locust control activities. Waldner et al. 
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[96] assessed the accuracy of the dynamic greenness maps and revealed a high accuracy 

in summer breeding areas of the desert locust (F-score of 0.64 to 0.87); however, they are 

less accurate in winter breeding areas (F-score of 0.28 to 0.40). Furthermore, the accuracy 

of the product depends on landscape fragmentation (R2 = 0.9). Therefore, the MODIS spa-

tial resolution is still too coarse to resolve complex landscape patterns, which were re-

sponsible for 60% of the error [96]. In this context, Waldner et al. [96] further compared 

PROBA-V 100 m resolution data and found that the higher spatial resolution lowers the 

resolution bias in fragmented areas by 20% and increases the quality of the vegetation 

classification. Finally, Renier et al. [97] tested the hypothesis that a reliable discrimination 

of the onset of vegetation senescence can be achieved by jointly implementing temporal 

NDVI trajectories and the Normalized Difference Tillage Index (NDTI), which is sensitive 

to both green and dry vegetation. The authors used MODIS SWIR band, which has shown 

to be effective to monitor dry vegetation. Based on these two indices, the authors calcu-

lated eleven different metrics, which should represent three phenological classes 

“growth”, “density reduction” and “drying”. In Mauritania, MODIS 10 day composites 

were applied to identify onset of drying as an indicator that a habitat becomes less attrac-

tive to the desert locust. The authors further state that higher spatial resolution may play 

a crucial role to improve vegetation classification in arid and fragmented areas. 

Additionally, Deveson [98] reported that for the APLC model, using the relative 

NDVI (r-NDVI) showed significant positive relationship between one-month change in r-

NDVI and the presence of nymphs and nymph density for the Australian plague locust. 

Additionally, Wang [99] quantitatively assessed that greening of Australian plague locust 

habitat is related to locust appearance and population density. 

Monitoring Soil Moisture 

Soil moisture plays a crucial role for locust development. Early studies on soil mois-

ture showed its potential, but also the restrictions of applying satellite-based radar data 

to operational services due to low spatial and temporal resolution [100]. Liu et al. [101] 

presented an approach exploiting MODIS-based soil moisture and its relationship with 

Oriental migratory locust plagues. They found that the soil moisture content was lower 

during a severe outbreak period. Moreover, they concluded that the severe outbreak was 

clearly impacted by reduced soil moisture during locust oviposition and incubation peri-

ods. 

Escorihuela et al. [51] presented a first attempt to implement soil moisture products 

within operative desert locust management tools. Different user requirements and soil 

moisture algorithms were assessed to produce a soil moisture product at 1 km spatial 

resolution. Furthermore, they present an innovative approach to derive soil moisture at 

100 m spatial resolution by synergizing Sentinel-1 with Soil Moisture and Ocean Salinity 

(SMOS) data. Gómez et al. [53] investigated the relation between desert locust presence 

during the solitarious phase and soil moisture conditions based on European Space 

Agency (ESA) Climate Change Initiative (CCI) soil moisture product (spatial resolution 

0.25°). The authors analyzed the relation between the presence of the desert locust and 

soil moisture change for different time intervals before the date of sighting. In conclusion, 

the shorter time intervals of six days performed the best result and indicating that most 

important time interval was between 95 and 72 days before desert locust nymph presence 

was detected in the field.  

Monitoring of Several Variables 

In this subsection, we summarize studies which presented monitoring strategies 

combining several variables of importance. Han et al. [102] presented a remote sensing-

based model including LST, soil moisture, NDVI, fCover, and LAI for monitoring the East 

Asian migratory locust based on three different locust life cycle stages. Similarly, Gornyy 

et al. [103] stated that satellite monitoring enables the monitoring of ecosystem state as 

well as locust population. They investigated several land surface characteristics such as 
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heat flow, evaporation rate and NDVI from AVHRR and MODIS data in relation with 

Italian locust density based on the fact that daily averaged evaporation rate of surface 

depends on the moisture supply on ground and on the possibility of vegetation to evap-

orate water. For the test region of southern part of West Siberia, the authors concluded 

that with higher soil moisture the locust population was less dense. 

Another alternative monitoring approach was presented by Propastin [104,105] com-

bining radar altimetry measurements with NDVI data (AVHRR and SPOT-VGT) to mon-

itor the habitat of the migratory locust in Ili river, Kazakhstan. In these studies, the author 

found that the water level of lakes and rivers, which can be derived via radar altimetry, 

directly affect the distribution of common reed vegetation which influences potential hab-

itats as well as areas for infestation. 

Li et al. [106] presented a design for GIS-based monitoring and control for the migra-

tory locust in China which also includes processing of NDVI, soil moisture and emissivity 

time series from MODIS data. Latchininsky et al. [107] presented different remote sensing-

based applications to monitor the red locust in Madagascar using SPOT-4 and DEM data, 

the migratory locust in Amudarya river delta using Landsat data and the desert locust in 

Mauritania using MODIS data. 

Gómez et al. [52] applied different machine learning approaches to create a species 

distribution model by integrating six environmental variables from two sensors: MODIS-

based NDVI and land surface temperature (LST) as well as Soil Moisture Active Passive 

(SMAP)-based soil moisture root zone, surface soil moisture, LAI and surface temperature 

data. Based on these variables in combination with locust presence field data, the authors 

modelled breeding suitability for the solitary desert locust. Within their analyses the au-

thors identified surface temperature retrieved from SMAP as most important parameter. 

On the contrary, MODIS LST was not as relevant. Gómez et al. [52] point out that for 

monitoring the time of temperature retrieval is crucial in semi-arid and arid regions with 

high day-night temperature range and explain the different performance for same physi-

cal variable from two different sources. In conclusion, the most relevant variables were 

surface temperature, NDVI, soil moisture at root zone under different time scenarios. By 

including all six environmental variables, the authors obtained high predictive perfor-

mance (Kappa = 0.901; ROC = 0.986). 

Chen et al. [108] used multiple satellite-based datasets (NDVI, LAI, soil moisture, 

rain fall between 2005 and 2020 and distribution to simulate potential geographic distri-

bution of the desert locust for Africa, Asia and Europe for different months. They coclosed 

that LST (27.02%) and LAI (25.63%) were the main contributors to explain the achieved 

distribution results. Surprisingly, soil moisture was the weakest explanatory variable 

(2.7%). Recently, Wang et al. [109] assessed whether China is also prone to desert locust 

invasion during the 2020 outbreak in East Africa, India and Pakistan. The authors, identi-

fied potential desert locust habitats in China by applying simple long-term thresholds for 

precipitation and temperature. Afterwards, they modelled windborne movements of the 

desert locust to those identified potential habitats based on historical wind characteristics 

at different altitudes, concluding that significant invasion of potential habitats in China is 

very unlikely. 

3.3.3. Outbreak and Hatching Prediction Studies 

In this section, we focus on studies which specifically target prediction of locust out-

breaks or the beginning of hatching. Compared to monitoring studies from previous sec-

tions, the focus is on the future, although historical data, past measurements and moni-

toring are essential part of those studies. According to Rosenberg [110], the focus of locust 

forecast has shifted from population dynamic-based prediction of swarm development 

and movement towards identification of rainfall and vegetation change that initiate the 

growth of existing locust populations and therefore may indicate beginning upsurges and 

plagues. Rosenberg [110] reported that for locust forecast there are three main scales to be 

considered: the long-term forecast with up to 12 months is based on climate, historical 
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data, derived anomalies and pest frequencies. One example is the FAO SWARMS 

(Schistocerca WArning Management System) which contains historical data back to 1930 

and enables large-scale analysis for the entire desert locust distribution areas. The me-

dium- to short-term forecast with 1–2 months and 1–2 days are handled at a national scale, 

e.g., operating RAMSES (Reconnaissance And Management System for the Environment 

of Schistocerca) where different months can be compared with previous months and same 

months of other years [110]. 

First of all, Healey et al. [111] introduced the requirements for a GIS to support desert 

locust operational forecasting and monitoring. The authors underlined the importance 

and further implementation of weather and habitat data derived from remote sensing 

sources. Burt et al. [112,113] proposed the usage of Meteosat IR data to estimate rainfall 

from cloud temperature and support forecasting early season outbreak of the Senegalese 

grasshopper in West Africa. The authors conclude that this approach enables to spot areas 

of sufficient wetting, where the Senegalese grasshopper might hatch after 2–3 weeks. 

Todd et al. [114] analyzed the impact of climate variability on brown locust outbreaks 

in southern Africa by implementing historical climate data. Brown locust outbreaks were 

associated with increased rainfall in December which is also related to La Nina events. 

Their results suggested that there is considerable scope for future development of models 

for the seasonal prediction of brown locust activity in which high-frequency variability is 

related to climatic indices [114]. Ma and Dai [115] utilized MODIS data including NDVI, 

LAI, soil moisture, LST and fCover within a Bayesian prediction network to forecast the 

evolution of these variables, which are responsible for Asian migratory locust outbreaks. 

Ceccato et al. [116] analyzed the desert locust outbreak in 2003/2004 in West Africa and 

accompanying circumstances which favored the outbreak. They used rainfall predictions 

to forecast the risk of future desert locust outbreaks. Within their study, Ceccato et al. [116] 

also reviewed the desert locust early warning system, and assessed the feasibility of new 

climate prediction methods to support forecasting desert locust life cycle development 

and locust movements. Here, the FAO SWARMS operates on a daily basis using RAMSES 

ground information, meteorological data and remotely sensed images (NDVI from SPOT-

VGT at 1 km and MODIS at 250 m spatial resolution for monitoring vegetation develop-

ment) to conduct short- and medium-term forecasts indicating potential locust migrations 

and breeding areas. Additionally, the International Research Institute for Climate and So-

ciety (IRI) is forecasting environmental conditions for desert locust development to accu-

rately predict preferable conditions, and in this way increase the response time for further 

reaction and preparation of controlling steps if required. IRI specifically focuses on long-

term prediction of rainfall, because it is critical to the locust outbreak forecast. In this con-

text, Ceccato et al. [116] also discussed that seasonal prediction of rainfall in North Africa 

is less clear due to the midlatitude storms, whose frequency and intensity are unpredict-

able. Long-term rainfall forecast results can be improved where oceanic conditions in the 

atmospheric circulation evolve relatively slowly. 

Vallebona et al. [117] analyzed connections between large-scale climatic patterns and 

desert locust upsurges in West Africa between 1979 and 2005 using NCEP-DOE Reanaly-

sis 2 data at monthly resolution and 2.5° grid cells as well as desert locust population 

dynamics from multiple sources. 

