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Simple Summary: With resistance to the pyrethroid family of insecticides increasing, it is more im-

portant than ever that tools are available to measure the efficacy of alternatives. Pyriproxyfen (PPF) 

is an alternative insecticide whose mode of action sterilises adult mosquitoes. Consequently, the 

efficacy of PPF-based tools can be measured through visual examination of egg development by 

trained experts. This, however, can be a time-consuming process for which the required expertise 

can be difficult to train and is not available in many contexts. As such, we propose that an objective 

machine learning program, which can automatically classify the fertility status of adult mosquito 

ovaries via a colour image, be developed to improve the speed, accuracy, and consistency of assess-

ment. This study shows that a convolutional neural network, built in Python’s TensorFlow library, 

can quickly classify images of dissected ovaries into either ‘fertile’ or ‘infertile’ with a high accuracy 

rate. Such an application would be a practical and accessible tool available to all researchers study-

ing the efficacy of PPF or other insecticides with a similar mode of action. 

Abstract: Pyriproxyfen (PPF) may become an alternative insecticide for areas where pyrethroid-

resistant vectors are prevalent. The efficacy of PPF can be assessed through the dissection and as-

sessment of vector ovaries. However, this reliance on expertise is subject to limitations. We show 

here that these limitations can be overcome using a convolutional neural network (CNN) to auto-

mate the classification of egg development and thus fertility status. Using TensorFlow, a resnet-50 

CNN was pretrained with the ImageNet dataset. This CNN architecture was then retrained using a 

novel dataset of 524 dissected ovary images from An. gambiae s.l. An. gambiae Akron, and An. funes-

tus s.l., whose fertility status and PPF exposure were known. Data augmentation increased the train-

ing set to 6973 images. A test set of 157 images was used to measure accuracy. This CNN model 

achieved an accuracy score of 94%, and application took a mean time of 38.5 s. Such a CNN can 

achieve an acceptable level of precision in a quick, robust format and can be distributed in a practi-

cal, accessible, and free manner. Furthermore, this approach is useful for measuring the efficacy and 

durability of PPF treated bednets, and it is applicable to any PPF-treated tool or similarly acting 

insecticide. 
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Citation: Fowler, M.T.; Lees, R.S.; 

Fagbohoun, J.; Matowo, N.S.; 

Ngufor, C.; Protopopoff, N.;  

Spiers, A. The Automatic  

Classification of Pyriproxyfen  

Affected Mosquito Ovaries. Insects 

2021, 12, 1134. https://doi.org/ 

10.3390/insects12121134 

Academic Editor: Geoffrey M.  

Attardo 

Received: 9 November 2021 

Accepted: 14 December 2021 

Published: 17 December 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Insects 2021, 12, 1134 2 of 11 
 

1. Introduction 

Insecticide-treated nets (ITNs) are a common vector control tool and have consider-

ably decreased the burden inflicted by malaria [1]. However, in recent years, species of 

the mosquito genus Anopheles, the principal vector for malaria, have demonstrated an in-

creased resistance to the pyrethroid-based insecticides used to treat ITNs. This increase in 

resistance to pyrethroids threatens the efficacy of ITNs and may have contributed to an 

increase in malaria cases in affected areas [2]. Consequently, alternative effective insecti-

cides for use on ITNs need to be identified to maintain the efficacy of this intervention and 

meet the gap in global disease control that pyrethroid resistance has created [3,4]. ITNs 

treated with a mixture of pyriproxyfen (PPF) and pyrethroids offer an alternative to stand-

ard pyrethroid-treated ITNs in areas where pyrethroid-resistant malaria vectors are prev-

alent [5–8]. The mode of action of PPF affects the fertility, longevity, and lifetime fecundity 

of malaria vectors [9,10], and PPF-treated ITNs have been shown to sterilise Anopheles 

mosquitos under both laboratory and field conditions [11,12]. As vector ovary develop-

ment is inhibited by exposure to PPF [8], and females that fail to develop morphologically 

normal eggs have been shown to not oviposit [13,14], a means of measuring efficacy and 

monitoring the durability of PPF and PPF-treated tools is through the assessment of eggs 

for signs of abnormal or inhibited development [8,12]. Although different means of scor-

ing sterility exist (e.g., by looking for the ability to prevent egg laying or oviposition inhi-

bition), another method to determine fertility status is based on trained experts manually 

dissecting ovaries and classifying egg development according to Christopher’s stages [15]. 

