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Simple Summary: Worldwide, mass losses of honey bee colonies are being observed more frequently
due to Varroa mite infestation. Therefore, varroosis is considered a major problem in beekeeping
participating to a large extent in colony collapse disorder. Except for direct damage of bees and
suppressing their immune system caused by parasitism, Varroa mites transfer viral particles straight
to bee hemolymph which can have a fatal impact. To control the mite population, several acarici-
dal treatments are used. Commonly used treatments are synthetic acaricides with a high risk of
developing Varroa resistance population and contamination of bee products by acaricidal residues.
Other commonly used treatments are organic acids, which are increasingly associated with damage
of brood, adult bees, and premature deaths of queens. Therefore, in this study, we evaluated the
varroacidal effect of 30 individual essential oils. The toxicity of the most effective oils selected by
screening was subsequently tested on Varroa mites and adult honey bee workers simultaneously.
In addition, the main components of these essential oils were specified. Several essential oils were
proven to be effective against the adult female of Varroa mites and at the same dose safe for adult
honey bee workers under laboratory conditions, especially manuka, peppermint, oregano, litsea,
and cinnamon.

Abstract: Essential oils and their components are generally known for their acaricidal effects and are
used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides.
However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect
against honey bees, is not known. In this study, 30 different essential oils were screened by using
a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the
complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five
replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4,
24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with
the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The
results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano,
litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased
value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is
commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be
verified in beekeeping practice.
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Insects 2021, 12, 1045. https://doi.org/10.3390/insects12111045 https://www.mdpi.com/journal/insects

https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0001-9606-7258
https://orcid.org/0000-0002-8312-0627
https://doi.org/10.3390/insects12111045
https://doi.org/10.3390/insects12111045
https://doi.org/10.3390/insects12111045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/insects12111045
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects12111045?type=check_update&version=1


Insects 2021, 12, 1045 2 of 12

1. Introduction

The main threat for beekeeping is a varroosis caused by the obscure ectoparasitic mite
Varroa destructor Anderson and Trueman (Acari: Varroidae) [1,2]. The mite feeds on the fat
body of bees [3] and thus reduces the weight and fitness of newly emerging adult bees,
affects cuticle properties [4] and suppresses the immune response system [5]. In addition,
V. destructor acts as a vector of viruses [6], including deformed wing virus, Kashmir bee
virus, and Israeli acute paralysis virus [7–11]. These viruses are transmitted in large doses
directly to the hemolymph of the bee brood and adult honey bees [5]. Infected individuals
weaken, their lifespan is shorter, and the infection can lead through visible damaged bodies
and wings [12,13] to the colony collapse at the final stage [1,6]. For these reasons, and also
due to its almost worldwide distribution [1], V. destructor is associated with colony collapse
disorder (CCD) [14,15].

Reproduction of the V. destructor mite is closely related and synchronized with the
development of the bee brood [16]. Adult mated female mites enter the bee colony attached
to worker and drone bees, usually hidden under the sternites of bees, and then enter
brood cells only several hours before capping. Varroa mites can find the adult honey bee
workers and bee brood before capping based on chemical communication [1]. In colonies
highly infested (>7%) with V. destructor [1], the bee population is significantly reduced, and
eventually, the entire colony crashes unless the mite population is treated [17]. Colonies in
temperate areas must therefore be treated several times in a year against V. destructor to
keep mite populations at acceptable levels [18].

For a long time, the use of synthetic chemicals has been considered the most effective
way to control V. destructor [19], especially pyrethroids and organophosphates [20]. Ex-
cept for their declining efficiency due to emerging resistance against V. destructor [21–23],
excessive use of these compounds has, in many cases, also led to contamination of bee
products [24–26], especially honey and beeswax [24]. This could endanger the health of
bees and humans with potential sublethal doses of pesticide residue mixtures [27,28]. As a
result, the idea of finding new and safer ways to control the parasite is spreading. Thus,
natural products offer a very desirable alternative to synthetic products. Interest in these
substances is still growing because they are generally cheap and have lower health risks
for humans and bees [29].