Piou et al. [118] presented a forecast method coupling historical field survey and 

NDVI data (MOD13Q1 NDVI 16 day 250 m product) to analyze the influence of vegetation 

change within desert locust habitat in Mauritania. They smoothed the NDVI time series 

with Savitzky-Golay filter and derived in total 27 spatial and temporal vegetation metrics 

before the date of observation. NDVI values were extracted for different time intervals 

before field survey timing (16 days, 32 days, 48 days). The authors used logistic regression 

model to assess the relationship between all metrics and ground control points. Their anal-

ysis showed that temporal changes of NDVI between 32 and 48 days before a locust oc-

currence, provided the best prediction results. The results indicated that metrics describ-

ing vegetation change allow prediction of locust presence during remission periods. At 
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local scale, Piou et al. [118] identified a non-linear relationship between mean vegetation 

quantity and presence of the desert locust, even if they did not consider geomorphologic 

variables, which plays important role for breeding sites of the desert locust (e.g., wadis 

and areas with water accumulation). However, the maximum NDVI followed the topo-

graphical structures. Therefore, Piou et al. [118] argued that locust population develop-

ment follows vegetation development; they also state that rainfall, the time lag between 

the observed vegetation changes and locust presence is critical for locust prediction. The 

authors summarized, that tools transforming NDVI maps to predictive presence/absence 

maps are required to improve locust management. 

Cressman [13] presented an overview for the role of remote sensing in FAO early 

warning systems for the desert locust which are conducted in collaboration with national 

locust management organizations. The DLIS constantly monitors weather, habitat condi-

tions and desert locust population in recession areas. This holistic observation is further 

used to assess the current situation and to predict the locust developments. Nevertheless, 

Cressman [13] stated that the spatial resolution and sensor characteristics of implemented 

MODIS data limit the detection of sparse vegetation that is critical for locust survival and 

reproduction. 

For the Italian locust, Tronin et al. [119] introduced the locust hazard index (LHI), 

which is a linear combination between NDVI, an aridity index, and the number of sun-

spots. The authors also investigated LST and precipitation and concluded that there was 

a significant relation between droughts in 1986–1991 and 1996–2000 and Italian locust out-

breaks in 1988–1991 and 1999–2001 in the Siberian study region. For both periods the LHI 

showed good results and therefore could be potentially used as a prediction tool. Follow-

ing this conclusion, Tronin et al. [119] suggested a threshold for the LHI to assess Italian 

locust outbreaks in the Siberian study region. In contrast, LHI did not provide reliable 

results for the European study region. The prediction reliability for both regions was as-

sessed based on false alarms and missed outbreaks. They concluded that LHI did not per-

form well for European study region due to the larger size and its diverse landscapes, 

biomes and meteorological conditions. 

For eastern Australia, Veran et al. [120] used MODIS data to estimate different pro-

portions of woody and herbaceous vegetation, together with temperature and precipita-

tion to model the spatial-temporal dynamics of the Australian plague locust. The spatial 

variability of outbreaks was best explained by rainfall and land cover predictors across 

eastern Australia. Furthermore, the authors summarized that their results show an im-

provement for locust outbreak forecast by implementing key environmental factors and 

migration in hierarchical spatial models. Zheng et al. [121] introduced a GIS-based pre-

diction model including monthly average temperature, monthly relative humidity, eleva-

tion, slope, NDVI (from SPOT-VGT) and soil PH data for Xinjiang province, China. They 

reached satisfying forecast results with a multi-criteria analysis (MCA). Weiss [37] con-

ducted detailed research on relationship between Australian plague locust adult abun-

dance and greenness derived from MODIS-based vegetation indices composites (8 day 

GPP, 8 day FPAR, 16 day NDVI) at 1 km spatial resolution. Applying a Bayesian hierar-

chical analysis, he concluded that all vegetation indices were weak predictors for adult 

locusts and investigated time period between 2000 and 2009 and therefore were no link 

between pests and vegetative conditions. In Mangeon et al. [122], the authors present sta-

tistical model approaches using Generalized Linear Models (GLM) and Generalized Ad-

ditive Models (GAM) to quantify relative strength of different variables influencing Aus-

tralian plague locust population and estimate locust abundance. Their results indicate di-

vergent relationship for NDVI with adults and nymphs. The prediction performance was 

best for nymphs (R² = 0.461) underlining the local environment dependence of this life 

stage [122]. 

Apart from using rainfall and vegetation as variables for locust forecast, soil moisture 

is another critical variable to be considered. For brown locust life cycle modelling, Crooks 

and Cheke [123] assessed the usability of C-band SAR data (from RadarSat and ERS-2) for 
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soil moisture retrieval as an alternative to rainfall estimation. They summarized that fu-

ture application of SAR images will depend on the feasibility to acquire data on a spatial 

and temporal scale that is useful for forecasters. Meynard et al. [56] analyzed ecological 

niche differences between South and North desert locust subspecies during the solitarious 

phase and possible future shifts in geographical distribution based on climate change sce-

narios. Using a set of SDMs and climate variables, the authors concluded strong niche 

conservatism between both subspecies. Piou et al. [54] investigated temporal develop-

ment for NDVI, soil moisture, rainfall and land surface temperature around survey points 

of desert locust presence in recession areas. The authors applied statistical analysis for all 

variables separately to assess their individual potential to explain and forecast desert lo-

cust presence. In this context, NDVI was the best explanatory variable (Area under the 

receiver operating characteristic curve (AUC) = 0.7264), followed by soil moisture (AUC = 

0.6280), LST (AUC = 0.6201) and rainfall (AUC = 0.5797). In terms of vegetation response, 

the period of 0–48 days was found to be most important after NDVI value reaches 0.14 or 

higher. Additionally, very low NDVI values (below 0,10) between 160 and 80 days before 

locust presence, was also important. Furthermore, the analyses revealed higher chances 

to find locust nymphs 70 days after soil moisture increased over a period of 20 days (above 

0.09 cm3/cm3) and followed by consecutive decrease. Hereafter, the random-forest forecast 

model combining soil moisture data with NDVI showed promising results with high AUC 

value of 0.761 and out of the box error of 23.7%. The model validation for years between 

2010 and 2016 reached AUC between 0.583 and 0.709 and error between 27.6% and 39.7%. 

3.3.4. Damage and Loss Assessment Studies 

Stressed or damaged vegetation is characterized by a difference in reflectance com-

pared to healthy vegetation. Due to loss of chlorophyll stressed vegetation can be detected 

in red edge spectrum. Extreme loss of green vegetation is visible in VI (change in spectral 

reflectance) as well as in high-resolution SAR (change in canopy cover and structure). 

Studies focusing on damage assessment were conducted mainly for migratory locusts in 

China. These studies assessed vegetation patterns before and after a specific outbreak and 

thus identified affected areas. The information on whether there is a causal relation be-

tween damaged vegetation and locust swarms was mostly based on a priori knowledge 

and assumptions of the authors that no other factors contributed to the damage. All fol-

lowing reviewed vegetation damage studies can be considered as case studies at local 

scale and therefore with limited spatial coverage. For the East Asian migratory plague 

locust, Ma et al. [124,125] performed a calibration and verification study for Landsat data 

to detect damage in reed habitats. In their experimental study, Ma et al. [125] investigated 

whether field measurements of biomass and LAI and Landsat-based NDVI/ARVI (Atmos-

pherically Resistant Vegetation Index) are related during locust presence (R2 = 0.6474). Ji 

et al. [126] used MODIS NDVI time series to assess damage due to an Oriental migratory 

locust outbreak in Hebei Province, China. Zha et al. [127] analyzed MODIS-based multi-

spectral indices using temporal filtering and concluded that NDVI was the best index to 

assess damages caused by locust outbreaks. Liu et al. [128] and Tian et al. [129] calculated 

Landsat-based NDVI difference maps to assess the differences before and after outbreak 

event. With the focus on vegetation loss, Zha et al. [130] introduced the Locust Density 

Index (LDI) which considers the initial state of vegetation as well as the destroyed vege-

tation after infestation. Singh et al. [131] conducted measurements with a ground-based 

X-band Radar to assess the damage by Heiroglyphus nigrorepletus on sorghum. Further-

more, Song et al. [132] estimated reed loss caused by the migratory locust using UAV-

based data. 

Weiss [37] also investigated the capacity of MODIS 1 km temporal composite prod-

ucts to map vegetation damage caused by nymph bands of the Australian plague locust. 

The extensive statistical analyzes between prior, during and post presence of bands 

showed no significant relation to area extent or intensity of damaged vegetation. In con-
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clusion, Weiss stated that coarse spatial and spectral resolution as well as temporal com-

positing methodology of used products were the main reason why vegetation damage 

caused by nymph bands feeding was not detected. 

Additional to satellite-based studies it is interesting to note that Hunter et al. [38] 

analyzed Australian plague locust bands which were observed from an airplane. There, 

the accumulation of locust nymphs as well as damaged vegetation is clearly visible in RGB 

images. VHR satellite data (e.g., WorldView-3, GeoEye, SuperView) as well as data from 

UAV and very-high-spatial-resolution sensors should be capable of spatially resolving 

such accumulation of locusts and damaged vegetation.  

3.3.5. Review and General Studies 

In our literature search, we found six review and four general discussion publications 

dealing with locust pests and remote sensing applications. Cracknell [133] discussed gen-

eral capacities of remote sensing detecting habitat changes and applicability for locust 

management. Hunter [34] presented APLC activities and demonstrated that Australian 

plague locust bands can be spotted using airborne imagery with spatial resolutions similar 

to today’s VHR satellites. Maiga et al. [20] review paper focused specifically on the ecol-

ogy and management of the Senegalese grasshopper. The authors summarized also the 

potential of remote sensing and encouraging results for the Senegalese grasshopper from 

early studies on AVHRR NDVI and Meteosat IR data which demonstrated that suitable 

breeding areas can be identified with simple thresholding methods. 

Latchininsky and Sivanpillai [57] presented an overview of existing EO sensors, their 

spatial and temporal scales as well the potential of GIS technologies for locust monitoring 

and risk assessment to promote these technologies for further usage. Further, 

Latchininsky [58] gave a comprehensive state-of-art review showing that in 2013 most 

operative applications were conducted by FAO and APLC, focusing on vegetation and 

meteorological parameters. Additionally, Latchininsky [58] provided details for other de-

structive locust species, their ecology and EO applications for their monitoring. 

Huang [2] provided a review on EO application for locust and grasshopper plagues 

specifically in China focusing more on ongoing research in monitoring as well as risk and 

loss assessment. For risk assessment, Huang [2] summarized that habitat mapping by 

multi-spectral land cover classification (Landsat, ASTER, HJ-1 CCD) was dominant. For 

monitoring, studies focused mostly on vegetation (MODIS time series), soil moisture and 

land surface temperature with high temporal resolution due to rapid changes of these 

critical variables. 