However, this can be a time-consuming process and requires a level of expertise not al-

ways available. Therefore, to increase the throughput and robustness of data used to 

measure the efficacy and durability of PPF-based ITNs, and to aid efficient and reproduc-

ible data collection in research settings, freely available alternative methods for the accu-

rate, quick, and automatic classification of ovary development are required. 

In recent years, deep learning models and convolutional neural networks (CNNs) 

have made significant progress across a range of computer vision problems, including 

image classification [16]. A CNN implements a convolution operation across several dis-

tinct layers to convert an input (i.e., an image) into an output (i.e., a classification). The 

convolution operation applies a filter or kernel (usually a 3 × 3 or 5 × 5 matrix) to a two-

dimensional representation of an image. This matrix then slides over the full 2D grid, per-

forming calculations on the data depending on the kernel’s weights, transforming data 

into a representation of patterns found within the image (i.e., edges, etc.) [17]. A CNN, 

therefore, uses linear regression with forward and backward propagation in a neural net-

work to automatically adjust and determine the most appropriate kernel weights [18,19]. 

These weights can then identify different pattern types found within a dataset, with layers 

earlier in the network identifying primitive features in an image, such as edges and col-

ours, while deeper layers detect more complex shapes, patterns, or objects [20,21]. 

This type of architecture enables the automatic training and detection of multiple 

visual features, which can then be used to identify and classify variance between images. 

However, the area of application for deep learning and CNNs has been constrained by its 

reliance on large datasets to avoid overfitting (i.e., to ensure generalisability) and, thus, 

achieve high accuracy rates [22]. Nevertheless, the size of a dataset can be increased 

through data augmentation, which employs a raft of tactics so as to artificially increase 

the available dataspace and allow generalisable models to be built. Data augmentation 

includes the geometric transformation, colour augmentation, and random cropping of 

available data (amongst other techniques), thereby creating randomised novel images 

from those that are already available [23]. However, even with data augmentation, most 

datasets are still insufficient to avoid overfitting. In such cases, transfer learning can be 

used, whereby opensource architectures and pretrained weights, derived using very large 

datasets, are repurposed and fine-tuned for a different but related task [24]. Models 

trained against the ImageNet dataset (which contains over 14 million images and 20 thou-

sand classes) are freely available and regularly achieve high levels of accuracy [25]. Three 
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common and high-performing models used in transfer learning, all pretrained and tested 

against the ImageNet dataset, are (1) VGG-16 [26], (2) ResNet-50 [27], and (3) InceptionV3 

[28,29]. 

Machine learning has already been successfully utilised within entomology for a 

number of species classification tasks, such as the identification of pest insect species [30], 

the recognition of lepidopteran species [31], and the classification of mosquito species [32–

35]. Additionally, automatic tools have been developed to count the eggs laid by female 

mosquitos, which can be used to estimate fecundity [36–38]. However, current work on 

the automatic classification of mosquito fertility and egg development is limited. As such, 

this study is aimed at bridging this gap and uses deep learning, data augmentation, and 

transfer learning to develop a quick, robust, and practical method to classify the fertility 

status (i.e., ‘fertile’ or ‘infertile’) of mosquito ovaries from colour images. To be successful, 

this new method must (1) be automatic and require no, or limited, expert knowledge to 

categorise an image, (2) achieve close to the human accuracy rate of 99–100% (rate deter-

mined by the agreement between two scorers assessing the dataset used in this study), (3) 

be in an easily distributable, non-proprietary, and low-cost format, and (4) classify ovary 

fertility of an image faster than the estimated 2 s taken by human experts (rate determined 

by the mean time taken for four trained technicians to classify 30 random ovary images). 