In response, beekeepers are showing a growing interest in treatments that work
on physical intolerance rather than enzyme degradation, as is the case with synthetic
acaricides, to which resistance develops. Therefore, natural chemicals such as organic acids,
essential oils, and their derivatives are increasingly used [30,31]. However, several studies
suggest that the use of organic acids against Varroa may be harmful to bees. For example,
damage and removal of open and capped brood are most commonly observed [32,33]. In
addition, permanent damage to the digestive and excretory organs and glands of bees was
described [34,35], as well as damage to the queen or often even premature death [36,37], or
a decrease in the pH of honey during the following season [38].

Another possible way to reduce Varroa mites is essential oils (EO) [39]. According to
The Commission of the European Pharmacopoeia, EOs are odorous products, usually with
a complex composition, obtained from a botanically defined plant raw material by steam
distillation, dry distillation, or a suitable mechanical process without heating. They are
usually separated from the aqueous phase by a physical process that does not significantly
affect their composition. EOs are lipophilic and may contain over 100 different plant
secondary metabolites (terpenoids and phenylpropanoids, monoterpenes, sesquiterpenes,
aldehydes, alcohols, etc.) [40]. Among natural substances, essential oils represent one
of the most promising alternatives to synthetic chemicals [41–48], with minimal side
effects [49–52]. The effectiveness of EOs against V. destructor is comparable to organic acids,
but the application of EOs causes a lesser degree of stress in bees than the application of
organic acids [29].

In addition to acaricidal effects, the application of EOs into hives often also causes
antimicrobial effects, which can lead to an overall improvement in the health status of honey
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bee colonies [53]. Most research suggests that essential oils may be a useful alternative
to maintaining a low level of mite infestation in hives [39,54–57]. Adamczyk et al. [58]
concluded that the presence of residues of essential oil components in honey samples does
not pose a hygiene risk or a risk to human health.

Despite the promising acaricidal effects of various EOs found in vitro [54,55,57], only
a fraction of them has been tested under beehive conditions [39]. This could be the reason
why EOs have not yet been included in many commercial formulations, with the exception
of some cases [53].

The aim of the study was therefore to determine the acaricidal effect of a large number
of selected EOs against Varroa mites, as well as their effect on honey bees in vitro, which
select the most promising essential oils for the in vivo experiments. In addition, the most
promising EOs were quantified for their major components.

2. Materials and Methods
2.1. Biological Material and Essential Oils

V. destructor mites and honey bees (Apis mellifera) used in this study were obtained
from the experimental apiary of the Faculty of Agriculture, the University of South Bohemia
in České Budějovice, (Czech Republic). To rear mites, 4 honey bee colonies were infested
by Varroa mites and untreated for over 12 months. From the infested beehives, the bees
were collected in a mesh container by sweeping from the brood frames and subsequently
exposed to CO2. After anesthesia of the bees, the vessel was closed and shaken until mites
fell over the mesh bottom [59]. Thus, a sufficient number of adult vital female mites were
collected. Mites showing signs of defect, newly molded, or poorly mobile were eliminated.

A total of 30 essential oils (EO) were obtained from company 1. Aromaterapeutická
KH a.s. (Czech Republic). The list of EOs, their abbreviations, Latin names, and part of
used plants are given in Table 1.

Table 1. The list of essential oils, abbreviations, Latin names, and part of the used plants.

English Name Abbreviation Latin Name Part of Plant

Black pepper PEP Piper nigrum berry
Blue chamomile BCH Matricaria chamomilla flower

Carrot CAT Daucus carota seeds
Cinnamon CIN Cinnamomum zeylanicum bark
Clove Bud CB Eugenia caryophyllata leaves, buds, and twigs
Copaiba COP Copaifera reticulata resin

Coriander COR Coriandrum sativum seeds
Fennel FEN Foeniculum vulgare seeds
Ginger GIN Zingiber officinale rhizome

Green cardamom CAR Elettaria cardamomum seeds
Laurel LAU Laurus nobilis leaves

Lavender LAV Lavandula angustifolia flowering herb
Litsea LIT Litsea cubeba fruits
Mace MAC Myristica fragrans flower

Manuka MAN Leptospermum scoparium leaves and twigs
Maroc chamomile MCH Ormenis multicaulis herb

Nutmeg NUT Myristica fragrans seeds
Oregano ORG Origanum vulgare herb

Pelargonium PEL Pelargonium graveolens leaves and flowers
Peppermint PPM Mentha piperita herb
Ravensara RAV Ravensara aromatica leaves and twigs

Roman chamomile RCH Anthemis nobilis flower
Rosemary ROS Rosmarinus officinalis herb

Sage SAG Salvia officinalis leaves
Savory SAV Satureja montana herb

Spearmint SPM Mentha spicata crispa flowering herb
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Table 1. Cont.