The review paper of Zhang et al. [4] covered control measurements and locust ecol-

ogy but also paid attention to EO as an important tool in modern locust management. This 

review provides a comprehensive overview of different locust species, historical out-

breaks and existing locust and grasshopper operational management systems. Zhang et 

al. [4] concluded that the knowledge about locust biology, ecology and the interaction 

with human-made effects promoting outbreaks of locusts and grasshoppers must be im-

proved; in this way, new and improved methods to forecast and monitor gregarious lo-

cust infestations are required. 

Recently, Abd El-Ghany et al. [134] published a review dealing with EO application 

as a promising strategy for insect pests and diseases management. This review provides 

a short technical overview of EO sensors and their potential to detect and monitor differ-

ent insects and agricultural pests. 
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4. Discussion 

4.1. Contribution of Remote Sensing to Locust Management 

In this section, we reflect on the main remote sensing contribution for improved lo-

cust management and recent trends. First of all, in regards to habitat mapping, recent ap-

proach has been shifted from single image land cover analyses [43,65,79] towards imple-

menting time series-based classification to generate results for different time steps and 

thus enable long term habitat and species distribution quantification [70,75]. 

Secondly, in terms of habitat monitoring, there was a district development. In 1991, 

Cracknell [133] discussed that the prospect of direct detection of habitats changes are un-

realistic or only possible with considerable time lag. In 2002, Crooks and Archer [100] 

summarized that soil moisture dataset were not available or restricted to be used on op-

erative base. Looking at the progress in 2008, Maiga et al. [20] stated that the link between 

acridian risk and monitored ecological conditions was still relatively empirical at that 

time. Recent progress in satellite imagery and availability of new datasets in combination 

with advances in methodological approaches and computing power are about to over-

come those restrictions and contribute to a new era in remote sensing-based locust man-

agement: using multiple variables at higher temporal resolution and increasing spatial 

resolution. The introduction of MODIS data and thereafter increase in spatial resolution 

(250–1000 m), spectral resolution (36 channels) while containing high temporal frequency 

(daily) and covering large areas contributed to a major boost and improvement in locust 

management. Since then remote sensing-based research focused on temporal scale and 

statistical relation of locust occurrence and prior conditions [95–97,118]. The observation 

of vegetation change (greenness maps) over time is one of the most important application 

in desert locust management [13,107,118]. According to Piou et al. [118], especially coher-

ent construction of secondary metrics derived from NDVI time series provides good pre-

diction of desert locust presence and in this way allow a better planning of field surveys 

[107]. Furthermore, based on MODIS data, additional vegetation parameters (e.g., EVI, 

GPP, FPAR, LAI) and variables (e.g., LST) and well established Analysis-Ready Data 

(ARD) are provided which have enabled investigation on several important ecological 

variables and their relation to locust presence. Since then, together with improvement of 

rainfall estimation and weather prediction, this has been main remote sensing-based com-

ponents for operative monitoring, early warning and prediction. 

Moreover, applications of remote sensing-based soil moisture data has been compa-

rably rare despite the acknowledged fact that it is one of the most important variables 

defining the survival of locust eggs as well as for the timing of hatching. In 2014, Crooks 

and Cheke [123] stated that application of SAR imagery in brown locust forecasting de-

pends on reasonable access to data and useful spatial and temporal resolution for fore-

casters. In recent years, the addition of soil moisture datasets has been possible due to 

progress in SAR technology and improved soil moisture algorithms. Recently, Gómez et 

al. [52] published a promising approach stating the importance of soil moisture data. The 

future usage of 1 km soil moisture products in desert locust early warning system at na-

tional locust centers and at DLIS-FAO for the entire recession area of the desert locust (0–

40 N/20 W-80 E) was introduced by Escorihuela et al. [51]. Additionally, Piou et al. [54] 

suggested that soil moisture shall become standard tool for preventive locust manage-

ment. However, for species with very short incubation time, such as the desert locust, the 

availability of such datasets needs to be provided in near real time (NRT) to enable appro-

priate analysis and following measures. This is a challenging task especially regarding the 

vast areas to be monitored. 

In terms of prediction, recent progress utilizes machine learning approaches and es-

tablishes statistical relationship between all available and important variables [52,54,56]. 

For preventive locust management, forecasting models have to be quickly updated with 

new satellite data [54]. 
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4.2. Potential of Higher Spatial Resolution and Temporal Coverage 

Former studies using coarse satellite data stated that there was no significant relation 

between locust and vegetation indices. Rosenberg [110] mentioned that by using coarse-

spatial-resolution data, it was not possible to identify changes in regions with very low 

(<5%) vegetation cover, which is typical for desert locust breeding areas. Despland et al. 

[135] demonstrated that at continental scale (4° spatial resolution) forecast and outbreak 

areas are uncorrelated and therefore, they questioned the usefulness of NDVI for desert 

locust prediction at such a coarse spatial resolution and due to NDVI limitation in arid 

areas. Tratalos and Cheke [93] could not identify any linear relationship between locust 

breeding areas and NDVI (from AVHRR 8 km). Those studies using NDVI at low and 

medium spatial resolution showed restrictions especially in semi-arid regions and highly 

fragmented landscapes. Studies utilizing MODIS-based VI at 250 m spatial resolution and 

temporal relationship proved that there was significant relationship. Nevertheless, de-

spite the improvements introduced by MODIS some restrictions have remained as stated 

in Cressman, Escorihuela et al., Renier et al. and Waldner et al. [13,51,96,97]. There, the 

authors discuss that satellite data with higher spatial resolution will provide further im-

provements especially for vegetation detection in arid and semi-arid regions where frag-

mented vegetation leads to higher commission and omission errors when using coarse 

resolution data. Waldner et al. [96] demonstrated an improvement of 20% when compar-

ing MODIS data at 250 m with PROBA-V data at 100 m spatial resolution. The potential 

of higher-spatial-resolution data has been shown in many other disciplines (e.g., agricul-

ture, forestry, urban development). The utilization, e.g., of Sentinel-1 (available since 2015) 

and Sentinel-2 (available since 2016) data for monitoring can improve spatial scale and the 

detection frequency. Peer-reviewed publications which use these data sources for locust 

research are with one exception [51] not available. In addition, a combination of Sentinel-

2 and Landsat data can improve the temporal and cloud free observation frequency. The 

question arises as to whether such datasets can contribute to further significant improve-

ments. Nevertheless, in terms of locust management, one has to keep in mind the usability 

and feasibility for vast areas in limited resources especially in developing countries. On 

the one hand, a possible improvement alongside higher spatial resolution needs to be con-

trasted with time management, reliability and additional required resources and also jus-

tify the needs of locust managers. On the other hand, further research can demonstrate 

improvements and enable operation with further technical and economic development. 

Furthermore, using Landsat, and eventually Sentinel data, the detection of damage 

assessment has been proven to be feasible. Nevertheless, economical loss assessment 

caused by locust plagues and outbreaks from remote sensing data is still rare [37]. The 

Landsat archive with data over more than 40 years offers unique opportunities to perform 

further long-term analysis. For example, systematic damage assessment, vegetation de-

velopment and quantification related to past large-scale outbreaks can benefit from this 

data source, although the temporal resolution of Landsat is limited. Long-term analysis 

and quantification of vegetation structure dynamics as well as land cover and land use 

change and their relation to locust population dynamics and outbreaks are still rare (Fig-

ure 6). This fact can be related to high data costs and limited availability before satellite 

archives were accessible free of charge. Furthermore, locust outbreaks are irregular events 

and therefore, several studies mostly focus on these specific outbreak years. Nevertheless, 

research with long-term character is important to investigate the entire range between 

derived parameters and solitarious and gregarious locust presence. For example, in 

Tratalos and Cheke [93], the authors analyzed long NDVI time series to understand 

whether NDVI is related to different locust phases and population densities or rather to 

precipitation variability only. Therefore, additional studies covering longer time periods 

providing a connection between different environmental factors and locust populations 

might provide new insights. 
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Finally, the potential and possible benefits of VHR satellites are basically unexplored. 

Additional studies need to provide a better understanding of how VHR data can be ex-

ploited for early warning and detection of early instar activity (e.g., locust bands) and 

damage assessment. EO data and archives provide the required specifications to tackle 

these challenges and investigate benefits and restrictions. 

4.3. Discrepancy between Research Origin and Region of Interest 

The majority of publications focus on the desert locust and migratory locusts affect-

ing large parts of the African continent, the Arabian Peninsula, India and Pakistan. The 

third foremost species is the Australian plague locust. For the migratory locust and the 

Australian plague locust, we found a clear relation between investigated regions of inter-

est and the countries of affiliation of the authors (Figures 8 and 12). However, there seems 

to be a gap for desert locust-affected regions as well as for other locust species. One reason 

is the absence of English-speaking studies despite a wide existing knowledge in affected 

countries. Additional research is probably available in other languages (e.g., Chinese, 

French, Russian, Spanish) but is less visible within the English-speaking literature. Fur-

thermore, the absence of English-speaking scientific publications may also be due to the 

periodic occurrence of locust plagues combined with the fact that many countries and 

regions have not dealt with these challenges for several decades [26]. Moreover, as locust 

outbreaks are not limited by country borders, more multi-national research on EO appli-

cations would contribute to further understanding of locust–human inter-connections as 

well as for improvement in locust management. Another reason may be the absence of 

funding to promote further research because locust management is rather pragmatic with 

the overarching goal in an effective control of outbreaks and not academic publications. 

Nevertheless, there is still a lack of English-speaking, peer-reviewed literature and studies 

conducted by organizations or universities located in affected regions. Involving local 

stakeholders with their knowledge and experience, would definitely contribute to a fur-

ther development and to an improved exploitation of EO capacities for locust manage-

ment and research. 

 

Figure 12. County of origin of authors’ affiliation. 
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4.4. Overall Lack of Remote Sensing Application for Locust and Grasshopper Species 

Despite the progress been made for the desert locust, the migratory locust and the 

Australian plague locust (shared total of 74%), there is a lack of studies for other pest lo-

cust species (Figure 7). This lack has been documented in previous studies and is also 

related to less advanced or absent organized preventive locust management [58,107]. In 

our review, we quantify the actual rate of conducted studies which reveals the unequal 

distribution for other species not only because of absence of operative management but 

also in conducted research. Since Latchininsky’s review in 2013 [57] the progress and in-

vestigation for other locust species remained minor. Therefore, the question arises as to 

whether remote sensing datasets and applications might be insufficient to map and mon-

itor variables of importance due to more complex environment or is the lack of studies 

because of restricted funding or academic resources dealing with other locust species? 

Based on developments and encouraging results for the desert locust, the migratory locust 

and the Australian plague locust, research and management for other species could ben-

efit from further remote sensing-based applications. Studies over the last four decades 

provide a good foundation. Nevertheless, field observations and extended species-spe-

cific ecological and biological knowledge are crucial to achieve meaningful results when 

applying remote sensing. 

