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Simple Summary: The whitefly Bemisia tabaci has become a primary pest in soybean fields in Brazil
over the last decades, causing losses in the yield. Its reduced size and fast population growth make
monitoring a challenge for growers. The use of hyperspectral proximal sensing (PS) is a tool that al-
lows the identification of arthropod infested areas without contact with the plants. This optimizes the
time spent on crop monitoring, which is important for large cultivation areas, such as soybean fields
in Brazilian Cerrado. In this study, we investigated differences in the responses obtained from leaves
of soybean plants, non-infested and infested with Bemisia tabaci in different levels, with the aim of its
differentiation by using hyperspectral PS, which is based on the information from many contiguous
wavelengths. Leaves were collected from soybean plants to obtain hyperspectral signatures in the
laboratory. Hyperspectral curves of infested and non-infested leaves were differentiated with good
accuracy by the responses of the bands related to photosynthesis and water content. These results
can be helpful in improving the monitoring of Bemisia tabaci in the field, which is important in the
decision-making of integrated pest management programs for this key pest.

Abstract: Although monitoring insect pest populations in the fields is essential in crop management,
it is still a laborious and sometimes ineffective process. Imprecise decision-making in an integrated
pest management program may lead to ineffective control in infested areas or the excessive use of
insecticides. In addition, high infestation levels may diminish the photosynthetic activity of soybean,
reducing their development and yield. Therefore, we proposed that levels of infested soybean areas
could be identified and classified in a field using hyperspectral proximal sensing. Thus, the goals of
this study were to investigate and discriminate the reflectance characteristics of soybean non-infested
and infested with Bemisia tabaci using hyperspectral sensing data. Therefore, cages were placed over
soybean plants in a commercial field and artificial whitefly infestations were created. Later, samples
of infested and non-infested soybean leaves were collected and transported to the laboratory to obtain
the hyperspectral curves. The results allowed us to discriminate the different levels of infestation and
to separate healthy from whitefly infested soybean leaves based on their reflectance. In conclusion,
these results show that hyperspectral sensing can potentially be used to monitor whitefly populations
in soybean fields.
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1. Introduction

According to the United States Department of Agriculture (USDA) [1], world soybean
(Glycine max (L.) Merril) production in the 2018/2019 season was 361.06 million tons. Brazil
is projected to be the largest producer of soybeans in the world by 2021 [2]. In Brazil, the
119.70 million tons harvested in 2018/2019 were grown in around 35.90 million hectares,
meaning that the average yield was 3.26 tons per hectare. In the 2019/2020 season, the
average Brazilian yield is projected to increase by 3.9% and a 2.7% increase in the area [3].
Although this is the main product of Brazilian agribusiness today, representing a quarter of
the gross production value of agriculture in Brazil [4], the monoculture in wide fields has
consequences, such as greater vulnerability to insect pests, causing a reduction in yield [5].

Therefore, knowing and monitoring the main pests present in the soybean ecosystem,
using a variety of sampling methods, is extremely important for the decision-making to be
taken at the right time, avoiding yield losses [6]. The occurrence and damage of the whitefly
Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae) in soybean fields are alarming;
in high densities, it can cause losses between 12% and 30% in yield [7]. In addition, this
pest is able to tolerate the action of some insecticides, with a rapid selection of resistant
populations [8].

There are parameters that allow decisions to be taken at the right time, resulting in
better control like the economic injury level (EIL) [9] and the economic threshold (ET) [10],
the pest population at which actions should be taken, prevent such population from
reaching the EIL [11].

These levels are already established for the main pests that infest soybean plants [12].
However, for some species that became more important recently, such as whiteflies
(Hemiptera: Aleyrodidae), spider mites (Acari: Tetranychidae) and even pod-eating cater-
pillars (Lepidoptera: Noctuidae), the EIL and ET are still being investigated [13]. To acquire
data and calculate these levels, crop fields must be regularly checked for pests. In soybean
fields, the sampling method most used for monitoring insects that inhabit the aerial part of
the plants is the beat cloth, initially introduced in the United States [14], this method was
later modified and introduced in conditions of Brazilian agriculture [15,16].