English Name Abbreviation Latin Name Part of Plant

Thyme TYM Thymus vulgaris herb
Turmeric TUR Curcuma longa root

Wild thyme WTYM Thymus serpyllum herb
Wormwood WW Artemisa absinthium herb

2.2. Screening of Essential Oils for Their Acaricidal Activity

To evaluate EO acute toxicity on V. destructor, a glass-vial residual bioassay was
used [60]. Each tested product was diluted in acetone (0.375 µL EO/500 µL acetone). This
solution was pipetted into a 10 mL glass vial. Glass vials were rolled on their side until the
acetone evaporated and EOs created a cohesive film. Then, 5 vital female adult mites were
placed in each glass vial using a fine brush. The glass vials were sealed and placed in a dark
room at 25 ◦C and 65% RH. For each treatment, including acetone as a negative control
and thymol (THM) as a positive control; 5 repetitions were provided (each repetition in an
individual glass vial).

The mortality rates of Varroa mites were evaluated 2 and 4 h after the treatment, and
the efficacy of tested EOs was determined [55]. The mites were transferred to a white pad
and encouraged to move with the brush. Mites that did not move even after repeated
brushing were considered dead.

2.3. Complete Exposure Bioassay

EOs showing >70% mite mortality in the screening test were subjected to further
testing in the complete exposure method [61]. Dosages of EOs were prepared based on the
mortality of previous experiments with honey bees (data not included). A selected amount
of EOs was diluted in 0.5 mL of acetone. This solution was pipetted on the bottom of the
Petri dish and subsequently covered with filter paper (Whatman 1). After evaporation of
the solvent, five vital adult honey bee workers were placed in each Petri dish, together with
five vital female adult Varroa mites. Positive control (thymol) and negative control (acetone
only) were included. Altogether, 5 replicates were established for each treatment (each
repetition in an individual Petri dish). Immediately after the establishment, the Petri dishes
were transferred to an incubator (28 ◦C ± 0.5). Honey bee and mite mortality were assessed
after 4, 24, 48, and 72 h. The values of LC50 and selectivity ratio (SR) were calculated. SR is
a ratio between mite and bee toxicity, and it was determined according to the following
formula: SR = LC50 A. mellifera/LC50 V. destructor.

2.4. Assessment of the Main Components of the Examined EOs

Samples of essential oils were analyzed diluted 1:10,000 in hexane by GC MS/MS
system consisting of TriPlus autosampler, Trace GC Ultra gas chromatograph equipped
with a TG-5MS fused silica capillary column, 30 m × 0.25 mm × 0.25 µm and coupled to a
mass spectrometer TSQ Quantum XLS all from Thermo Fischer Scientific, Cleveland, OH,
USA. Helium was used as a carrier gas at 1.0 mL/min. A total of 1 µL of the sample was
injected into the SSL injector in the splitless mode set at 280 ◦C. The oven temperature was
programmed as follows: start at 40 ◦C and held for 5 min, then increased to 150 ◦C at a
rate of 3 ◦C/min and held for 0.5 min, then increased to 250 ◦C at a rate of 10 ◦C/min,
then increased to 290 ◦C at a rate of 25 ◦C, and finally maintained at 290 ◦C for 10 min.
The temperature of the transfer line was held at 250 ◦C, and the ion source was operating
at 200 ◦C. TIC mode was performed on Q1 at 70 eV of ionization energy and mass range
50–450 m/z. To exclude congestion of detector the scanning was performed after 6 min of
injection. The data were processed in Thermo Xcalibur 3.0.63 (Thermo Fisher, Waltham,
MA, USA). Component identification was made based on comparison with the NIST Mass
Spectral Search Program library v 2.0 f (Thermo Fisher). The quantification was achieved
based on Q3 SIM mode focused on fragmentation ions of desired compounds and also via
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an external calibration curve. The Thujone (Sigma Aldrich, St. Louis, MO, USA) was used
as an internal and also external standard.