4.5. Potential of Alternative Methods and Analysis 

Recent studies focus on comprehensive analysis of several essential ecological varia-

bles. This is due to the availability of more and more ARD. In this way, scientist can focus 

on the relation and individual importance of variables rather than dealing with extensive 

raw data preprocessing. Reviewed studies have been applying mostly NDVI to assess the 

risk of gregarization, to predict hatching and outbreaks, or simply use the technique as a 

metric for land cover classification. However, the capacity of NDVI in arid areas has been 

controversial. Therefore, at the background of new options and cloud computing possi-

bilities, the benefit of additional indices or variables can be explored and compared. For 

example, Cherlet et al. [87] concluded that results achieved using PVI were most reliable. 

However, the operative usability at a large scale was not feasible at that time. Here the 

question arises as to whether application of other indices can provide significant improve-

ment or not. At the background of previous discussion and findings following investiga-

tions focusing on additional strategies to prove improvements or limitations can be ad-

dressed: 

 Further research on geomorphological variables for the desert locust as suggested by 

Lazar et al. [62]. 

 Application of sensor fusion/combination to minimize restrictions of sensor charac-

teristics [136,137].  

 Application of hyperspectral data to enable more detailed classification of vegetation 

types, stressed vegetation or damage [138,139].  

 Time-series analysis focusing on phenology [140–142]. 

 Other indices and metrics, e.g., Soil Adjusted Vegetation Index (SAVI) [143] or Per-

pendicular Vegetation Index (PVI), which specifically consider ‘noise’ caused by soil 

[144]. The question is, can l other approaches or indices overcome restrictions which 

are observed in arid regions when using NDVI? 

 As shown by Propastin [104,105] altimetry data in combination with VI show high 

potential for monitoring migratory locust habitats along rivers and lakes. In this con-

text the new Surface Water and Ocean Topography (SWOT) mission as well as other 

altimetry datasets can contribute to further monitoring improvement for migratory 

locust species. 

 Systematic and large-scale detection of damage and remote sensing-based economi-

cal loss assessment studies to evaluate economic impact and production loss on large 
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scale. Remote sensing applications have received comparable little attention [37]. Red 

edge channel, e.g., from RapidEye satellites which was developed specifically to 

identify damaged or stressed vegetation could provide improved results for loss as-

sessment of green vegetation [145]. The question is, can remote sensing-based dam-

age assessment contribute to economic loss estimation on larger scale? 

 Usage of VHR resolution imagery and machine learning approaches [146–149] to in-

vestigate the benefit in early locust damage and locust band detection. The question 

is, can dense locust bands be identified in VHR imagery? 

 Further inclusion of remote sensing in ENM and HSI modelling, where all important 

static and dynamic environmental parameters are combined with species specific 

preferences [76,150–152]. 

 The importance and potential of UAV-based systems for locust management sup-

porting ground teams requires standardized analysis and investigation for automatic 

image processing. The advantages of UAV-based monitoring are promising 

[153,154]. However, scientific evidence of benefits within locust management and re-

search are still rare. Monitoring of vegetation state, damage assessment as well as 

monitoring of locust bands are possible fields for investigation. The question here is, 

how can UAV-based monitoring applications contribute to operative locust manage-

ment? 

 Finally, locusts and grasshoppers strongly depend on climate conditions such as tem-

perature, precipitation and humidity [119]. Further research to analyze the influence 

of climate and environmental change to different locust species distributions and out-

break risk are therefore required [26]. 

Mentioned suggestions for further research have to prove their benefit and outline 

practical contribution towards locust management. Therefore, from a locust management 

perspective, one has to consider all important factors within operational services (e.g., in-

ternet connection, access to data and applicability, area to be monitored, reliability vs. 

spatial precision) and contrast it with possible improvements. 

5. Conclusions 

In this review, we provided an extensive overview of 110 English-speaking, EO-re-

lated research articles with respect to destructive locust/grasshopper pest species. On the 

one hand, our focus was to quantify different aspects of reviewed studies. Therefore, we 

categorized the studies covering (i) investigated species, (ii) areas of interest, (iii) sensor 

types employed, and (iv) variables used. On the other hand, we aimed to point out main 

research foci and reflect on the development. We categorized specific research foci, 

namely (A) habitat mapping, (B) habitat monitoring, (C) outbreak/hatching prediction, 

(D) damage and loss assessment, and (E) review and general studies. By looking at the 

quantified results and methodological progress, the following findings can be summa-

rized: 

 (i) Investigated species: The majority of studies focused on the desert locust (33%), 

the migratory locust (27%) and the Australian plague locust (14%). Remote sensing 

applications for other harmful locust species such as the brown locust (4%), the Cen-

tral and South American locusts (1%), the Italian locust (5%), the Moroccan locust 

(1%) or the red locust (1%) are still very rare. 

 (ii) Areas of interest: Areas of interest were mostly located in China (24%), Australia 

(14%) and Mauritania (11%). Despite a high risk of outbreaks from different species, 

there is a lack of English-speaking studies for the Arabian Peninsula (none), the Mid-

dle East and Pakistan (none), India (1%), South-East Asia (1%), North and South 

America (2%) and Russia (2%). 

 (iii) Employed sensor types: Optical EO data were most frequently used. Here, 57% 

of all studies solely used optical data. Whereas, AVHRR, MODIS, SPOT-VGT and 
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Landsat sensors were mostly employed. Following optical sensors, radar (6%) and 

TIR (3%) were the second and third most used sensor types, respectively. However, 

both were mostly applied in combination with others (optical/radar 10%, optical/ra-

dar/TIR 5%, radar/TIR 5%, optical/TIR 3%). No peer-reviewed publication was found 

using VHR (e.g., Quickbird, IKONOS, WorldView) or Sentinel-2 data; only one study 

is available using Sentinel-1 SAR data. 

 (iv) Used variables: The majority of studies applied NDVI, land cover information, 

LAI or fCover for analysis (39%, 13%, 5%, 4%), referring to the importance of vegeta-

tion as a key parameter affecting population density and phase change of locusts. 

Despite the high importance of soil moisture for locust development, there are only 

few studies focusing on EO-based soil moisture retrieval (9%). However, recent de-

velopment indicates that remote sensing-based soil moisture data will be an essential 

part in further research and eventually in desert locust management. 

 Research foci: The majority of studies focused on habitat monitoring (39%), followed 

by habitat mapping (25%), outbreak/hatching prediction (17%) and general review 

publications (10%). Few damage assessment studies were conducted (9%); most of 

these studies are feasibility cases carried out for the migratory locust in selected geo-

graphic areas. 

 Most articles reveal test case studies covering small study regions and short time pe-

riods. Overall, only 18 studies were long-term covering ten or more years. 

 Furthermore, we found fewer English-speaking, peer-reviewed literature and stud-

ies conducted by organizations or universities located in locust-affected regions (ex-

cept Australia and China). 

The role of remote sensing for locust management and research has increased over 

the past 40 years and nowadays can be considered as irreplaceable. Well-operating mon-

itoring and prediction systems for the desert locust (by FAO) and the Australian plague 

locust (by APLC) document the success and the advantage of implementing EO data to 

save time and resources once outbreaks occur. Summarizing, most EO applications focus 

on the monitoring of vegetation changes and precipitation patterns in locust habitat areas 

to determine potential gregarization, to stratify field surveys and to assess the risk of lo-

cust population increase [98]. In recent years, scientific attention was paid to soil moisture 

retrieval as well as modelling approaches combining several important variables. In terms 

of vegetation and land cover monitoring, the trend shows more time-series applications 

focusing on phenology and replace single image analysis. Overall, this review underlines 

further needs for EO-based research to either fully exploit the potentials of EO data and 

approaches or proof their limits. There is a lack of studies using available open source EO 

data archives over entire habitats and long time periods. Moreover, the sensors of the 

Sentinel fleet are still rarely applied. Here, experience from other disciplines, e.g., agricul-

ture and forestry, may be adopted to improve results and eventually contribute to locust 

management. Feasibility and test case studies have played a crucial role to contribute to 

nowadays operative services. Applications which were unimageable a few decades ago 

have become operative along with technological development in terms of sensor charac-

teristics, methodologies and computing power. Many countries launch and operate envi-

ronmental and industrial satellites. Fusion and combination of available data sources 

might enable to detecting the Earth at very high spatial, spectral and temporal resolution. 

Today, the Earth is covered by VHR data from different satellites sources. Therefore, de-

tection of locust bands might become more feasible in future. Nevertheless, extensive 

knowledge of considered species and geography remains a key factor in further locust-

related remote sensing applications. Therefore, more inter- and multi-national research 

funding utilizing the full capacity of remote sensing data is required. 

Author Contributions: Conceptualization, I.K. and C.K.; methodology, I.K.; formal analysis, I.K.; 

investigation, I.K.; writing—original draft preparation, I.K.; writing—review and editing, I.K., N.O., 



Insects 2021, 12, 233 33 of 39 
 

 

and C.K.; visualization, I.K.; supervision, N.O. and C.K.; project administration, I.K.; funding acqui-

sition, I.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research has been performed within the Locust-Tec project (https://www.locust-

tec.eoc.dlr.de, accessed on 6 March 2021) funded by BMBF in the framework of CLIENT-II program 

(https://www.bmbf-client.de/en, accessed on 6 March 2021). 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: Not applicable.  

Acknowledgments: First of all, we would like to thank Vladimir Kambulin (Zhyembayev’s Institute 

of Plant Protection and Quarantine, Almaty) for his time and for sharing his valuable knowledge 

and experience gained over more than 50 decades working in the field with different locust species. 

Special thanks go to two anonymous reviewers as well as guest editor Alexandre Latchininsky for 

their time, attention to detail and suggestions to improve this manuscript. We would like to thank 

Nadiya Muratova, international consultant of FAO for the recommendation of Locust-Tec project 

and Zhyembayev’s Institute of Plant Protection and Quarantine and Regional Pavlodar Office for 

supporting this project and research with their resources, knowledge and help. Furthermore, we 

would like to thank Vanessa Hueffer, Bart Slater and Sietse van der Woude for their support during 

their student activities within the Locust-Tec project. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script, or in the decision to publish the results. 

References 

1. Gupta, V.K. The Locust and Grasshopper Agricultural Manual 1982. Orient. Insects 1983, 17, 78–126, 

doi:10.1080/00305316.1983.10433700. 

2. Huang, K.H.J. Remote Sensing of Locust and Grasshopper Plague in China: A Review. In Proceedings of the 5th International 

Conference on Agro-Geoinformatics, Agro-Geoinformatics 2016, Tianjin, China, 18–20 July 2016, doi:10.1109/Agro-Geoinfor-

matics.2016.7577686. 