The sampling methods currently in use are challenging, considering the vast extension
of soybean fields in the Midwest region of Brazil [17]. In addition, they are time-consuming
and expensive due to the necessity of workers scouting the field [18,19]. Moreover, there is
still a lack of reliable sampling methods for some species, especially those too small to
see with the naked eye or the ones that inhabit the soil. This scenario promotes the
implementation of remote or proximal sensing technologies and their benefits, especially
the potential time saved by automatizing crop monitoring [19–21].

Recently, proximal sensing has been gaining adherents in Brazil, especially in sugar-
cane fields [22,23], and later in grain fields, such as soybean [24]. Although precision tools
currently are used more for planting/sowing operations, fertilization and weed control,
there is a growing interest of researchers in providing tools to be used in insect and plant
pathogen (disease) management [25]. The main difference between those operations and
insect/disease management is that the former is based on collecting data from the soil,
while the latter is based on collecting spectral data from plants.

To obtain spectral data from plants, it is necessary to understand that, when light
reaches the leaves (canopy), part of that energy is reflected back to the observer. The amount
of energy reflected at each wavelength is called the reflectance spectrum, sometimes short-
ened to spectrum or reflectance. Reflectance depends on the properties of the leaf surface
and its internal structure, as well as the concentration and distribution of biochemical
components [26,27]. Moreover, abiotic stresses, such as herbivory by arthropod pests,
induce physiological responses in plants that impair their ability to perform photosynthe-
sis, leading to changes in leaf reflectance in some parts of the spectrum. On this matter,
most studies refer to the 400–2500 nm range, especially with hyperspectral sensors [28].
Hence, advanced sensing technologies can be used to detect changes in reflectance from
soybean plants as a non-invasive monitoring method [17].
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Remote/proximal sensing has been used to detect stress caused by arthropod her-
bivory in a variety of plant species, such as maize [29], soybean [6], rice [30,31], wheat [32],
peach trees [18,33], cotton [34] and potato [35]. The most promising results were achieved
in studies based on hemipteran pests because their feeding activity (sucking) indirectly
affects the infested plants’ physiology, and therefore, their reflectance profiles [36]. In most
of these studies, infested and non-infested plants were discriminated against with good
accuracy.

In the search for responses more detailed than infestation vs. non-infestation, a va-
riety of approaches have been used to analyze reflectance data from plants infested with
different pest densities. In general, the best correlation indexes were achieved when in-
festation levels (classes, not the absolute number of insects per plant) and narrow-band
wavelengths (not individual wavelengths) were compared [37]. However, it is still neces-
sary to study how different analytical approaches interfere in the quality and usability of
such information remotely extracted from infested plants.

Hence, it can be said that one of the biggest challenges regarding hyperspectral
remote sensing is the analysis of a large number of bands. This analysis is complex
and time-consuming, using special algorithms to select a group of bands sensitive to
arthropod infestation in each plant species [28]. According to Hair et al. [38], currently,
one of the most used statistical procedures to reduce the amount of data without losing
important information is multivariate analysis. One example of multivariate analysis is the
discriminant analysis that is done with the objective of separating the observations into
groups [39]. In addition, classification analysis is done to assign observations whose group
memberships are unknown to the established groups based on p measured values [29].
This association is only possible if part of the observations from each group is previously
available. Thus, this study aimed to develop models to discriminate the levels of whitefly
infestation in soybean fields, using hyperspectral proximal sensing.

2. Material and Methods
2.1. Local

The bioassay was carried out in the experimental field at the College of Agriculture
“Luiz de Queiroz”, from the University of São Paulo, located in Piracicaba, Sao Paulo state,
Brazil. The area is located at the following coordinates: Datum (SIRGAS 2000): 22◦42′16” S
Lat.; 47◦37′23” W Long.; approximated altitude 532 m.