Using a novel dataset of dissected ovary images, data augmentation, and transfer 

learning, we were able to build and train a CNN in TensorFlow that can detect and classify 

the development status (‘fertile’ or ‘infertile’) of 157 ovaries in 38.5 s at a 94% accuracy 

rate. As such, this study proposes a new method for the automatic classification of the 

fertility status of Anopheles mosquito ovaries that is quick, accurate, and easily distributa-

ble, and that is not dependent on trained experts to score egg development. 

2. Materials and Methods 

2.1. Image Dataset 

As no publicly available datasets exist, data from ongoing research were used for this 

study. A total of 524 images of dissected ovaries from 5–8 day old female mosquitos were 

collected and labelled with the appropriate fertility status (based on Christopher’s stage 

of egg development). These were all full colour images obtained from three sources where 

fertility status was determined and corroborated by two trained expert scorers. A sum-

mary of the datasets used here is found in Table 1. 

Table 1. Image dataset summary. 

Dataset Source Strain Image Count Fertile Infertile 

1 Cove, Benin An. gambiae s.l. 124 79 45 

2 Insectary colony An. gambiae Akron 187 43 144 

3 Mwanza, Tanzania An. funestus s.l. 125 67 58 

4 Mwanza, Tanzania An. gambiae s.l. 88 38 50 

Total 524 227 297 

The first dataset contained a total of 124 blood-fed adult pyrethroid-resistant female 

An. gambiae s.l. mosquitoes which had survived exposure to either a control untreated net 

or a PPF-treated net (Royal Guard) in experimental hut studies performed in accordance 

with current WHO guidelines [39]. Mosquitoes were collected as wild free-flying adults 

in experimental huts in Cove, Southern Benin, with 36.3% (n = 45) classified as being in-

fertile and the remaining 63.7% (n = 79) classified as being fertile. The second dataset con-

tained 187 blood-fed adult pyrethroid-resistant female An. gambiae Akron mosquitoes 

from insectary-maintained colonies. All samples had survived exposure to either a control 

untreated net or a PPF-treated net (Royal Guard) in WHO cone bioassays [39]. Of the total 

samples in the second dataset, 77.0% (n = 144) were classified as being infertile, and 23.0% 

(n = 43) were classified as being fertile. All samples in the first and second dataset were, 
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after exposure, held in plastic holding cups and provided 10% glucose for 72 h to allow 

enough time to become gravid. Prior to dissection, mosquitoes were killed by placing 

them in a freezer at −20 °C for 5–10 min and then dissected on a dissecting slide by sepa-

rating the abdomen from the head and thorax to expose the ovaries using dissecting nee-

dles. After dissection, eggs and ovaries of each mosquito were observed and photo-

graphed using a microscope equipped with a digital camera at 4× or 10× magnification. 

Developmental status of the eggs in each mosquito’s ovaries was classified and validated 

by two scorers according to Christopher’s stage of egg development [15]. Mosquitoes were 

classified as ‘fertile’ if eggs had fully developed to Christopher stage V and ‘infertile’ if 

eggs had not fully developed and remained in stages I–IV (see Figure 1). 

The third dataset contained 125 free-flying freshly blood-fed pyrethroid-resistant fe-

male An. funestus s.l. mosquitoes collected from the wall and roof of houses in Mwanza, 

Northwest Tanzania. Of these mosquitos, 46.4% (n = 58) were classed as being infertile 

and 53.6% (n = 67) were classified as being fertile. Dataset 4 also contained free-flying 

freshly blood-fed pyrethroid-resistant female mosquitoes collected from the wall and roof 

of houses in Mwanza, Northwest Tanzania. However, these were An. gambiae s.l., 56.8% 

(n = 50) classed as infertile and 43.2% (n = 38) classed as fertile. All samples from datasets 

3 and 4 were, after collection and following the CDC bottle bioassay guidelines [40], im-

mediately exposed to glass bottles treated with 1× the diagnostic dose of 100 μg/mL of 

PPF solution or control bottles treated with acetone for 60 min and left for 72 h post expo-

sure to allow time to become gravid. Dissection was then carried out under a stereoscopic 

dissecting microscope (using a Nikon MODEL C-PSN) at 5× magnification to assess ovary 

development. The status of ovaries and eggs was again categorised by two scorers as ei-

ther ‘fertile’ or ‘infertile’ according to Christopher’s stage of egg development, with those 

in Christopher stage V determined to be ‘fertile’ and those in stages I–IV classed as ‘infer-

tile’ [13]. After dissection, one image per mosquito was captured with a Motic camera 

microscope into a tablet PC.  