3. Le Gall, M.; Overson, R.; Cease, A. A Global Review on Locusts (Orthoptera: Acrididae) and Their Interactions with Livestock 

Grazing Practices. Front. Ecol. Evol. 2019, 7, 263, doi:10.3389/fevo.2019.00263. 

4. Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and Grasshopper Management. Annu. Rev. Entomol. 2019, 64, 15–34, 

doi:10.1146/annurev-ento-011118-112500. 

5. Kimathi, E.; Tonnang, H.E.Z.; Subramanian, S.; Cressman, K.; Abdel-Rahman, E.M.; Tesfayohannes, M.; Niassy, S.; Torto, B.; 

Dubois, T.; Tanga, C.M.; et al. Prediction of Breeding Regions for the Desert Locust Schistocerca gregaria in East Africa. Sci. Rep. 

2020, 10, 11937, doi:10.1038/s41598-020-68895-2. 

6. Steedman, A. (Ed.) Locust Handbook, 3rd ed.; Natural Resources Institute: Chatham, UK, 1990; ISBN 9780859542814. 

7. Cease, A.J.; Elser, J.J.; Fenichel, E.P.; Hadrich, J.C.; Harrison, J.F.; Robinson, B.E. Living with Locusts: Connecting Soil Nitrogen, 

Locust Outbreaks, Livelihoods, and Livestock Markets. BioScience 2015, 65, 551–558, doi:10.1093/biosci/biv048. 

8. Cullen, D.A.; Cease, A.J.; Latchininsky, A.V.; Ayali, A.; Berry, K.; Buhl, J.; De Keyser, R.; Foquet, B.; Hadrich, J.C.; Matheson, T.; 

et al. From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. In Advaces in Insect Phys-

iology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 53; ISBN 9780128118337. 

9. Sergeev, M.G.; Van’kova, I.A. The Dynamics of a Local Population of the Italian Locust (Calliptatus italicus L.) in an Anthropo-

genic Landscape. Contemp. Probl. Ecol. 2008, 1, 88–95, doi:10.1007/s12259-008-1009-x. 

10. Sword, G.A.; Lecoq, M.; Simpson, S.J. Phase Polyphenism and Preventative Locust Management. J. Insect Physiol. 2010, 56, 949–

957, doi:10.1016/j.jinsphys.2010.05.005. 

11. Xiang, C.; Tang, S.; Cheke, R.A.; Qin, W. A Locust Phase Change Model with Multiple Switching States and Random Perturba-

tion. Int. J. Bifurc. Chaos 2016, 26, 1–17, doi:10.1142/S0218127416300378. 

12. Pedgley, D.E. Desert Locust Forecasting Manual; Centre for Overseas Pest Research: London, UK, 1981;. 

13. Cressman, K. Role of Remote Sensing in Desert Locust Early Warning. J. Appl. Remote Sens. 2013, 7, 075098, 

doi:10.1117/1.jrs.7.075098. 

14. Van Huis, A.; Cressman, K.; Magor, J.I. Preventing Desert Locust Plagues: Optimizing Management Interventions. Entomol. 

Exp. Appl. 2007, 122, 191–214, doi:10.1111/j.1570-7458.2006.00517.x. 

15. Nature A Lack of Locust Preparedness Will Cost Lives. Available online: https://www.nature.com/articles/d41586-020-00692-3 

(accessed on 10 October 2020). 

16. Roussi, A. The Battle to Contain Gigantic Locust Swarms. Nature 2020, 579, 330–330. 

17. Arizona State University Global Sustainability. Available online: https://sustainability.asu.edu/global-locust-initiative/out-

breaks/ (accessed on 17 October 2020). 



Insects 2021, 12, 233 34 of 39 
 

 

18. Reuters Sardinia Hit by Worst Locust Invasion for 70 Years 2019. Available online: https://www.reuters.com/article/us-italy-

locusts-idUSKCN1TC1BY (accessed on 23 June 2020). 

19. Prior, C.; Streett, D.A. Strategies for the Use of Entomopathogens in the Control of the Desert Locust and Other Acridoid Pests. 

Mem. Entomol. Soc. Can. 1997, 129, 5–25, doi:10.4039/entm129171005-1. 

20. Maiga, I.H.; Lecoq, M.; Kooyman, C. Ecology and Management of the Senegalese Grasshopper Oedaleus Senegalensis (Krauss 

1877) (Orthoptera: Acrididae) in West Africa: Review and Prospects. Ann. Soc. Entomol. Fr. 2008, 44, 271–288, 

doi:10.1080/00379271.2008.10697563. 

21. Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; 

ISBN 9781138583832. 

22. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Inc.: Hoboken, 

NJ, USA, 2015; ISBN 9781118343289. 

23. Schowengerdt, R.A. Remote Sensing, Models, and Methods for Image Processing, 3rd ed.; Academic Press: Burlington, MA, USA, 

2007; ISBN 9780123694072. 

24. Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Appli-

cations: A Review. Remote Sens. 2020, 12, 2228, doi:10.3390/rs12142228. 

25. Pettorelli, N.; Bühne, H.S.T.; Shapiro, A.; Glover-Kapfer, P. Satellite Remote Sensing for Conservation. In Conservation Technol-

ogy. Satelite Remote Sensing; Conservation Technology Series Issue 4; WWF: Gland, Switzerland, 2018, 

doi:10.13140/RG.2.2.25962.41926. 

26. Meynard, C.N.; Lecoq, M.; Chapuis, M.; Piou, C. On the Relative Role of Climate Change and Management in the Current Desert 

Locust Outbreak in East Africa. Glob. Chang. Biol. 2020, 26, 3753–3755, doi:10.1111/gcb.15137. 

27. Salih, A.A.M.; Baraibar, M.; Mwangi, K.K.; Artan, G. Climate Change and Locust Outbreak in East Africa. Nat. Clim. Chang. 

2020, 10, 584–585, doi:10.1038/s41558-020-0835-8. 

28. Tratalos, J.; Cheke, R.; Healey, R.; Stenseth, N. Desert Locust Populations, Rainfall and Climate Change: Insights from Phenom-

enological Models Using Gridded Monthly Data. Clim. Res. 2010, 43, 229–239, doi:10.3354/cr00930. 

29. Pedgley, D.E. ERTS Surveys a 500 Km2 Locust Breeding Site in Saudi Arabia. In Proceedings of the Third Earth Resources 

Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 233–246. 

30. Hielkema, J.U. Application of Landsat Data in Desert Locust Survey and Control; Report of the Desert Locust satellite Applications 

Projects, Stage II; FAO: Rome, Italy, 1977. 

31. Hielkema, J.U.; Popov, G.B.; Williams, J.B.; Saunders, R.W.; Milford, J.R. Satellite Environmental Monitoring for Migrant Pest 

Forecasting by FAO: The ARTEMIS System. Philos. Trans. R. Soc. Lond. Biol. Sci. 1990, 328, 705–717, doi:10.1098/rstb.1990.0138. 

32. Hielkema, J.U.; Snijders, F.L. Operational Use of Environmental Satellite Remote Sensing and Satellite Communications Tech-

nology for Global Food Security and Locust Control by FAO: The ARTEMIS and DIANA Systems. Acta Astronaut. 1994, 32, 603–

616. 

33. Bryceson, K.P. Digitally Processed Satellite Data as a Tool in Detecting Potential Australian Plague Locust Outbreak Areas. J. 

Environ. Manag. 1990, 30, 191–207, doi:10.1016/0301-4797(90)90001-D. 

34. Hunter, D.M. Advances in the Control of Locusts (Orthoptera: Acrididae) in Eastern Australia: From Crop Protection to Pre-

ventive Control. Aust. J. Entomol. 2004, 43, 293–303, doi:10.1111/j.1326-6756.2004.00433.x. 

35. Drake, V.A.; Reynolds, D.R. Radar Entomology: Observing Insect Flight and Migration; CABI: Wallingford, UK; Cambridge, MA, 

USA, 2012; ISBN 9781845935566. 

36. Drake, V.A.; Wang, H. Recognition and Characterization of Migratory Movements of Australian Plague Locusts, Chortoicetes 

terminifera, with an Insect Monitoring Radar. J. Appl. Remote Sens. 2013, 7, 18. 

37. Weiss, J.E.R. Do Locusts Seek Greener Pastures? An Evaluation of MODIS Vegetation Indices to Predict Presence, Abundance 

and Impact of the Australian Plague Locust in South-Eastern Australia. Ph.D. Thesis, University of Melbourne, Melbourne, VIC, 

Australia, February 2016. 

38. Hunter, D.M.; McCulloch, L.; Spurgin, P.A. Aerial Detection of Nymphal Bands of the Australian Plague Locust (Chortoicetes 

terminifera (Walker)) (Orthoptera: Acrididae). Crop. Prot. 2008, 27, 118–123, doi:10.1016/j.cropro.2007.04.016. 

39. Hielkema, J.U. Desert Locust Habitat Monitoring with Satellite Remote Sensing. A New Technology for an Old Problem. ITC J. 

1981, 1981, 387–417. 

40. McCulloch, L.; Hunter, D.M. Identification and Monitoring of Australian Plague Locust Habitats from Landsat. Remote Sens. 

Environ. 1983, 13, 95–102, doi:10.1016/0034-4257(83)90015-9. 

41. Bryceson, K.P.; Wright, D.E. An Analysis of the 1984 Locust Plague in Australia Using Multitemporal Landsat Multispectral 

Data and a Simulation Model of Locust Development. Agric. Ecosyst. Environ. 1986, 16, 87–102, doi:10.1016/0167-8809(86)90096-

4. 

42. Bryceson, K.P. Likely Locust Infestation Areas in Western New South Wales, Australia, Located by Satellite. Geocarto Int. 1991, 

6, 21–37, doi:10.1080/10106049109354337. 

43. Bryceson, K.P. The Use of Landsat MSS Data to Determine the Locust Eggbeds of Locust Eggbeds in the Riverina Region of 

New South Wales, Australia. Int. J. Remote Sens. 1989, 10, 1749–1762, doi:10.1080/01431168908904005. 

44. Bryceson, K.P.; Hunter, D.M.; Hamilton, G.L. Use of Remotely Sensed Data in the Australian Plague Locust Commission. In 

Pest Control & Sustainable Agriculture; CSIRO: Melbourne, VIC, Australia, 1993; pp. 435–439. 



Insects 2021, 12, 233 35 of 39 
 

 

45. Tucker, C.J.; Hielkema, J.U.; Roffey, J. The Potential of Satellite Remote Sensing of Ecological Conditions for Survey and Fore-

casting Desert-Locust Activity. Int. J. Remote Sens. 1985, 6, 127–138, doi:10.1080/01431168508948429. 

