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Abstract: Studies of bacterial communities can reveal the evolutionary significance of symbiotic
interactions between hosts and their associated bacteria, as well as identify environmental factors that
may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural
pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects
of the general biology of this species remain unclear, such as the evolutionary implications of the
symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of
16S rRNA genes, we compared for the first time the bacterial community of A. sexdens (whole ant
workers) populations according to the habitat (natural versus agricultural) and geographical location.
Our results revealed that the bacterial community associated with A. sexdens is mainly influenced by
the geographical location, and secondarily by the differences in habitat. Also, the bacterial community
associated with citrus differed significantly from the other communities due to the presence of
Tsukamurella. In conclusion, our study suggests that environmental shifts may influence the bacterial
diversity found in A. sexdens.
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1. Introduction

Several studies have focused on understanding the factors that influence bacterial communities
and their implications for the host, ranging from mammals [1] to ants [2–8]. Previous studies on
vertebrate and invertebrate animals, including insects, have shown that bacterial communities are
influenced by different factors such as host phylogeny [5,9,10], stages of development [4,11] and host
environment [3]. In addition, the diet [2,12] and age [13] are other important host attributes that should
be considered in studies on associated bacterial communities. However, in order to fully understand
the ecological patterns and mechanisms behind these naturally established symbioses, more studies
exploring new hosts are needed.

The composition and ecological drivers of host bacterial communities have been extensively
studied in ants of the genera Camponotus and Cephalotes [2,4,9,10,14,15]. These symbioses can be so
intimate and fundamental to the participating organisms that in many cases, hosts cannot survive
without their symbionts, in this case called the primary. Examples include Blochmannia associated
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with Camponotus species [3,4,16–18], and Rhizobiales with Cephalotes species [2]. However, because the
Fomicidae family is very diverse on Earth and includes a large number of species with very different
lifestyles [19], it is important to extend the study of the associated microbiota to other species [20].

Exclusively distributed in the Neotropical and Neartic regions, the genus Atta has 17 valid
species and is most diverse in Brazil, where these ants are popularly known as leaf-cutting ants,
with nine species recorded [19,21]. The evolutionary success of the genus is largely attributed to the
mutualistic relationship with the fungus Leucogaricus gongylophorus and other associated organisms
such as bacteria [22–27]. Leaf-cutter ant workers cut leaves and other pieces of plant material and use
them as a substrate for the fungus symbiont, causing great economic damage mainly in extensive
agricultural habitats [26,28]. There are estimates that the economic damage caused by leaf-cutting
ants reach a scale of billions of dollars in the global economy [29]. Most control techniques have
temporary effects and, in some cases, otherwise negatively impact the environment, as is the case
for the chemical method that is most frequently utilized by farmers [30,31]. Among the leaf-cutting
ant species, Atta sexdens (Linnaeus, 1758) (Formicidae: Myrmicinae) stands out in terms of abundance
and wide distribution in Brazil [32] and the intimate association of leaf-cutting ants with human
agriculture establishes this genus as an important group of ants to be studied. However, there are
only a few studies about the ecological factors that can affect host bacterial communities in any ant
genus [1,3,4,10,33,34], and even fewer that address these questions in Atta [23,35,36].

São Paulo state (Brazil) hosts a great diversity of natural and agricultural habitats in close proximity
to each other, which makes it the ideal place to study the effect of these different habitats on the bacterial
community of Atta sexdens. The Cerrado (Brazilian Savannah) and Atlantic Forest are the dominant
natural habitats in the São Paulo state, but they are also heavily affected by agricultural practices.
The Cerrado is characterized by trees with contorted trunks ranging from evergreen to deciduous in
the dry season and large shrubs of about 2–8 meters in height, and a grassy ground [37]. The remaining
natural coverage of the Cerrado in the São Paulo state is about 13% of its original (which corresponded
to 33% of the state), highlighting the intense anthropogenic impact on its coverage in the state [38].
The Atlantic Forest is characterized by being an Ombrophilous Dense Forest [39] with several endemic
species of flora and fauna. Historically, this habitat covered an extensive part of the Brazilian coast,
and today it is reduced to just 12% of the original size [40]. In São Paulo state, the Atlantic Forest is
reduced and now its remnants cover around 16.3% of the state [41]. The main agricultural habitats in
the São Paulo state are sugar cane, followed in smaller scale by citrus and eucalyptus reforestation [42].
These activities use large quantities of pesticides, and fipronil and sulfluramide are specifically used
for the control of leaf-cutting ants [28].