 

Figure 1. Christopher stages of egg development. Mosquitos whose eggs have fully developed to 

stage V (normal elongated, boat/sausage-shaped eggs with lateral floats) are classified as ‘fecund’ 

or ‘fertile’. If eggs have not fully developed and remain in stages I–IV (less elongated, round shape, 

lacking floats), the mosquito is classified as ‘non-fecund’ or ‘infertile’. 

2.2. Pre-Processing and Train/Test Split 

After data were loaded into Python, all images were rescaled to 224 × 224 pixels to 

ensure consistency and improve processing times (Figure 2A). Before data were analysed, 

images were first randomly allocated to a training and a test set using a respective split of 

70% (n = 367) and 30% (n = 157). A training set is used to teach a model to classify the 

correct domain. The set used here to train the model consisted of a total of 367 images, 151 

(41.1%) classed as fertile and 216 (58.9%) classed as infertile. The test set is used to measure 

the accuracy of a model. Here, 157 total images were allocated to testing accuracy, with 76 

(48.4%) classed as fertile and 81 (51.6%) classed as infertile. 

  

Infertile 
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2.3. Data Augmentation  

To overcome the limited dataset, data augmentation was employed to increase the 

number of images available for training. A total of 18 random transformations were ap-

plied to each image in the training set. The original images were retained, and each variant 

maintained its original’s classification label (‘fertile’ or ‘infertile’). Each variant underwent 

a random transformation along four dimensions: (1) a random rotation around 360°; (2) a 

randomised horizontal flip; (3) a randomised vertical flip; (4) a random brightness shift 

between 0.6 and 1.4. See Figure 2B for examples of this data augmentation on a fertile and 

an infertile ovary image. When images are rotated, a void is created around the edges. 

These voids can be filled by a number of means (e.g., by repeating the whole image or the 

neighbouring pixel). Experimentation found that leaving these voids black had the least 

impact on classification. Data augmentation was only applied to the training set, increas-

ing it from 367 to 6973 images. The test set did not undergo any data augmentation. 

 

 

Figure 2. Summary of analysis workflow. (A) Data are pre-processed as described in Section 2.2. Images and labels are 

loaded before the images are resized and undergo a random 70%/30% split into training and test sets. (B) The training set 

undergoes data augmentation as described in Section 2.3. Each original image produces 18 variations based on a random 

rotation around 360°, a random horizontal flip, a random vertical flip, and a random brightness shift between 60% and 

140%. Each variation retains the same classification as its original. (C) The training set is fitted to a range of CNNs, and 

classifiers are built and tested as described in Section 2.4. 

B. Data Augmentation 

Variations 

Original image 

(infertile) 

Original image 

(fertile) 
Variations 

C. Build classifiers 

Shape dataset for model 

input 

Bespoke CNN 

CNN + Data 

VGG-16 

ResNet-50 

InceptionV3 

A. Pre-processing 

Load images and labels 

Resize images for 

processing 

Train / Test split 

(70%/30%) 

Transfer lealearning 

CNN Models 
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2.4. Analysis 

To prepare data for processing by the CNNs, all images were resized (Figure 2C). 

The dimensions of each image were rescaled to the correct input shape for the training 

algorithm (224 × 224 pixels for the bespoke CNN, VGG-16, and ResNet-50 and 229 × 229 

for InceptionV3). Resizing images in this manner also ensures that the magnification, res-

olution, or quality of the photos available when using the tool do not affect classification. 