46. Tappan, G.G.; Moore, D.G.; Knausenberger, W.I. Monitoring Grasshopper and Locust Habitats in Sahelian Africa Using GIS 

and Remote Sensing Technology. Int. J. Geogr. Inf. Syst. 1991, 5, 123–135, doi:10.1080/02693799108927836. 

47. Tappan, G.G.; Tyler, D.; Moore, D.G. Seasonal vegetation mapping by satellite for grasshopper and locust control in Africa. In 

United States Geological Survey Yearbook: Fiscal Year 1989; U.S. Geological Survey, Ed.; U.S. Geological Survey: Reston, VA, USA, 

1990; pp. 69–72. 

48. Tappan, G.G.; Moore, D.G. Seasonal Vegetation Monitoring with AVHRR Data for Grasshopper and Locust Control in West 

Africa. In Proceedings of the 22nd International Symposium on Remote Sensing of Environment, Abidjan, Ivory Coast, 20–26 

October 1988; pp. 221–234. 

49. Nailand, P. The Feasibility of Using Remote Sensing to Predict and Monitor Irruptions of the Brown Locust, Locustana pardalina 

(Walker). S. Afr. J. Sci. 1993, 89, 425–426. 

50. Latchininsky, A.V. Moroccan Locust Dociostaurus maroccanus (Thunberg, 1815): A Faunistic Rarity or an Important Economic 

Pest? J. Insect Conserv. 1998, 167–178. 

51. Escorihuela, M.J.; Merlin, O.; Stefan, V.; Moyano, G.; Eweys, O.A.; Zribi, M.; Kamara, S.; Benahi, A.S.; Ebbe, M.A.B.; Chihrane, 

J.; et al. SMOS Based High Resolution Soil Moisture Estimates for Desert Locust Preventive Management. Remote Sens. Appl. 

Soc. Environ. 2018, 11, 140–150, doi:10.1016/j.rsase.2018.06.002. 

52. Gómez, D.; Salvador, P.; Sanz, J.; Casanova, C.; Taratiel, D.; Casanova, J.L. Desert Locust Detection Using Earth Observation 

Satellite Data in Mauritania. J. Arid Environ. 2019, 164, 29–37, doi:10.1016/j.jaridenv.2019.02.005. 

53. Gómez, D.; Salvador, P.; Sanz, J.; Casanova, C.; Taratiel, D.; Casanova, J.L. Machine Learning Approach to Locate Desert Locust 

Breeding Areas Based on ESA CCI Soil Moisture. J. Appl. Remote Sens. 2018, 12, 1, doi:10.1117/1.JRS.12.036011. 

54. Piou, C.; Gay, P.; Benahi, A.S.; Babah Ebbe, M.A.O.; Chihrane, J.; Ghaout, S.; Cisse, S.; Diakite, F.; Lazar, M.; Cressman, K.; et al. 

Soil Moisture from Remote Sensing to Forecast Desert Locust Presence. J. Appl. Ecol. 2019, 56, 966–975, doi:10.1111/1365-

2664.13323. 

55. Malakhov, D.V.; Tsychuyeva, N.Y.; Kambulin, V.E. Ecological Modeling of Locusta migratoria L. Breeding Conditions in South-

Eastern Kazakhstan. Russ. J. Ecosyst. Ecol. 2018, 3, 1–14, doi:10.21685/2500-0578-2018-1-5. 

56. Meynard, C.N.; Gay, P.E.; Lecoq, M.; Foucart, A.; Piou, C.; Chapuis, M.P. Climate-Driven Geographic Distribution of the Desert 

Locust during Recession Periods: Subspecies’ Niche Differentiation and Relative Risks under Scenarios of Climate Change. Glob. 

Chang. Biol. 2017, 23, 4739–4749, doi:10.1111/gcb.13739. 

57. Latchininsky, A.V.; Sivanpillai, R. Locust Habitat Monitoring and Risk Assessment Using Remote Sensing and GIS Technolo-

gies. In Integrated Management of Arthropod Pests and Insect Borne Diseases; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, 

The Netherlands, 2010; pp. 163–188l. ISBN 9789048124633. 

58. Latchininsky, A.V. Locusts and Remote Sensing: A Review. J. Appl. Remote Sens. 2013, 7, 075099, doi:10.1117/1.jrs.7.075099. 

59. Belovsky, G.E.; Slade, J.B. Dynamics of Two Montana Grasshopper Populations: Relationships among Weather, Food Abudance 

and Intraspecific Competition. Oecologia 1995, 101, 383–396, doi:10.1007/BF00328826. 

60. Branson, D.H. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern 

Mixed Prairie. Environ. Entomol. 2017, 46, 589–594, doi:10.1093/ee/nvx053. 

61. Branson, D.H. Influence of a Large Late Summer Precipitation Event on Food Limitation and Grasshopper Population Dynamics 

in a Northern Great Plains Grassland. Environ. Entomol. 2008, 37, 686–695, doi:10.1603/0046-225X(2008)37[686:IOALLS]2.0.CO;2. 

62. Lazar, M.; Aliou, D.; Jeng-Tze, Y.; Doumandji-Mitiche, B.; Lecoq, M. Location and Characterization of Breeding Sites of Solitary 

Desert Locust Using Satellite Images Landsat 7 ETM+ and Terra MODIS. Adv. Entomol. 2015, 3, 6–15, doi:10.4236/ae.2015.31002. 

63. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global 

Land Areas. Int. J. Climatol. 2005, 25, 1965–1978, doi:10.1002/joc.1276. 

64. Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-

2). Bull. Am. Meteor. Soc. 2002, 83, 1631–1644, doi:10.1175/BAMS-83-11-1631. 

65. Sivanpillai, R.; Latchininsky, A.; Driese, K.; Kambulin, V. Mapping Locust Habitats in River Ili Delta, Kazakhstan, Using Land-

sat Imagery. Agric. Ecosyst. Environ. 2006, 117, 128–134. 

66. Latchininsky, A.V.; Sivanpillai, R.; Driese, K.L.; Wilps, H. Can Early Season Landsat Images Improve Locust Habitat Monitoring 

in the Amudarya River Delta of Uzbekistan. J. Orthoptera Res. 2007, 16, 167–173, doi:10.1665/1082-

6467(2007)16[167:CESLII]2.0.CO;2. 

67. Sivanpillai, R.; Latchininsky, A.V. Can Late Summer Landsat Data Be Used for Locating Asian Migratory Locust, Locusta mi-

gratoria Migratoria, Oviposition Sites in the Amudarya River Delta, Uzbekistan? Entomol. Exp. Appl. 2008, 128, 346–353, 

doi:10.1111/j.1570-7458.2008.00719.x. 

68. Sivanpillai, R.; Latchininsky, A.V. Mapping Locust Habitats in the Amudarya River Delta, Uzbekistan with Multi-Temporal 

MODIS Imagery. Environ. Manag. 2007, 39, 876–886, doi:10.1007/s00267-006-0193-y. 

69. Navratil, P.; Wilps, H. Object-Based Locust Habitat Mapping Using High-Resolution Multispectral Satellite Data in the Southern 

Aral Sea Basin. J. Appl. Remote Sens. 2013, 7, 075097, doi:10.1117/1.jrs.7.075097. 

70. Löw, F.; Waldner, F.; Latchininsky, A.; Biradar, C.; Bolkart, M.; Colditz, R.R. Timely Monitoring of Asian Migratory Locust 

Habitats in the Amudarya Delta, Uzbekistan Using Time Series of Satellite Remote Sensing Vegetation Index. J. Environ. Manag. 

2016, 183, 562–575, doi:10.1016/j.jenvman.2016.09.001. 



Insects 2021, 12, 233 36 of 39 
 

 

71. Liu, Q.; Liu, G.; Yang, Y.; Liu, P.; Huang, J. Identifying the Breeding Areas of Locusts in the Yellow River Estuary Using Landsat 

ETM+ Imagery. In Proceedings of the Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of 

China, Guiyan, China, 15 March 2006. 

72. Li, J.; Chen, J.; Sheng, S. Locust Habitats Monitoring Based on Multi-Temporal CCD Data of HJ-1 Satellite. In MIPPR 2011: 

Multispectral Image Acquisition, Processing, and Analysis, Proceedings of the Seventh International Symposium on Multispectral Image 

Processing and Pattern Recognition (MIPPR2011), Guilin, China, 4–6 November 2011; SPIE International Society for Optics and Pho-

tonics: Bellingham, WA, USA, 2006; Volume 8002, p. 80021H, doi:10.1117/12.902053. 

73. Zheng, X.; Huang, J.; Li, H.; Mansaray, L.R.; Song, P.; Dou, Y. Mapping of Oriental Migratory Locust Habitat Using Landsat 

OLI Images in Dongying City, China. In Proceedings of the 7th International Conference on Agro-Geoinformatics, Agro-Geoin-

formatics 2018, Hangzhou, China, 6–9 August 2018; pp. 13–17, doi:10.1109/Agro-Geoinformatics.2018.8476141. 

74. Shi, Y.; Huang, W.; Dong, Y.; Peng, D.; Zheng, Q.; Yang, P. The Influence of Landscape’s Dynamics on the Oriental Migratory 

Locust Habitat Change Based on the Time-Series Satellite Data. J. Environ. Manag. 2018, 218, 280–290, doi:10.1016/j.jen-

vman.2018.04.028. 

75. Zhao, L.; Huang, W.; Chen, J.; Dong, Y.; Ren, B.; Geng, Y. Land Use/Cover Changes in the Oriental Migratory Locust Area of 

China: Implications for Ecological Control and Monitoring of Locust Area. Agric. Ecosyst. Environ. 2020, 303, 107110, 

doi:10.1016/j.agee.2020.107110. 

76. Geng, Y.; Zhao, L.; Dong, Y.; Huang, W.; Shi, Y.; Ren, Y.; Ren, B. Migratory Locust Habitat Analysis With PB-AHP Model Using 

Time-Series Satellite Images. IEEE Access 2020, 8, 166813–166823, doi:10.1109/ACCESS.2020.3023264. 

77. De Miranda, E.E.; Duranton, J.-F.; Lecoq, M. Static and Dynamic Cartographies of the Biotopes of the Grasshopper Rhammatoerus 

schistocercoides (Rehn, 1906) in the State of Mato Grosso, Brazil. In Proceedings of the International Symposium on Resource and 

Environmental Monitoring (ECO-RIO), Rio de Janeiro, Brazil, 20–30 September 1994; pp. 67–72. 

78. Dreiser, U. Mapping of Desert Locust Habitats in Africa Using Landsat Thematic Mapper Data. GeoJournal 1994, 32, 55–60, 

doi:10.1007/BF00806357. 