With the shift from natural to agricultural habitat, simplification of the landscape can occur
due to floral simplification and application of insecticides. These changes can be beneficial to some
insects and harmful to others [43]. In the case of insect pollinators, it was shown that the loss of
environmental diversity caused by the agricultural process impacts on the fitness and success of
the insects’ survival [44]. This fitness loss in agricultural habitats can be attributed to changes in
the microbiota that can compromise the health of the insect, as has been proven in some studies of
bees [45,46]. Therefore, associated bacterial communities can be modified with environmental shifts [47],
and anthropogenic modifications can have an impact on the composition of the microbiota [48].
However, a study has never been conducted regarding the impact of changes in habitat directly
affecting the microbiota associated with Atta sexdens.

We hypothesize that differences in habitat (natural and agricultural) can influence the diversity of
the bacterial community associated with leaf-cutting ants. Furthermore, analyzing the factors that alter
the bacterial community can provide insights into understanding the general biology of the host. Thus,
in this study we tested whether 1) natural (Cerrado and Atlantic Forest) and agricultural (sugar cane,
citrus and eucalyptus) habitats, and 2) geographical location (West, Center, East, South and North,
from São Paulo state in Brazil) can influence the A. sexdens microbiota. We expect all these factors to
influence and explain the diversity of bacterial communities associated with this leaf-cutting ant.
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2. Materials and Methods

2.1. Sample Collection

Samples were collected in natural habitats (n = 4 areas of Cerrado, n = 5 areas of Atlantic Forest)
and agricultural habitats (n = 5 sugar cane; n = 5 citrus; n = 6 eucalyptus), located in São Paulo state –
Brazil (Figure S1). In each habitat, a linear transect was traversed along which foraging workers (with
average size and weight between 10–20 mg and head width between 2.0 and 2.8 mm) were collected.
The distance between colonies (n = 3 for each location) was at least 200 meters. We collected 12 workers
in the Cerrado and 15 in the Atlantic Forest, 15 each in the sugar cane and citrus agricultural habitats,
and 18 in the eucalyptus agricultural habitats (Figure 1; more details in Table S1). It is important to
highlight that all agricultural habitats from this study are managed with agrochemicals: insecticides
fungicides and herbicides for weed control. Synthetic fertilizers were also applied as part of cultural
practices [42].

The taxonomic identifications were determined following morphological characters for species
identification available in Mackay and Mackay (1986) [49] and vouchers were deposited in the collection
de Mirmecologia do Alto Tietê. Samples used were collected in 95% ethanol in the field and kept at
−20 ◦C until DNA extraction.
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Figure 1. Samples of Atta sexdens collected from different natural and agricultural habitats.

2.2. DNA Extraction and Bacterial DNA Sequencing

In total, we used 75 whole ant workers for DNA extraction using the DNeasy Power Soil Kit
(Qiagen, Germantown, MD, USA) following recommended methods from Moreau [50] to avoid
contamination. Furthermore, three negative controls were added to the extraction methods and to
subsequent 16S rRNA amplifications and library sequencing. These negative controls are blank samples
(corresponding to water instead of DNA in the polymerase chain reaction (PCR)) that were used to
remove contaminants that may have been added in the process of obtaining the data. Amplification of
the V4 region of 16S rRNA (515F/806R primers) was performed in triplicate following Earth Microbiome
Project (EMP) protocols (http://www.earthmicrobiome.org/emp-standard-protocols/), also described
in Caporaso [51]. PCR reactions followed recommendations from the Taq Platinum Kit (Invitrogen,

http://www.earthmicrobiome.org/emp-standard-protocols/
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Schwerte, Germany) with 2.5 µL Buffer 10×, 1.0 µL MgCl2 50 mM, 1.0 µL dNTPs 10 Mm, 1.0 µL BSA
(bovine serum albumin) 1 mg/mL, 0.5 µL 515F primer 10 uM, 0.5 µL 806R primer 10 uM, 0.5 µL Taq
Platinum 5U/µL, 5 µL template DNA (10 ng/µL), 13.0 µL PCR Water (Certified DNA-free). The reaction
was submitted to the thermal cycler under the following conditions: 95 ◦C for 3 min, 30 cycles at 95 ◦C
for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s, with final of 72 ◦C for 10 min and 4 ◦C hold. Purification was
performed with the Ampure X beads and adapter connections (NEXTERA XT) were also performed
following the manufacturer’s recommendations. The samples were quantified via Nanodrop (Thermo
Fisher Scientific, Waltham, MA, USA). Pooling and normalization were performed so that the samples
had the same concentration. Then, the DNA pool was diluted down to 2 nM, denatured, and diluted
to a final concentration of 16 pM with a 20% PhiX for sequencing on the Illumina MiSeq with run
2 × 250 pb at the Centro de Genômica (ESALQ, Piracicaba, SP, Brazil). All raw sequence data are
publicly available in NCBI SRA accession number PRJNA556881 and study SAMN12373152.