Before transfer learning was undertaken, a benchmark was established using a be-

spoke handmade CNN in TensorFlow. The architecture used for this CNN comprised a 

ReLU activated 3 × 3 input layer with 16 nodes, a (1, 1) stride, and ‘same’ padding (so that 

output size was equal to input size). This input layer then fed into three 3 × 3 ReLU acti-

vated hidden layers, with the same stride and padding as the input layer and whose num-

ber of nodes doubled from the previous layer (e.g., 16, 32, 64, and 128). Each convolutional 

layer fed into a 2 × 2 pooling layer, with a (2, 2) stride, to prevent overfitting. The final 

hidden layer was used as the input into a binary densely connected softmax output layer 

to capture either fertile (0) or infertile (1). As the model was a binary classifier, it was 

compiled using the ‘Sparse Categorical Cross-Entropy’ cost method, ‘Root-Mean-Squared 

Propagation’ optimiser, and ‘Binary Accuracy’ metric [41]. The model was trained against 

two training sets and used to generate two classifiers. The first classifier was trained 

against the original, pre-data augmentation, training set (i.e., 367 images) and the second 

full training set including data augmentation (i.e., 6973 images). During fitting, experi-

mentation found that five epochs and a batch size of 32 produced the optimal perfor-

mance. These models provided two benchmarks showing the impact of both data aug-

mentation and transfer learning. 

Once a benchmark was established, transfer learning was undertaken. The VGG-16 

[26], ResNet-50 [27], and InceptionV3 [29] architectures with parameters pretrained 

against the ImageNet dataset were repurposed using the full training set (i.e., 6973 im-

ages). Although the architectures’ layers were frozen, to maintain their ImageNet 

weighting, each was slightly altered for its new purpose. The output layer of each archi-

tecture was replaced with a densely connected softmax layer with two outputs, so as to 

accommodate the binary classification of ‘fertile’ or ‘infertile’. These altered models were 

then compiled and fit to the training set. As each model is a deep net classifying a binary 

problem, all three were compiled using the ‘Sparse Categorical Cross-Entropy’ cost 

method, ‘adam’ optimiser, and ‘Binary Accuracy’ metric [41]. The training data were then 

used to improve the target predictive function of the architectures to detect and classify 

fertility status. When fitting, manual fine-tuning of the models’ hyperparameters found 

that five epochs and a batch size of 32 maximised performance. 

2.5. Resources and Requirements  

Image pre-processing, data augmentation, and analysis were performed using the 

TensorFlow 2.4.1 library in Python through a Jupyter notebook created for this project by 

the lead author. All analysis found here was performed on an Intel 2.20 GHz 10 Core Xeon 

Silver 4114 CPU equipped on a desktop computer with 25.8 GB of RAM. 

3. Results 

For this study, one bespoke CNN architecture was created to classify data, and trans-

fer learning was used to repurpose the existing VGG-16, ResNet-50, and InceptionV3 ar-

chitectures. All architectures except one were retrained using the augmented training set 

(e.g., 6973 images). A version of the bespoke CNN was trained against the original, pre-

data augmentation training set (e.g., 367 images) for benchmarking. The accuracy of all 

models was then measured against the test set (157 images). For a summary of the model 

performance, see Table 2. 
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Table 2. Performance of transfer learning architectures against the test set. 

Architecture Accuracy 1 Recall (Fer) 2 Recall (Inf) 3 Precision (Fer) 4 Precision (Inf) 5 Speed 6 

Bespoke CNN 0.777 0.951 0.592 0.918 0.713 28.1 s 

CNN + data Augmentation 0.815 0.901 0.724 0.873 0.777 28.7 s 

VGG-16 0.885 0.901 0.868 0.892 0.880 41.7 s 

ResNet-50 0.943 0.951 0.934 0.947 0.939 38.5 s 

InceptionV3 0.803 0.716 0.895 0.747 0.879 36.5 s 
1 Accuracy—correct predictions divided by total number of predictions; 2 Recall (Fer)—fraction of fertile observations 

successfully retrieved; 3 Recall (Inf)—fraction of infertile observations successfully retrieved; 4 Precision (Fer)—true fertile 

predictions divided by total fertile predictions; 5 Precision (Inf)—true infertile predictions divided by total infertile predic-

tions; 6 Speed—mean time (in seconds) over five repetitions for the model to load and classify 157 images. 