79. Voss, F.; Dreiser, U. Mapping of desert locust habitats using remote sensing techniques. In New Strategies in Locust Control; Krall, 

S., Peveling, R., Ba Diallo, D., Eds.; Birkhäuser: Basel, Switzerland, 1997; pp. 37–45. 

80. Kambulin, V.E. Locust—Methods of Assessing Harm, Forecasting the Number and Technologies for Identifying Populated Areas; Zhyem-

bayev’s Institute of Plant Protection and Quarantine: Almaty, Kazakhstan, 2018; ISBN 9786017416928. 

81. Sivanpillai, R.; Latchininsky, A.V.; Peveling, R.; Pankov, V.I.; Diagnosis, P. Utility of the IRS-AWiFS Data to Map the Potential 

Italian Locust (Calliptamus Italicus) Habitats in Northern Kazakhstan. In Proceedings of the ASPRS 2009 Annual Conference 

Baltimore, MD, USA, 9–13 March 2009. 

82. Liao, C.; Lv, Y.; Zhang, X. Locust Plagues Risk Assessment in Xinjiang China Integrating Quantitative Remote Sensing and GIS Tech-

nologies; IEEE: Mississauga, ON, Canada, 2013; pp. 137–142. 

83. Aragón, P.; Coca-Abia, M.M.; Llorente, V.; Lobo, J.M. Estimation of Climatic Favourable Areas for Locust Outbreaks in Spain: 

Integrating Species’ Presence Records and Spatial Information on Outbreaks. J. Appl. Entomol. 2013, 137, 610–623, 

doi:10.1111/jen.12022. 

84. Zhang, N.; Zhang, H.-Y.; He, B.; Gexigeduren; Xin, Z.-Y.; Lin, H. Spatiotemporal Heterogeneity of the Potential Occurrence of 

Oedaleus Decorus Asiaticus in Inner Mongolia Steppe Habitats. J. Arid Environ. 2015, 116, 33–43, doi:10.1016/j.jari-

denv.2015.01.019. 

85. Malakhov, D.V.; Zlatanov, B.V. An Ecological Niche Model for Dociostaurus Maroсcanus, Thunberg, 1815 (Orthoptera, Acridi-

dae): The Nesting Environment and Survival of Egg-Pods. Biosis Biol. Syst. 2020, 1, 08–24, doi:10.37819/biosis.001.01.0048. 

86. Cherlet, M.R.; Gregorio, A.D.; Hielkema, J.U. Remote-Sensing Applications for Desert-Locust Monitoring and Forecasting. 

EPPO Bull. 1991, 21, 633–642, doi:10.1111/j.1365-2338.1991.tb01297.x. 

87. Hielkema, J.U.; Roffey, J.; Tucker, C.J. Assessment of Ecological Conditions Associated with the 1980/81 Desert Locust Plague 

Upsurge in West Africa Using Environmental Satellite Data. Int. J. Remote Sens. 1986, 7, 1609–1622, 

doi:10.1080/01431168608948956. 

88. Milford, J.R.; Dugdale, G. Monitoring of Rainfall in Relation to the Control of Migrant Pests. Philos. Trans. R. Soc. Lond. B. Biol. 

Sci. 1990, 328, 689–704, doi:10.1098/rstb.1990.0137. 

89. Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating Detection Skills of Satellite Rainfall Estimates over Desert Locust 

Recession Regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332, doi:10.1175/2010JAMC2281.1. 

90. World Meteorological Organization; Food and Agriculture Organization of the United Nations. Weather and Desert Locusts; 

World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 9789251094266. 

91. Ceccato, P. Operational Early Warning System Using Spot- Vegetation and Terra-Modis To Predict Desert Locust Outbreaks. 

In Proceedings of the 2nd International VEGETATION User Conference, Antwerp, Belgium, 24–26 March 2005; pp. 33–41. 

92. Ceccato, P.; Bell, M.A.; Blumenthal, M.B.; Connor, S.J.; Dinku, T.; Grover-Kopec, E.K.; Ropelewski, C.F.; Thomson, M.C. Use of 

Remote Sensing for Monitoring Climate Variability for Integrated Early Warning Systems: Applications for Human Diseases 

and Desert Locust Management. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 

Denver, CO, USA, 31 July–4 August 2006; pp. 270–274, doi:10.1109/IGARSS.2006.74. 

93. Tratalos, J.A.; Cheke, R.A. Can NDVI GAC Imagery Be Used to Monitor Desert Locust Breeding Areas? J. Arid Environ. 2006, 

64, 342–356, doi:10.1016/j.jaridenv.2005.05.004. 



Insects 2021, 12, 233 37 of 39 
 

 

94. Chen, J.; Li, J.-J. Monitoring the Oriental Migratory Locust Plague Based on the LAI Retrieved from Remotely Sensed Data. In 

Proceedings of the 2008 International Workshop on Education Technology and Training & 2008 International Workshop on 

Geoscience and Remote Sensing, Shanghai, China, 21–22 December 2008; IEEE: Shanghai, China, 2008; pp. 312–315. 

95. Pekel, J.-F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and Application of Multi-

Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat. IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens. 2011, 4, 318–326, doi:10.1109/JSTARS.2010.2052591. 

96. Waldner, F.; Babah Ebbe, M.A.; Cressman, K.; Defourny, P. Operational Monitoring of the Desert Locust Habitat with Earth 

Observation: An Assessment. ISPRS Int. J. Geo-Inf. 2015, 4, 2379–2400, doi:10.3390/ijgi4042379. 

97. Renier, C.; Waldner, F.; Jacques, D.C.; Babah Ebbe, M.A.; Cressman, K.; Defourny, P. A Dynamic Vegetation Senescence Indi-

cator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570, 

doi:10.3390/rs70607545. 

98. Deveson, E.D. Satellite Normalized Difference Vegetation Index Data Used in Managing Australian Plague Locusts. J. Appl. 

Remote Sens. 2013, 7, 075096, doi:10.1117/1.jrs.7.075096. 

99. Wang, H. Quantitative Assessment of Australian Plague Locust Habitats in the Inland of Eastern Australia Using RS and GIS 

Technologies. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI, Proceedings of the SPIE Remote Sensing Conference, 

Amsterdam, The Netherlands, 22–25 September 2014; SPIE International Society for Optics and Photonics: Bellingham, WA, USA, 

2014; Volume 9239, p. 92390D, doi:10.1117/12.2068382. 

100. Crooks, W.T.; Archer, D.J. SAR Observations of Dryland Moisture—Towards Monitoring Outbreak Areas of the Brown Locust 

in South Africa. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, 

Canada, 24–28 June 2002; Volume 4, pp. 1994–1996, doi:10.1109/igarss.2002.1026424. 

101. Liu, Z.; Shi, X.; Warner, E.; Ge, Y.; Yu, D.; Ni, S.; Wang, H. Relationship between Oriental Migratory Locust Plague and Soil 

Moisture Extracted from MODIS Data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 84–91, doi:10.1016/j.jag.2007.09.001. 

102. Han, X.; Ma, J.; Bao, Y. Remote Sensing New Model for Monitoring the East Asian Migratory Locust Infections Based on Its 

Breeding Circle. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications, Proceed-

ings of the SPIE Asia-Pacific Remote Sensing, Goa, India, 13–17 November 2006; SPIE International Society for Optics and Photonics: 

Bellingham, WA, USA, 2006. 

103. Gornyy, V.I.; Kritsuk, S.G.; Latypov, I.S.; Tronin, A.A. Quantitative Approach for Satellite Monitoring of Locust Mass Breeding 

Areas. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Proceedings 

of the ISPRS Commission VII Symposium ‘Remote Sensing: From Pixels to Processes’, Enschede, The Netherlands, 8–11 May 2006; ISPRS: 

Hannover, Germany, 2006. 

104. Propastin, P. Satellite-Based Monitoring System for Assessment of Vegetation Vulnerability to Locust Hazard in the River Ili 

Delta (Lake Balkhash, Kazakhstan). J. Appl. Remote Sens. 2013, 7, 075094, doi:10.1117/1.JRS.7.075094. 

105. Propastin, P. Multisensor Monitoring System for Assessment of Locust Hazard Risk in the Lake Balkhash Drainage Basin. En-

viron. Manag. 2012, 50, 1234–1246, doi:10.1007/s00267-012-9950-2. 

106. Li, L.; Zhu, D.; Ye, S.; Yao, X.; Li, J.; Zhang, N.; Han, Y.; Zhang, L. Design and Implementation of Geographic Information 

Systems, Remote Sensing, and Global Positioning System–Based Information Platform for Locust Control. J. Appl. Remote Sens. 

2014, 8, 084899, doi:10.1117/1.jrs.8.084899. 

107. Latchininsky, A.; Piou, C.; Franc, A.; Soti, V. Applications of Remote Sensing to Locust Management. In Land Surface Remote 

Sensing: Environment and Risks; Elsevier: Amsterdam, The Netherlands, 2016; pp. 263–293. 

108. Chen, C.; Qian, J.; Chen, X.; Hu, Z.; Sun, J.; Wei, S.; Xu, K. Geographic Distribution of Desert Locusts in Africa, Asia and Europe 

Using Multiple Sources of Remote-Sensing Data. Remote Sens. 2020, 12, 3593, doi:10.3390/rs12213593. 

109. Wang, Y.-P.; Wu, M.-F.; Lin, P.-J.; Wang, Y.; Chen, A.-D.; Jiang, Y.-Y.; Zhai, B.-P.; Chapman, J.W.; Hu, G. Plagues of Desert 

Locusts: Very Low Invasion Risk to China. Insects 2020, 11, 628, doi:10.3390/insects11090628. 

110. Rosenberg, L.J. Information Systems for Locust Forecasting. In Proceedings of the Workshop on Research Priorities for Migrant 

Pests of Agriculture in Southern Africa, Pretoria, South Africa, 24–26 March 1999; p. 7. 

111. Healey, R.G.; Robertson, S.G.; Magor, J.I.; Pender, J.; Cressman, K. A GIS for Desert Locust Forecasting and Monitoring. Int. J. 

Geogr. Inf. Syst. 1996, 10, 117–136, doi:10.1080/02693799608902070. 

112. Burt, P.J.A.; Colvin, J.; Smith, S.M. Remote Sensing of Rainfall by Satellite as an Aid to Oedaleus senegalensis (Orthoptera: Acridi-

dae) Control in the Sahel. Bull. Entomol. Res. 1995, 85, 455–462, doi:10.1017/S0007485300032922. 

113. Burt, P.J.A.; Colvin, J.; Smith, S.M. Forecasting the early-season eclosion of Oedaleus senegalensis in the Sahel: The role of 

remotely sensed rainfall data. In New Strategies in Locust Control. Krall, S., Peveling, R., Ba Diallo, D., Eds.; Birkhäuser: Basel, 

Switzerland, 1997; pp. 55–61. 