The climate is humid subtropical climates, with dry winter and hot summer (CWa),
according to Köppen classification [40]. The average year pluviosity is 12,800 mm, and the
average temperature is 22 ◦C, with the average temperature in the hottest month of 25 ◦C
and 18 ◦C in the coldest month.

Conventional soybean, variety BRS 232, was sown on November 28th, 2018, in an area
of 1.5 hectares. The field was tilled and fertilized with nitrogen, phosphorus and potassium,
following the standard procedures used by the grower in the cultivated area. The soil is
classified as dystrophic red-yellow latosol.

2.2. Insect Rearing

The rearing of whitefly, B. tabaci biotype B, started from a population acquired at
the Agronomic Institute of Campinas. The population is maintained in kale plants and
kept in a greenhouse covered with an anti-aphid screen [41]. The plants are replaced in
the greenhouse when necessary in order to keep the insect population adequate for the
development of bioassays.

2.3. Bioassay

The bioassay began on December 13th, 2018, when the soybean plants reached the
phenological stage V3 (third node, two fully expanded trifoliate) [42]. The treatments
were distributed in a randomized block design, made of four blocks and four treatments
(low, medium, high and control) consisting of different B. tabaci infestations, totalizing
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16 experimental units. Each experimental unit consisted of a cage (2.0 m long, 1.7 m large,
and 1.6 m high) set up over the crop in the field. The cages were supported by bamboo
poles and covered with an anti-aphid screen that allows airflow and prevents infestation
by unwanted arthropods. The cages were installed on December 12th, 2018, 2 m apart from
each other, and comprised about 75 plants each one.

On December 19th, 2018, the cages were manually infested, releasing in each cage
one pot with one kale plant and the amount of insect corresponding to each treatment.
The treatments were: 1—control (no insects); 2—low (approximately (ca.) 300 adults);
3—medium (ca. 600 adults); and 4—high (ca. 1200 adults), the number of adults released
was intended to reach densities of nymphs enough to differentiate the treatments from each
other in a period of weeks. The insects continued feeding on the plant along the soybean
crop cycle.

2.4. Data Collection

To collect reflectance data, ten leaflets from the middle third of the soybean plants
were collected from each cage and stored in plastic bags with identification tags, a total
of 160 leaflets per collection. The leaflets were collected on January 10th, 2019; January
17th, 2019; January 24th, 2019; January 31st, 2019; February 7th, 2019; February 14th,
2019; February 2st1, 2019; and February 28th, 2019. Then, the samples were taken to the
laboratory in a thermal box with ice cubes to maintain the turgidity of the leaves during
the collection of spectral data.

Spectral data were collected from each leaflet using a spectroradiometer (FieldSpec 3,
Analytical Spectral Devices, Boulder, CO, USA). This sensor operates in the spectral range
of 350–2500 nm, with a spectral resolution of 1.4 nm in the range of 350–1050 nm and 2 nm
in the range of 1051–2500 nm. The sensor was connected to the ASD Leaf Clip accessory
(Analytical Spectral Devices, Boulder, CO, USA), designed for nondestructive spectral
measurements, without interference from external light, minimizing errors associated with
diffuse light. This accessory has a halogen light source (4.5 W) with an incidence light of
45◦ for the sample, which allows the measurement of the directional reflectance of the light
directly from the sample.

A Barium plate that reflects 100% of the light was used as a reflectance standard.
The spectral data were stored by the system for posterior determination of the samples’
reflectance factor, which was multiplied by the readings of each sample.

The central region of each leaflet was evaluated in a circle of 2.1 cm in diameter
(area of 3.5 cm2), resulting in one spectral sample per leaflet.

There was a total of eight sampling dates. At each sampling date, 10 leaflets from
each one of the 16 cages were sampled, in a total of 160 spectral samples. All leaflets
were collected in an interval of less than an hour to allow comparison. After obtaining
the spectral data, the nymphs of each leaflet were counted in a stereoscopic microscope
(40×magnification) to obtain the infestation data.