2.5. Statistical Analyses

Statistical analyses of the screening of essential oils, including graphical outputs, were
processed in STATISTICA (version 14, TIBCO Software Inc., Palo Alto, CA, USA, 2021),
specifically, the analysis of variance procedure ANOVA, preceded by a normality test.
Statistical significance was tested at a level of significance = 0.05.

Probit analyses were calculated in XLSTAT (Addinsoft, 2016) incorporating natural
mortality into the analyses. The concentration of essential oils was transformed logarithmi-
cally. LD50 with 95% confidence intervals (p < 0.05) were fitted.

The in vitro effect of each active substance on mortality of both Varroa mite and honey
bees was analyzed by the test of hypothesis for two samples representing independent
binomial experiments, and the acaricidal effects of active substances were subsequently
evaluated (GenStat 17). Significant differences among substances were stated where
p ≤ 0.05.

3. Results
3.1. Screening of Essential Oils for Their Acaricidal Activity

All 30 EOs were screened for acaricidal effect in glass vials (Figure 1). Based on these
results, the EOs were divided into three categories according to their efficacy. A total of
11 EOs showed a high acaricidal efficacy (>70%) and were further tested on Petri dishes
(complete exposure assay) simultaneously with honey bees and mites. These were MAN,
TYM, WTYM, ORG, SAV, CIN, CB, PPM, CAT, PEL, LIT, and THM as a positive control.
The category of moderately effective oils (30–50%) includes ROS, RAV, TUR, RCH, LAV,
CAR, PEP, and GIN. The last category with an efficiency of less than 30% includes NUT,
FEN, MAC, BCH, MCH, COP, SAG, SPM, COR, LAU, and WW. Oils showing less than
70% efficacy were further tested.

Insects 2021, 12, x FOR PEER REVIEW 5 of 13 
 

 

Program library v 2.0 f (Thermo Fisher). The quantification was achieved based on Q3 SIM 
mode focused on fragmentation ions of desired compounds and also via an external cali-
bration curve. The Thujone (Sigma Aldrich, St. Louis, MO, USA) was used as an internal 
and also external standard. 

2.5. Statistical Analyses 
Statistical analyses of the screening of essential oils, including graphical outputs, 

were processed in STATISTICA (version 14, TIBCO Software Inc., Palo Alto, CA, USA, 
2021), specifically, the analysis of variance procedure ANOVA, preceded by a normality 
test. Statistical significance was tested at a level of significance = 0.05. 

Probit analyses were calculated in XLSTAT (Addinsoft, 2016) incorporating natural 
mortality into the analyses. The concentration of essential oils was transformed logarith-
mically. LD50 with 95% confidence intervals (p < 0.05) were fitted. 

The in vitro effect of each active substance on mortality of both Varroa mite and 
honey bees was analyzed by the test of hypothesis for two samples representing inde-
pendent binomial experiments, and the acaricidal effects of active substances were subse-
quently evaluated (GenStat 17). Significant differences among substances were stated 
where p ≤ 0.05. 

3. Results 
3.1. Screening of Essential Oils for Their Acaricidal Activity 

All 30 EOs were screened for acaricidal effect in glass vials (Figure 1). Based on these 
results, the EOs were divided into three categories according to their efficacy. A total of 
11 EOs showed a high acaricidal efficacy (>70%) and were further tested on Petri dishes 
(complete exposure assay) simultaneously with honey bees and mites. These were MAN, 
TYM, WTYM, ORG, SAV, CIN, CB, PPM, CAT, PEL, LIT, and THM as a positive control. 
The category of moderately effective oils (30–50%) includes ROS, RAV, TUR, RCH, LAV, 
CAR, PEP, and GIN. The last category with an efficiency of less than 30% includes NUT, 
FEN, MAC, BCH, MCH, COP, SAG, SPM, COR, LAU, and WW. Oils showing less than 
70% efficacy were further tested. 

