Supplementary Table S1. Tests for Hardy-Weinberg equilibrium of genotypes at three Vssc mutation sites in Aedes aegypti from the field (Shah Alam), the laboratory (B3F3 IMR) and bioassayed female individuals (dead and alive).

Mutation/Population	Genotype			\mathbf{n}	$\mathbf{X}^{\mathbf{2}}$	P-value
V1016G	TT	TG	GG		$\mathbf{d f}=\mathbf{1}$	$\mathbf{(0 . 0 5)}$
Field	30	39	11	80	0.089	0.766
Colony	34	36	10	80	0.010	0.922
Bioassay	25	47	8	80	4.253	$\mathbf{0 . 0 3 9}$
F1534C	TT	TG	GG			
Field	11	43	26	80	1.043	0.307
Colony	16	44	20	80	0.845	0.358
Bioassay	8	47	25	80	4.253	$\mathbf{0 . 0 3 9}$
S989P	TT	TC	CC			
Field	30	39	11	80	0.089	0.766
Colony	34	36	10	80	0.010	0.922
Bioassay	25	47	8	80	4.253	$\mathbf{0 . 0 3 9}$

Supplementary Material S1

DNA sequences for 27 individuals of Aedes albopictus for a small section of the voltagesensitive sodium channel gene (Vssc)from S6, domain III from Shah Alam, Selangor, Malaysia. The wildtype state at codon 1534 is TTC (Phenylalanine) and is shaded in yellow. Sample E09 has a non-synonymous homozygous mutation at codon 1534 and would code for Leucine (shaded in green). Samples A10, B07, F10 are heterozygotes at codon 1534 (TTC/TTG) and are shaded in blue (IUPAC code S for C / G appears in the sequence). Synonymous mutations (TTT and TTC) were found at codon 1528, some of which comprised heterozygotes (IUPAC code Y for C/T) and are highlighted in grey. Sample E07 was heterozygous at position three in codon 1539 (IUPAC code Y for C / T) and is highlighted in grey, but it is a synonymous mutation. Samples A01, B05, B10, C6 and E4 were heterozygotes at codon 1544 position three (IUPAC code Y for C/T) and are highlighted in grey. The T is a synonymous mutation (Isoleucine). The same five samples were also heterozygous at codon 1561, position 3 (IUPAC code K for G / T), another synonymous mutation (Serine)and shaded in red. Another heterozygote occurs at position three, codon 1547 in sample B08 (IUPAC code Y for C / T). The alternatives are again synonymous (Isoleucine). Sample G09 is heterozygous at codon 1582, position three (IUPAC code R for A / G), but the mutation is synonymous (Leucine). Bases unable to be called accurately (N) are highlighted in pink.

10	10	20	30	40	50	60

IMRSASA01
IMRSASA10 IMRSASB05 IMRSASB07 IMRSASB08 IMRSASB10 IMRSASC01 IMRSASC03 IMRSASC06 IMRSASD01 IMRSASD03 IMRSASE02 IMRSASE04 IMRSASE07 IMRSASE09 IMRSASF03 IMRSASF05 IMRSASF08 IMRSASF10 IMRSASG01 IMRSASG04 IMRSASG06 IMRSASG09 IMRSASH02 IMRSASH05 IMRSASH07 IMRSASH10 CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTSGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTSGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCI СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACYCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTGGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACYCTCAACCT CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTTGTGTTCTTCATCATCTTSGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTNGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTYAAYCT СTACATGTACCTCTACTTTGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT СTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTYGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCT CTACATGTACCTCTACTTCGTGTTCTTCATCATCTTCGGGTCGTTCTTCACCCTCAACCI

IMRSASA01 IMRSASA10 IMRSASB05 IMRSASB0 7 IMRSASB0 8 IMRSASB10 IMRSASC01 IMRSASC0 3 IMRSASC06 IMRSASD01 IMRSASD03 IMRSASE02 IMRSASE0 4 IMRSASE07 IMRSASE09 IMRSASF03 IMRSASF05 IMRSASF0 8 IMRSASF10 IMRSASG01 IMRSASG0 4 IMRSASG0 6 IMRSASG0 9 IMRSASH02 IMRSASH05 IMRSASH0 7 IMRSASH1 0

IMRSASA01 IMRSASA10 IMRSASB05 IMRSASB07 IMRSASB0 8 IMRSASB10 IMRSASC01 IMRSASC03 IMRSASC06 IMRSASD01 IMRSASD03 IMRSASE02 IMRSASE0 4 IMRSASE07 IMRSASE0 9 IMRSASFO3 IMRSASF05 IMRSASF08 IMRSASF10 IMRSASG01 IMRSASG0 4 IMRSASG0 6 IMRSASG0 9 IMRSASHO2 IMRSASHO 5 IMRSASH07 IMRSASH1 0

GTTCATYGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCK̄CT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATYGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCKCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATCGGTGTCATYATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATYGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCKCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAARAAAGCCGGTGGCTCGCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATYGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCKCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATYGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCKCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCCGGTGGCTCGCT GTTCATCGGTGTCATCATCGACAACTTCAACGAGCAGAAGAAGAAAGCYGGTGGCTCGCT

$$
\begin{array}{lllllll}
\mid & 130 & 140 & 150 & 160 & 170 & 180
\end{array}
$$

GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACRGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAA------------------GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACRGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAA-----------GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGA--------------GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC そGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAA------------------GGAAATGTTCATGACGGAGGATCAGAAAAAGTACTACAACGCAATGAAAAAGATGGGCTC