114. Todd, M.C.; Washington, R.; Cheke, R.A.; Kniveton, D. Brown Locust Outbreaks and Climate Variability in Southern Africa. J. 

Appl. Ecol. 2002, 39, 31–42, doi:10.1046/j.1365-2664.2002.00691.x. 

115. Ma, J.; Dai, Q. Migratory Locust Hazard Monitoring and Prediction Using the Bayesian Network Inference. In Proceedings of 

the IGARSS 2005, IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; IEEE: Seoul, 

Korea, 2005; Volume 5, pp. 3623–3626. 

116. Ceccato, P.; Cressman, K.; Giannini, A.; Trzaska, S. The Desert Locust Upsurge in West Africa (2003-2005): Information on the 

Desert Locust Early Warning System and the Prospects for Seasonal Climate Forecasting. Int. J. Pest Manag. 2007, 53, 7–13, 

doi:10.1080/09670870600968826. 



Insects 2021, 12, 233 38 of 39 
 

 

117. Vallebona, C.; Genesio, L.; Crisci, A.; Pasqui, M.; Di Vecchia, A.; Maracchi, G. Large-Scale Climatic Patterns Forcing Desert 

Locust Upsurges in West Africa. Clim. Res. 2008, 37, 35–41, doi:10.3354/cr00744. 

118. Piou, C.; Lebourgeois, V.; Benahi, A.S.; Bonnal, V.; el Hacen Jaavar, M.; Lecoq, M.; Vassal, J.-M. Coupling Historical Prospection 

Data and a Remotely-Sensed Vegetation Index for the Preventative Control of Desert Locusts. Basic Appl. Ecol. 2013, 14, 593–

604, doi:10.1016/j.baae.2013.08.007. 

119. Tronin, A.A.; Gornyy, V.I.; Kiselev, A.V.; Kritsuk, S.G.; Latypov, I.S. Forecasting of Locust Mass Breeding by Using Satellite 

Data. Curr. Probl. Remote Sens. Earth Space 2014, 11, 37–50. 

120. Veran, S.; Simpson, S.J.; Sword, G.A.; Deveson, E.; Piry, S.; Hines, J.E.; Berthier, K. Modeling Spatiotemporal Dynamics of Out-

breaking Species: Influence of Environment and Migration in a Locust. Ecology 2015, 96, 737–748, doi:10.1890/14-0183.1. 

121. Zheng, S.; Zheng, J.; Mu, C.; Ni, Y.; Dawuti, B.; Wu, J. GIS-Based Multi-Criteria Analysis Model for Identifying Probable Sites 

of Locust Outbreak in Xinjiang, China. In Proceedings of the 23rd International Conference on Geoinformatics, Wuhan, China, 

19–21 June 2015; IEEE: Wuhan, China, 2015; pp. 1–6. 

122. Mangeon, S.; Spessa, A.; Deveson, E.; Darnell, R.; Kriticos, D.J. Daily Mapping of Australian Plague Locust Abundance. Sci Rep 

2020, 10, 16915, doi:10.1038/s41598-020-73897-1. 

123. Crooks, W.T.S.; Cheke, R.A. Soil Moisture Assessments for Brown Locust Locustana Pardalina Breeding Potential Using Synthetic 

Aperture Radar. J. Appl. Remote Sens 2014, 8, 084898, doi:10.1117/1.JRS.8.084898. 

124. Ma, J.; Han, X.; Hasibagan; Wang, C.; Zhang, Y.; Tang, J.; Xie, Z.; Deveson, T. Monitoring East Asian Migratory Locust Plagues 

Using Remote Sensing Data and Field Investigations. Int. J. Remote Sens. 2005, 26, 629–634, doi:10.1080/01431160310001595019. 

125. Ma, J.; Hasibagan, H.X.; Devision, T. Calibration and Verification of Remote Sensing Data for East Asia Migratory Plague Locust 

Reed Habitat Monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, 

Canada, 24–28 June 2002; pp. 2868–2870. 

126. Ji, R.; Xie, B.Y.; Li, D.M.; Li, Z.; Zhang, X. Use of MODIS Data to Monitor the Oriental Migratory Locust Plague. Agric. Ecosyst. 

Environ. 2004, 104, 615–620, doi:10.1016/j.agee.2004.01.041. 

127. Zha, Y.; Gao, J.; Ni, S.; Shen, N. Temporal Filtering of Successive MODIS Data in Monitoring a Locust Outbreak. Int. J. Remote 

Sens. 2005, 26, 5665–5674, doi:10.1080/01431160500196349. 

128. Liu, Z.; Ni, S.; Zha, Y.; Shi, X. Monitoring the Plague of Oriental Migratory Locust Using Multi-Temporal Landsat TM Imagery. 

In Proceedings of the Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of China, Guiyan City, 

China, 15 March 2006. 

129. Tian, H.D.; Ji, R.; Xie, B.Y.; Li, X.H.; Li, D.M. Using Multi-Temporal Landsat ETM+ Data to Monitor the Plague of Oriental 

Migratory Locust. Int. J. Remote Sens. 2008, 29, 1685–1692, doi:10.1080/01431160701250424. 

130. Zha, Y.; Ni, S.; Gao, J.; Liu, Z. A New Spectral Index for Estimating the Oriental Migratory Locust Density. Photogramm. Eng. 

Remote Sens. 2008, 74, 619–624, doi:10.14358/PERS.74.5.619. 

131. Singh, D.; Sao, R.; Singh, K.P. A Remote Sensing Assessment of Pest Infestation on Sorghum. Adv. Space Res. 2007, 39, 155–163, 

doi:10.1016/j.asr.2006.02.025. 

132. Song, P.; Zheng, X.; Li, Y.; Zhang, K.; Huang, J.; Li, H.; Zhang, H.; Liu, L.; Wei, C.; Mansaray, L.R.; et al. Estimating Reed Loss 

Caused by Locusta Migratoria Manilensis Using UAV-Based Hyperspectral Data. Sci. Total Environ. 2020, 719, 137519, 

doi:10.1016/j.scitotenv.2020.137519. 

133. Cracknell, A.P. Rapid Remote Recognition of Habitat Changes. Prev. Vet. Med. 1991, 11, 315–323, doi:10.1016/S0167-

5877(05)80018-2. 

134. Abd El-Ghany, N.M.; Abd El-Aziz, S.E.; Marei, S.S. A Review: Application of Remote Sensing as a Promising Strategy for Insect 

Pests and Diseases Management. Environ. Sci. Pollut. Res. 2020, doi:10.1007/s11356-020-09517-2. 

135. Despland, E.; Rosenberg, J.; Simpson, S.J. Landscape Structure and Locust Swarming: A Satellite’s Eye View. Ecography 2004, 

27, 381–391, doi:10.1111/j.0906-7590.2004.03779.x. 

136. Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop Type Classification Using a Combination of Optical and Radar Remote Sensing 

Data: A Review. Int. J. Remote Sens. 2019, 40, 6553–6595, doi:10.1080/01431161.2019.1569791. 

137. Knauer, K.; Gessner, U.; Fensholt, R.; Kuenzer, C. An ESTARFM Fusion Framework for the Generation of Large-Scale Time 

Series in Cloud-Prone and Heterogeneous Landscapes. Remote Sens. 2016, 8, 425, doi:10.3390/rs8050425. 

138. Bradley, B.A. Remote Detection of Invasive Plants: A Review of Spectral, Textural and Phenological Approaches. Biol. Invasions 

2014, 16, 1411–1425, doi:10.1007/s10530-013-0578-9. 

139. Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, 

C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570, doi:10.3390/rs12213570. 

140. Eklundh, L.; Jönsson, P. TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. 

In Remote Sensing Time Series; Remote Sensing and Digital Image Processing; Kuenzer, C., Dech, S., Wagner, W., Eds.; Springer 

International Publishing: Cham, Switzerland, 2015; Volume 22, pp. 141–158. ISBN 9783319159669. 

141. Stanimirova, R.; Cai, Z.; Melaas, E.K.; Gray, J.M.; Eklundh, L.; Jönsson, P.; Friedl, M.A. An Empirical Assessment of the MODIS 

Land Cover Dynamics and TIMESAT Land Surface Phenology Algorithms. Remote Sens. 2019, 11, 2201, doi:10.3390/rs11192201. 

142. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes in Satellite Image Time Series. 

Remote Sens. Environ. 2010, 114, 106–115, doi:10.1016/j.rse.2009.08.014. 

143. Despland, E. Fractal Index Captures the Role of Vegetation Clumping in Locust Swarming. Funct Ecol. 2003, 17, 315–322, 

doi:10.1046/j.1365-2435.2003.00728.x. 



Insects 2021, 12, 233 39 of 39 
 

 

144. Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Pearson Education: Delhi, India, 2008; ISBN 

9788131716809. 

145. Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye Vegetation Indices for Estimation of 

Leaf Area Index and Biomass in Corn and Soybean Crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248, 

doi:10.1016/j.jag.2014.08.002. 

146. Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: 

A Review—Part II: Applications. Remote Sens. 2020, 12, 3053, doi:10.3390/rs12183053. 

147. Hoeser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-

Part I: Evolution and Recent Trends. Remote Sens. 2020, 12, 1667, doi:10.3390/rs12101667. 

148. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sens-

ing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49, doi:10.1016/j.isprsjprs.2020.12.010. 

149. Ye, S.; Lu, S.; Bai, X.; Gu, J. ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species 

and Instars from RGB Images. Insects 2020, 11, 458, doi:10.3390/insects11080458. 

150. Walz, Y.; Wegmann, M.; Dech, S.; Vounatsou, P.; Poda, J.-N.; N’Goran, E.K.; Utzinger, J.; Raso, G. Modeling and Validation of 

Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing. PLoS Negl. Trop. Dis. 2015, 9, e0004217, 

doi:10.1371/journal.pntd.0004217. 

151. Warren, A.; Litvaitis, J.A.; Keirstead, D. Developing a Habitat Suitability Index to Guide Restoration of New England Cottontail 

Habitats: New England Cottontail HSI. Wildl. Soc. Bull. 2016, 40, 69–77, doi:10.1002/wsb.616. 

152. Zajac, Z.; Stith, B.; Bowling, A.C.; Langtimm, C.A.; Swain, E.D. Evaluation of Habitat Suitability Index Models by Global Sensi-

tivity and Uncertainty Analyses: A Case Study for Submerged Aquatic Vegetation. Ecol. Evol. 2015, 5, 2503–2517, 

doi:10.1002/ece3.1520. 

153. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 

349, doi:10.3390/info10110349. 

154. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agri-

culture. Comput. Netw. 2020, 172, 107148. Available online: https://doi.org/10.1016/j.comnet.2020.107148 (accessed on 18 January 

2021). 