The meteorological data were obtained from the weather station of the University of
Sao Paulo [43]. The information collected from the website was the maximum, average and
minimum temperature (◦C) and precipitation (mm).

2.5. Data Analysis

A large amount of data in a spectral curve makes it difficult to group samples into
different classes based on visual criteria alone. In addition, according to Bauriegel et al. [44],
the reflectance in the same spectrum presents high collinearity, producing a large number
of redundant information. Therefore, a multivariate analysis was used to reduce the
dimensionality of the data and to determine the effects of treatments more clearly.

According to Nansen and Elliot [28], the use of multivariate statistics is the best tool
to interpret the spectral behavior of vegetation under stress, allowing interpretations that
would not be possible using univariate statistics.
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The software XLSTAT [45] was used to analyze the data matrix of 1950 wavelengths
(range of 450–2400 nm). A discriminant analysis was carried out to develop and validate
a method to determine infestation levels using spectral data. Thus, the spectral curve
was condensed into a single point, along with its discriminatory value. By calculating the
average value of discriminant points from a group, we obtain the group’s average, known as
centroid. The verification of the significance of the discriminant functions is a generalized
measure of the distance between the groups’ centroids. Therefore, if the distribution of
the discriminating scores in each group shows little overlap, the discriminating function
separates the groups well [38].

To do the discriminant analysis, a simulation was carried out with 70% of the samples
to generate a discriminant model, which was tested in the 30% remaining samples. The ratio
selection was random, as well as the selection of which samples would be part of the model
(70%) or the test (30%).

3. Results and Discussion

In the discriminant models generated for each of the eight sampling dates, some bands
were observed more frequently than others (Figure 1). The frequency of distribution of
the bands with the greatest weight in all the eight models generated can be observed.
Some bands in the visible region (461, 469, 510, 520 and 673 nm), near-infrared, NIR region
(703, 722 and 732 nm), and shortwave infrared (SWIR) (1360, 1426, 1713, 1819 and 1842 nm)
were observed in two of the eight discriminant models. The individual band 1831 nm was
observed in three of the eight models.

Figure 1. Frequency of appearance of individual bands (wavelengths) in the eight discriminant
models.

Regarding the differentiation between treatments (low, medium, high infestations,
and control) based on the discriminant analysis, the best results were achieved on 31 Jan-
uary, with 75.50% accuracy (Figure 2), when the soybean was in the reproductive stage R4.
Such accuracy was obtained in the cross-validation analysis, where part of the samples was
provided to the machine as a learning set, and the rest of the samples (validation set) were
classified by the machine based on the learning set. In this case, accuracy (%) means how
much treatment classification by the machine was similar to the real treatments in the field.
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Figure 2. Meteorological data and discriminant analysis (DA) accuracy (%). Letter “V” stands for
vegetative stages and “R” for reproductive stages.

By analyzing the infestation data together with the meteorological data, it is possible
to observe that the period was dry and hot (Figure 2), boosting the development of whitefly
populations in the field.

Therefore, only the data collected on 31 January was used for a more detailed analysis.
Evaluating the spectral curves that represent the average reflection of each infestation level,
we could observe a difference in the reflectance intensity (Figure 3). More specifically,
the high level of infestation showed greater reflectance across the analyzed electromagnetic
spectrum compared to the other levels.

Figure 3. Average spectral curves (450–2400 nm) of soybean leaves under different levels of whitefly
infestation.

The water bands, highlighted in Figure 3, occur when the energy in these wavelengths
interacts with OH of the water molecules, causing a vibrational effect. The effect absorbs
the energy of this wavelength, not reflecting it. With no reflection, the absorption feature
occurs. In these bands, it is observed that the most infested area has less water. This is
indicative of water stress precisely because the plant is not managing to keep the turgidity;
this could be related to the infested leaves not being able to transport water due to damages
caused by B. tabaci feeding, affecting xylem on the vascular bundles, where phloem is also
located [46].
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In the range of the NIR 800–1000 nm, the band related to the leaf structure, a higher
intensity was observed in the most infested plants. This was a notorious fact because the
better the structure is, the greater the reflectance intensity is expected. However, an anatom-
ical investigation showed that, although B. tabaci impacts the leaf anatomy, they occur on
the abaxial surface, where the vascular bundles are located, while we used the adaxial
surface to perform the data collection. The differences found here are more related to the
physiology of the leaf rather than its anatomy [46].