 

 2h
 4h

C
TR

L 
-

W
W

LA
U

C
O

R
SP

M
SA

G
C

O
P

M
C

H
BC

H
N

U
T

FE
N

M
AC G
IN

PE
P

C
AR LA

V
R

C
H

TU
R

R
AV

R
O

S
LI

T
PE

L
C

AT
PP

M C
B

C
IN

SA
V

O
R

G
TY

M
W

TY
M

M
AN

C
TR

L 
+

Essential oils

0

20

40

60

80

100

V
ar

ro
a 

de
st

ru
ct

or
 m

or
ta

lit
y 

(%
)

Figure 1. Mortality rates of Varroa destructor in glass vial bioassay after 2 and 4 h of EO exposition.
The error bars denote standard deviation. Full name of each abbreviation is shown in Table 1.

3.2. Complete Exposure Bioassay

The complete exposure bioassay reveals that EO from MAN showed by far the lowest
LC50 value against Varroa mites both after 4 and 72 h of exposure. EOs from TYM, ORG,
and control THM also had a low LC50 value after 72 h of exposure. A moderate LC50
value after 72 h showed PPM, SAV, WTYM, CB, and CIN. EO from PEL and CAT showed a
relatively high value. The lowest LC50 value for bees after 72 h of exposure had EOs from
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MAN, TYM, and control THM, slightly high values had CB and ORG. In contrast, bees
were most tolerant of EOs from CAT, PPM, LIT, and PEL (Table 2).

Table 2. Complete exposure bioassay. LC50 (µL) of essential oils on V. destructor and A. mellifera and their selectivity ratio in
a monitored period. Green highlighting means low value of selectivity ratio (<3), yellow highlighting means moderate
value of selectivity ratio (3–5), and red highlighting means high value of selectivity ratio (>5).

EO Species 4 h 24 h 48 h 72 h
LC50 95% CL LC50 95% CL LC50 95% CL LC50 95% CL

THM V. destructor 1.505 1.180 1.937 0.834 0.629 1.052 0.660 0.475 0.846 0.660 0.475 0.846
A. mellifera 6.181 5.074 7.847 4.090 3.189 6.759 2.427 2.097 2.871 2.112 1.940 2.320

Selectivity ratio 4.107 4.903 3.675 3.198
CAT V. destructor 10.449 6.806 34.882 4.167 2.457 6.630 3.276 1.930 4.590 2.539 1.187 3.653

A. mellifera 18.607 13.845 64.136 13.048 9.588 27.137 11.557 8.855 19.447 11.557 8.855 19.447
Selectivity ratio 1.781 3.131 3.527 4.552

PPM V. destructor 8.121 6.159 13.576 2.512 1.430 3.578 1.732 0.499 2.806 1.066 0.011 2.197
A. mellifera 12.951 11.259 14.994 10.759 9.483 12.156 10.285 9.109 11.568 10.285 9.109 11.568

Selectivity ratio 1.595 4.283 5.939 9.651
SAV V. destructor 3.825 3.165 4.918 2.008 1.323 2.754 1.459 0.626 2.075 1.364 0.417 1.996

A. mellifera 11.657 9.247 16.335 5.786 4.607 7.218 5.275 4.273 6.467 4.621 3.884 5.897
Selectivity ratio 3.048 2.881 3.615 3.386

WTYM V. destructor 8.185 5.218 22.390 2.549 1.495 8.207 2.013 0.926 7.327 1.861 0.825 5.487
A. mellifera 9.074 8.106 10.780 7.517 6.606 8.265 6.512 5.958 7.494 6.250 5.603 6.897

Selectivity ratio 1.109 2.949 3.236 3.358
ORG V. destructor 3.517 2.339 7.322 0.879 0.638 1.302 0.577 0.280 0.924 0.577 0.280 0.924

A. mellifera 6.982 6.136 7.889 3.362 2.997 3.803 3.362 2.997 3.803 3.362 2.997 3.803
Selectivity ratio 1.985 3.827 5.830 5.830

PEL V. destructor 2.798 0.113 4.758 2.291 0.247 3.825 2.402 0.804 3.532 2.272 0.788 3.311
A. mellifera 17.122 13.427 27.935 12.401 10.159 17.209 9.479 8.132 11.201 9.479 8.132 11.201