3.1. Classification Accuracy 

Accuracy was measured by comparing a model’s classification of the images within 

the test set against that of the human experts, with a final accuracy rate calculated by di-

viding the number of correct predictions of ‘fertile’ or ‘infertile’ by the number of total 

predictions. Recall and precision were measured to ensure there was no imbalance in the 

accuracy of classes. The bespoke architecture achieved a benchmark of 78% without data 

augmentation but had significant skew toward ‘fertile’ predictions. Accuracy increased to 

82%, with less skew toward ‘fertile’, when the augmented training set was used. When 

transfer learning was employed, the VGG-16 architecture achieved an accuracy of 89% 

with a satisfactory balance between classification, and the InceptionV3 architecture 

reached an accuracy similar to the benchmark of 80%, but with slight skew toward ‘infer-

tile.’ However, the ResNet-50 architecture was able to attain the highest performance of 

all architectures, scoring an accuracy of 94% with a good balance between classes when 

measured against the test set. This is a level of precision close to the human accuracy rate 

of 99%. For a confusion matrix detailing the ResNet-50 architecture’s performance, in this 

instance, see Table 3. As the images used to train and test the were all pre-processed, the 

magnification, resolution, or quality of image should not affect classification, and the ac-

curacy scores reported here should be representative of real-world use. 

Table 3. Confusion matrix for ResNet-50. 

n = 157 1 Predicted Infertile Predicted Fertile  

Actual Infertile 77 4 81 

Actual Fertile 5 71 76 

 82 75  
1 Confusion matrix—comparison of actual values with those predicted by the model and giving 

details on true positive (top-left), true negative (bottom-right), false positive (top-right), and false 

negative (bottom-left) rates. 

3.2. Classification Speed 

All models were able to classify the full test set in under 1 min. To import all the 

necessary Python libraries, build the architecture, load the architecture with the pre-

trained fertility classification weights, and get the model’s fertility prediction for the 157 

images in the test set took a mean time (over five repetitions) of 28 s for the bespoke ar-

chitecture, 41.7 s using the VGG-16 architecture, 38.5 s for ResNet-50, and 36.5 s for Incep-

tionV3. This compares with an estimated 5 min 14 s taken for one human expert to classify 

the same number of images (figure determined by multiplying 157 by the mean time of 2 

s taken for four trained technicians to classify 30 random ovary images). 
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4. Discussion 

This study aimed to use deep learning, data augmentation, and transfer learning to 

develop an automatic method for the classification of mosquito fecundity. It was deter-

mined that, for a solution to this problem to be appropriate, it must (1) require no, or 

limited, expert knowledge to categorise an image, (2) achieve close to the human accuracy 

rate of 99–100%, (3) be in an easily distributable, non-proprietary, and low-cost format, 

and (4) classify an image faster than the estimated 2 s taken by human experts. 

As such, we propose that a ResNet-50 CNN architecture [27], trained against the 

ImageNet database, be repurposed and fine-tuned to classify the fertility status (‘fertile’ 

or ‘infertile’) of Anopheles mosquito ovaries. Classification was based on Christopher’s 

stages of egg development [15], with eggs in stage V classed as ‘fertile’ and those eggs 

remaining in stages I–IV labelled as ‘infertile.’ Here, we show that such a model is capable 

of automatically classifying 157 images with a 94% accuracy rate in less than 40 s. Further-

more, as the model is built using TensorFlow 2.4.1, it uses a freely available, accessible, 

and robust opensource technology that is easily distributable via the web or mobile 

phones [41]. Consequently, the approach detailed in this study meets three of its aims, as 

it does not require any experts to categorise an image, it is easily distributable in a free 

format, and it can classify images faster than an expert. However, although the accuracy 

rate of the model does not achieve that of a human expert, it is still highly precise and is 

only 5% less accurate than trained experts. Furthermore, it is likely that this accuracy rate 

of 94% can be raised as more data become available. 