High densities of B. tabaci causes the occurrence of honeydew. In the nymphal stage,
they excrete a high volume of this sugar-rich watery fluid [47], which is a substrate for the
development of fungi of the genus Ascomycete that produces the symptom known as sooty
mold. This symptom turns the foliar surface to black, causing more solar radiation to be
absorbed, resulting in burns and falls. This pathosystem can be limiting for photosynthesis
and, therefore, reduce plant production. This situation was observed in the visible region
(Figure 4), where the high level of infestation presented higher reflectance intensity that is
directly related to photosynthetic pigments. With the lower photosynthesis, the plant does
not absorb wavelengths at the blue and red ranges, and thus, reflection gets higher.

Figure 4. Average spectral curves (450–750 nm) of soybean leaves under different levels of whitefly
infestation.

The results shown in the spectral curves in the wavelengths 450–750 nm indicate low
reflectance (around 10%), with a slight increase in the region correspondent to green light
(550 nm) (Figure 4). The reduction in reflectance is often associated with the absorption of
foliar pigments due to the presence of chlorophyll. In the spectral region correspondent
to blue light, the absorption occurs near the wavelength 460 nm and is related to the
presence of xanthophyll, carotenes, and chlorophyll pigments a and b. In the red-light
region, chlorophyll acts as absorbing energy near 645 nm [47].

Thus, it is possible to observe (Figure 4) that the treatment with the least photosyn-
thetically activity (high infestation) presented higher reflectance in all the visible region
spectrum. This may have occurred because of how whitefly infestation affects the plant
physiology, altering water balance, photosynthesis, chlorophyll content and metabolites
associated with physiological stress [48,49].

Most of the processes mentioned, which alter the leaves’ and plants’ physiology are
observable in the spectral signature of such plants (Figure 4). However, advanced statistical
tools are required to know how much each process is correlated to each wavelength.
Moreover, these analyses are necessary to identify which wavelengths are more significant
for each of these processes.

Hence, observing the discriminant analysis (Figure 5) in the reproductive stage R4,
where each point of the graphic represents one spectral curve from the leaflets collected
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from the cages, we can see that the first function explains 60.86% of the data variability,
while the second function explains 24.15%.

Figure 5. Discriminant analysis of hyperspectral data (450–2400 nm) of soybean leaves under different
levels of whitefly infestation. Obs stands for observation, and F1 and F2 for function.

After performing the discriminant analysis (DA) with 70% of the samples, the next
step was the validation of the model, with 30% of the samples left. With the discriminant
function obtained, the cross-validation was performed, and the samples were identified
in their correspondent infestation level, with a total accuracy rate of 75.48% (Table 1).
The plants with medium infestation were classified more accurately (85.71%), while most of
the errors in classification occurred in plants with a low infestation (69.57%). The difficulty
with this discrimination is the lack of visible symptoms early in the season and connecting
the factors causing the biophysical/chemical changes in the plants. At the date when the
data were collected, the average number of nymphs per leaflet in the medium infestation
was two times the number of nymphs in the low infestation treatment, which could make it
more difficult to separate the low infestation from the control group. Soybean plants have
a good water compensation [50], which could provide a good response against sucking
pests until certain levels; by raising the level of whitefly infestation, the amount of water
consumed by this pest which feeds on the phloem vessels also increases, allowing to see a
better distinction between the treatments. On the other hand, as the number of whiteflies
present in the leaves goes up, the occurrence of the sooty mold also increases, which harms
a more accurate reading of the data due to a more complex scenario, whereas the average
number of nymphs per leaflet in the high infestation was almost eight times higher than
the medium infestation.
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Table 1. Linear discriminant classification of hyperspectral data (450–2400 nm) of whitefly infested
soybean leaves (n = 160). Independent validation was carried out with 48 samples and classified with
75.48% accuracy.