Selectivity ratio 6.120 5.413 3.945 4.171
MAN V. destructor 1.262 0.848 3.192 1.029 0.558 2.880 0.265 0.020 0.540 0.158 0.011 0.497

A. mellifera 1.975 1.662 2.681 1.415 1.218 1.666 1.472 1.277 1.720 1.472 1.277 1.720
Selectivity ratio 1.565 1.375 5.551 9.333

LIT V. destructor 4.801 3.522 7.436 2.716 1.322 4.311 2.116 0.243 3.761 1.807 0.243 2.989
A. mellifera 11.660 9.524 15.222 11.590 8.994 20.096 9.207 7.721 12.115 9.678 7.255 18.278

Selectivity ratio 2.429 4.267 4.352 5.354
TYM V. destructor 1.279 0.985 1.613 0.678 0.314 0.940 0.678 0.314 0.940 0.587 0.202 0.851

A. mellifera 8.759 6.684 14.553 3.887 3.295 4.837 3.113 2.696 3.763 2.677 2.418 2.982
Selectivity ratio 6.848 5.731 4.590 4.557

CB V. destructor 2.337 1.829 2.962 1.690 1.237 2.143 1.490 1.207 1.776 1.490 1.207 1.776
A. mellifera 5.965 4.620 10.868 4.860 4.023 6.546 3.305 2.790 4.179 3.305 2.790 4.179

Selectivity ratio 2.553 2.875 2.218 2.218
CIN V. destructor 4.321 3.163 5.979 2.820 1.577 4.002 2.529 1.370 3.590 1.543 0.829 2.484

A. mellifera 10.635 9.559 11.972 7.488 6.680 8.408 7.488 6.680 8.408 7.007 5.835 8.664
Selectivity ratio 2.461 2.655 2.960 4.542

The selectivity ratio was calculated based on the LC50 values. The estimated LC50
values, including standard deviation obtained at each observation time and selectivity ratio
for every treatment, are shown in Table 2. By far, the highest value of the selective ratio
was reached after 72 h of exposure to EO from PPM (SR = 9.65) and MAN (SR = 9.33). ORG
(SR = 5.83) and LIT (SR = 5.35) also reached high values at 72 h. All these four oils had an
increasing SR value over time. In contrast, TYM and PEL oils had the highest SR value after
4 h of exposure (SR = 6.85; SR = 6.12). A significant decrease in this value was observed
in the following measurements. Moderately high SR values were observed after 72 h of
exposure in CAT, SAV, and WTYM, which showed an increasing tendency of SR value in
time (SR = 4.55; SR = 3.39; SR = 3.36). A moderate-to-high SR value was also observed in
THM (positive control). After 4 h of experiment, THM showed even one of the highest SR
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values (SR = 4.11), however, with a declining trend of SR values in time. A constantly low
value of SR was observed with CB, as in each measurement SR was less than 3. Similarly,
CIN also had a low value of SR, and with the exception of the last measurement after 72 h
of exposure, the level of SR increased significantly (SR = 4.54).

The main components and their quantity of the most effective EOs were assessed
(Table 3). The most frequent substances were carvacrol and p-cymene.

Table 3. Composition of the most effective essential oils and their constituents’ quantity (>5%).

EO Main Components and Their Quantity (%)

Carrot Ceratol 30.28 α-Pinen 15.462 Sabinen 10.22 β- Caryophyllen 8.31 β-bisabolen 5.63
Peppermint Limonen 38.02 Menthol 16.41 α-Pinen 15.92 β-Pinen 11.46 Menthon 5.65

Savory Carvacrol 41.67
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after 4 h of exposure (SR = 6.85; SR = 6.12). A significant decrease in this value was ob-
served in the following measurements. Moderately high SR values were observed after 72 
h of exposure in CAT, SAV, and WTYM, which showed an increasing tendency of SR 
value in time (SR = 4.55; SR = 3.39; SR = 3.36). A moderate-to-high SR value was also ob-
served in THM (positive control). After 4 h of experiment, THM showed even one of the 
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4. Discussion

Investigation of the acaricidal activity of essential oils is a major concern of many
scientific studies. However, large-scale screening of a number of EOs is rare, and most of
the effort is devoted to an individual or a small number of selected oils, such as thyme,
clove bud, or oregano [55,56,62]. In this study, the acaricidal effect of 30 EOs on V. destructor
mites was assessed by the glass vials bioassay (Figure 1), which represents a simple and
quick way to determine the effectiveness of individual EOs [60].