Such a model is useful when assessing the efficacy of PPF-based tools through meas-

urements of induced sterility in laboratory reared and field-collected populations of mos-

quitoes [12], and it could be particularly useful for large-volume bioassays done for dura-

bility monitoring of bio-efficacy of PPF-treated ITNs distributed in disease-endemic com-

munities over time. It can also be used in bioassays performed during resistance monitor-

ing, whereby field-collected females are exposed to a discriminating concentration of PPF 

to measure induced sterility [8]. This is a practical and accessible tool available to all re-

searchers studying the efficacy of PPF or other insecticides with a similar mode of action. 

Although offering several advancements over the existing manual method for classi-

fying ovary status via dissection and examination, the model presented here is subject to 

its own limitations. Machine learning will not remove the need for trained technicians to 

dissect ovaries, only the assessment of their fertility status. Consequently, some equip-

ment and expertise to dissect samples and to take digital colour images are still required 

to use the model. However, as taking photos of dissected ovaries is standard practice for 

record keeping and quality control, this model’s need for images should not add addi-

tional work but increase objectivity and reproducibility while removing the need for a 

second trained technician to confirm classification. A second limitation to the current 

model comes from the dataset included in its training. As only pyrethroid-resistant Anoph-

eles mosquito ovaries exposed to PPF were included in this study, its results are not gen-

eralisable to other species, arthropods, or insecticides. Thirdly, as there are no established 

dissection and imaging guidelines for capturing mosquito ovaries, there may be consid-

erable divergence between the methods and tools employed at different sites. This may 

mean that the model is currently only generalisable to those locations that use techniques 

similar to those detailed in this paper’s methods. However, the scale of this divergence, if 

any, is not currently known. Lastly, although a distributable application of the ResNet-50 

model is currently in development, a version of the tool accessible via the internet is not 

yet available. Consequently, some knowledge of Python is currently necessary to employ 

the classifier. 

It is likely that developments can be made to improve performance and accessibility. 

For example, to increase accuracy and applicability of the classification tool, the training 

set could be expanded to include samples exposed to other growth regulators or insecti-

cides of interest, images from a broader range of sites, or other species of mosquito (in-

cluding all cryptic subspecies of the An. gambiae complex). Additionally, accuracy and 
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generalisability may be increased through the use of a fuzzy image classifier or classifica-

tion using fuzzy logic, rather than a CNN. This alternative approach may improve preci-

sion as it could account for any ambiguity in the image dataset [42]. Furthermore, as the 

current model is limited to a binary classification of ‘fertile’ or ‘infertile’, it could be de-

veloped to capture the five Christopher stages of egg development or count the number 

of eggs in the dissected ovaries. Moreover, although the use of images from multiple lo-

cations in this study should ensure that the model is robust enough to deal with differ-

ences in the dissection and imaging of samples, standard operating procedures concern-

ing dissection and imaging need be developed to support the use of the classification tool. 

Lastly, the ResNet-50 model is currently only available via a Jupyter notebook; however, 

as a version of the model that can be accessed via the web is in development, a free and 

easy-to-use version of the model could be made freely available. 

5. Conclusions 

In conclusion, the reliance on manual scoring of mosquito egg development to deter-

mine the impact of PPF on the fertility of Anopheles mosquitos requires a level of expertise 

and experience that is not always available. This paper shows these limitations can be 

overcome using a ResNet-50 CNN model that automates the classification of egg devel-

opment as a measure of fertility status. Such a model is fast, can achieve an acceptable 

level of precision, is in a robust format, and has the potential to be easily distributed in a 

practical, accessible, and freely available manner. Furthermore, this approach is applica-

ble to scoring the fertility of mosquitoes exposed to any PPF-treated tool or similarly act-

ing insecticide or insect growth regulator, which causes the same impact on ovary mor-

phology, as well as applicable during bioassays performed to measure efficacy of these 

tools and in resistance monitoring. 
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