Actual Class
Assigned Class by Training Model

High Low Control Medium

High 17 (73.91%) 3 2 1
Low 2 16 (69.57%) 3 2

Control 1 3 16 (72.73%) 2
Medium 0 4 0 24 (85.71%)

Analyzing all the bands selected, we have 17 wavelengths, 5 in the visible region
(450–682 nm), 6 in the near-infrared region (716–1167 nm), and 6 in the shortwave infrared
region (1321–2265 nm).

Blue wavelengths (450 and 499 nm were selected in DA) are strongly influenced
by chlorophyll absorption, along with carotenoid absorption features present in the 450–
499 nm region. Carotenoids have proven important for the discrimination of senescent
leaves when the decay of chlorophyll and the diminishing of the strong chlorophyll-
absorption feature reveal the carotenoid absorption feature [46].

The red edge (682, 716, 739, 748 nm were selected in DA) encompasses the region
from the red reflectance minimum around 680 nm to the near-infrared (NIR) shoulder
at approximately 780 nm. This region indicates a sharp increase in reflectance from the
visible (VIS) to NIR regions associated with strong chlorophyll absorptions and internal
leaf structure [46].

The focused shortwave infrared (FSWIR) (2265 nm was selected in DA) has the lowest
average band selection rate, with its highest selection at bin 2250–2299 nm most likely
associated with the weak absorption features of cellulose and lignin present at 2270 nm [46].

Thus, the intervals that had higher representativity were visible and SWIR. One possi-
ble reason for this result is the fact that these regions are related to photosynthesis, light
absorption for this process, and water absorption. Moreover, the feeding behavior of
whitefly can affect all the three processes mentioned above. Both nymphs and adults feed
on phloem using their stylets [41].

Phloem is a vegetal tissue made of sieve elements and sclerenchyma and parenchyma
cells. The main functions of these parts are to transport photoassimilates (organic com-
pounds produced by photosynthesis). These functions are related to the wavelengths
mentioned, and best represented the interaction between whitefly infestation and the
spectral curves. This is due to the fact that this tissue is the most affected by this pest.

To sum up, our results show that, in the conditions tested, it is possible to separate
healthy and whitefly infested soybean plants based on foliar reflectance. In addition,
we can separate the levels of infestation (low, medium and high) with good accuracy,
using classification analysis. The uniqueness of this technique is related to the plant data
acquisition with remote sensors, which could be used in commercial fields to improve
pest monitoring in the future. In the specific case of whitefly, this approach is extremely
relevant because of the difficulty in visually monitoring very small insects in large fields.
Hence, the use of monitoring systems based on plant reflectance is a very promising tool.

These results show that future research needs to be done in larger areas and natural
infestation levels to validate the sampling technique proposed in this study, using other
sensors and conditions. More specifically, it is necessary to understand the spectral behavior
of soybean plants out of the experimental cages used in this study, as well as to analyze
the efficiency of sensors attached to terrestrial or aerial platforms. After being validated,
this technique can be used to increase the implementation of IPM programs, to determine
where and when control methods are required for managing the pest.

Hence, the translation of the spatial, spectral, and radiometric information obtained
by hyperspectral spectroradiometers into multispectral sensor resolution demands much
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attention, being one more feasible way of taking this information into the crop fields in the
present.

4. Conclusions

It is possible to separate healthy and whitefly infested soybean leaves based on their
spectral reflectance. In addition, the results obtained by the discriminant analysis of the
hyperspectral data showed a clear distinction between the different levels of infestation.
Finally, the NIR and SWIR were the most important for the model, as they are directly
related to photosynthesis and water content in the leaves.
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