Thymol, as a derivate of thyme, was included in the screening as a positive control, as
it is commonly used in beekeeping practice as an acaricide [63]. However, thymol could
have some negative effects on bees, including toxicity on bee brood, metabolic disorders,
changes in bee’s behaviors, etc. [64–71].

In the experiment, after 4 h of exposure, all EOs showed either the same or higher
acaricidal effect than after 2 h. Based on the results of mortality after 4 h of exposure, the
individual EOs were divided into three categories according to their effectiveness: highly
effective, moderately effective, and minimally effective. The oils in the highly effective
group, including MAN, WTYM, TYM, ORG, SAV, CIN, CB, PPM, CAR, PEL, and LIT, were
further tested. Almost all oils in this group were able to kill 100% of mites after 2 h, with
the exception of PPM, CAR, PEL, and LIT. The EOs from the moderately effective group
have still the potential to participate in the mite control; however, a higher dose or applying
a certain mixture showing a stronger synergistic effect would be needed. From the group
of moderately effective EOs, the best acaricidal activity belonged to ROS, RAV, and TUR.
The oils from the minimally effective group showed a very low varroacidal effect, and
therefore, they were not suitable for further testing. Especially WW, LAU, and COR appear
to be ineffective.

The 11 EOs from the highly effective group were further tested in order to determine
the most suitable EOs for the best potential use in beekeeping practice. In addition to
mite toxicity, the bee tolerance was necessary to be evaluated. Therefore, the method of
complete exposure assay [61] was chosen, which allows the evaluation of selectivity ratio
(SR), the most telling data for this purpose, in addition to LC for mites and bees [57].

In the complete exposure bioassay, after 4 h of exposure, only MAN and TYM showed
a higher level of mite toxicity than THM (control). After 72 h of exposure at the end of
the experiment, MAN, TYM, and ORG showed higher mite toxicity. The higher degree of
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toxicity of the above-mentioned EOs, compared with THM, is probably due to the content
of other active substances (carvacrol, p-cymene, calamenene, leptospermone), which can
additionally act synergistically [56,72]. While the varroacidal effect has already been
described for TYM and ORG [55,56,62], for MAN, it has not been described yet. However,
its antimicrobial and also acaricidal effects against other mite species (Dermatophagoides
and Tyrophagus) have been observed [73,74]. Regarding bee toxicity, only EOs from CB
and MAN were more toxic than THM after 4 h of exposure. After 72 h, at the end of the
experiment, a higher degree of toxicity was observed only in EO from MAN. Thus, the
results indicate higher toxicity of THM to Varroa mites but also to honey bees [55,57].

The ratio between mite and bee toxicity is defined as selectivity ratio (SR) values. At
the beginning of the experiment, after 4 h of exposure, THM showed an SR value of 4.107,
which was better than most EOs tested. Higher SR value was observed only at PEL (6.120)
and TYM (6.848). However, with the duration of exposure, the SR value of THM decreased.
After 72 h of exposure, the value was only 3.198. This can be explained by a decrease in
mite toxicity, an increase in bee toxicity, or a combination of both in time. [64,75]. A similar
trend was observed for PEL and TYM. In both EOs, the SR value also decreased with the
duration of exposure; however, in both EOs, the SR value was always higher, compared
with THM. This declining trend in the SR value with increasing exposure time for TYM is
consistent with the results of Damiani et al. [62] and is probably due to the high thymol
content that is characteristic of thyme [76]. This declining trend in the SR value indicates
the potential unsuitability of EOs with these properties, and these EOs need to be subjected
to further testing.

Stable to slightly fluctuating development of SR values depending on the duration
of exposure was observed at SAV and CB. The initial values at the beginning of the
measurement were very similar to the values at the end of the experiment and do not
change significantly during the experiment. However, the SR value was significantly lower
in CB than in THM, which is in accordance with the results of Damiani et al. [62], and in
the case of SAV, the SR values are similar to THM. In the other tested EOs, an opposite
trend was observed, and the SR increased with the time of exposure.

The best SR value after 72 h was determined at EOs from PPM (SR = 9.651) and MAN
(SR = 9.333), followed by ORG (SR = 5.830) and LIT (SR = 5.354). From the results of Nazer
and Al-Abbadi [77], it seems EO from PPM is more suitable to control varroosis than THM
in vivo. The same conclusion can be drawn from the results of Damiani et al. [62] in the case
of ORG in in vitro conditions. There is still a lack of varroacidal data from MAN and LIT
in the literature; however, a strong antimicrobial effect against Clostridium, Bifidobacterium,
Escherichia, Staphylococcus, Lactobacillus, and an acaricidal effect against Dermatophagoides
and Tyrophagus is known for both EOs [73,74,78].

A very good result after 72 h was also observed at EOs from CIN (SR = 4.542) and
CAT (SR = 4.552). CIN is proposed as a suitable option for reducing the population of V.
destructor. In addition, CIN has a strong repellent effect on V. destructor mites and is also
gentle on bees [39]. The suitability of CAT for further testing in the beehive conditions is also
proved by its strong inhibitory effect against Ascosphera apis and Paenibacillus larvae [79,80].
A slightly lower SR value, but still higher than THM, was observed in EO from WTYM
(SR = 3.358).

Since the chemical composition of EOs is influenced by many factors (geographical
origin, part of the plant, agrotechnics, genotype, extraction technology, etc.), it is necessary
to know their composition to interpret the effect of individual EOs [78].

According to SR of EOs from PPM and MAN, they seem to be the most promising oils
against V. destructor. The most represented substances in PPM were limonene, menthol,
and α-pinene. Limonene has been shown to be effective in reducing the population of V.
destructor at a colony level [81] and has strong antimicrobial effects [82]. Varoacidal [55]
and antimicrobial effects have also been reported for menthol [83], whereas α-pinene is
known for its inhibitory effects on bacteria [84]. In addition, it can also be produced in
larger quantities by genetically modified bacteria [85]. In the case of MAN, calamenene
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and leptospermone were the most abundant constituents. Celemonene-containing oils
show high antimicrobial and fungicidal activity and are effective against a wide range of
pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) strains, and also
have high antioxidant activity [86]. Leptospermone is known for its bactericidal, antiviral,
and acaricidal effects [73,74].

Other EOs with suitable results were LIT and ORG. The main components of LIT
were citral (A and B) and limonene. The findings of Liu et al. [87] agree with ours that
citral is the main component of litsea and has a strong aroma and strong antimicrobial
effects [88] against both, gram-positive and gram-negativebacteria [78]. At ORG, carvacrol
was absolutely dominant and is known for its significant acaricidal and antimicrobial
effects. In addition, it also has anti-inflammatory and antimutagenic, and antigenotoxic
effects [89]. CIN and CAT also showed a significant acaricidal effect. The main component
of CIN was cinnamaldehyde, to which Conti et al. [39] attributed the main varroacidal
effects in cinnamon EO. It also has antibacterial effects [90]. Ceratol and α-pinen were
predominant in CAT. The last EO with better results than THM was WTYM, with an almost
balanced representation of thymol, carvacrol, and p-cymene.

5. Conclusions

The results based on selectivity ratio (SR) value for individual EOs showed that
potential best EOs for Varroa control are PPM and MAN, followed by ORG and LIT. Other
suitable candidates seem to be CAT, SAV, WTYM, and CIN. All these oils showed better SR
values at the end of the experiment than THM (control group), which is used in beekeeping
practice. Additionally, these oils showed a trend of an increased value of the selective ratio.

Thymol showed very good SR at the beginning of the experiment, but this value
declined with all following measurements. At the end of the experiment, the SR value was
lower than the values of most tested essential oils. This trend was also observed in EOs
from PEL and TYM.

Except for well-known substances such as thymol, menthol, and carvacrol, other
components appear to be potentially interesting for the control of Varroa, especially cit-
ral, limonene, calamenene, leptospermone, p-cymene, and cinnamaldehyde, as the main
compounds of the most effective EOs.
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