2.3. Bioinformatic Analysis

Data were imported into Qiime2 [52] following the Casava 1.8 paired-end demultiplexed fastq
protocol. The Dada2 plugin was used to create a feature table and quality control [53,54]. Paired-end
sequence reads were trimmed (forward reads trim 30 and trunc 245, reverse reads trim 30 and trunc 220)
for better results and SILVA_132_QIIME database [55,56] with 99% similarity was used to access ASVs
(amplicon sequence variants) for the taxonomic information from the data sequenced. We trained
our specific classifier based on our sample preparation and sequencing, using the “feature-classifier
classify-sklearn” command [57].

Negative controls were filtered by the prevalence method using the Decontam package in R
software (R Development Core Team, Vienna, Austria, 2019) following default settings [58]. Once our
feature table was filtered, an extra filtering step was applied in Qiime2 in order to remove mitochondrial,
chloroplast, and low abundance ASVs. Reads were aligned with the “align-to-tree-mafft-fasttree”
command [59] and the phylogeny was inferred before alpha and beta diversity analyses [60,61].
Samples were normalized at 2000 reads in subsequent analyses.

The categories used in order to test for potential influences in leaf-cutting ants were conducted in
two classes: 1) natural habitats (Cerrado and Atlantic Forest) and main agricultural habitats (sugar
cane, citrus and eucalyptus), and 2) geographical location where the colonies were collected. To test
the influence of geographical location within São Paulo State (Brazil), we divided the data according
to their cardinal points of collection: West, Center, East, South, and North of the state and samples
were assigned to those locations independent of their status belonging to natural or agricultural
habitats (Figure S1). Permutational multivariate analysis of variance (permanova) tests with the
“p-pairwise” parameter were conducted with Unifrac distance, a qualitative measure that includes
phylogenetic relationships between features [62]. Analysis of non-metric multidimensional scaling
(NMDS), principle coordinates analysis (PCoA), and related statistics were implemented to better
visualize our results of relationships between ecological communities and in the PAST3 software
package [63–65] and Qiime2 in Emperor software [61]. Similarity percentage (SIMPER) analysis [63]
was used to verify the ASVs’ contribution to structuring the bacterial community found in the study.
Network Analysis and heatmap plots of bacterial communities were conducted in R software [66] with
the packages phyloseq [67] and ggplot2 [68].

2.4. Data Accessibility

All raw sequence data are publicly available in NCBI SRA accession number PRJNA556881 and
study SAMN12373152.

3. Results

Samples were normalized to a minimum of 2000 reads per sample with sequencing reaching the
expected depth (Figure S2). After this cutoff, 75 samples remained and represented a total of 6,383,699
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reads distributed in 273 different ASVs. Sampling ranged from a maximum of 177,158 reads to a
minimum of 2244 reads, confirming the successful sequencing of the bacterial community associated
with A. sexdens.

Subsequent analyses were performed at the family taxonomic level of the bacterial communities or
at the high hierarchy taxonomic level when available in the database. The ASV table and the overview
of relative abundance can be seen in Table S2 and Figure S3, respectively. The main bacterial community
recovered revealed Mesoplasma as the predominant bacterial genus (7%), followed by Tsukamurella (6%),
Aeromicrobium (Nocardioidaceae) (5%) and others in smaller quantities. Overall when we include all
natural and agricultural habitats, the bacterial community of A. sexdens consists of several taxa per
sample (Figure 2), which makes it difficult to detect any bacterial structure or community patterns.Insects 2020, 11, x 6 of 21 
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Figure 2. Summary of main microbiome amplicon sequence variants (ASVs) found in Atta sexdens
with 16S rRNA amplicon sequencing. Alpha diversity of microbiota in each sample of A. sexdens.
Samples were grouped according to the habitat (natural or agricultural) to which they belong. Bar graphs
for each library (one column = community from a sample) show the abundance of sequence reads
classified to selected 99% similarity. Each color represents a distinct bacterium. ** indicates samples in
natural habitat.
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3.1. Beta Diversity and the Influence of Natural and Agricultural Habitats

The results of the beta diversity analysis suggest that the bacterial community of leaf-cutting ants
do not differ between natural habitats and agricultural habitats (permanova weighted unifrac distance:
p-value = 0.177, pseudo F = 1.329, Figure 3A; permanova unweighted unifrac distance: p-value =

0.423, pseudo F = 1.014, Figure 3B). When beta diversity analysis was conducted only with samples
from natural habitats, we also did not find statistically significant differences (permanova weighted
unifrac distance: p-value = 0.599, Pseudo F = 0.858, Figure 3C; permanova unweighted unifrac distance
p-value = 0.086, Pseudo F = 1.186, Figure 3D). Overall, there is no difference in the bacterial community
of A. sexdens associated with the Cerrado or Atlantic Forest.
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Figure 3. Non-metric multidimensional scaling (NMDS) plot illustrating bacterial community structure
among Atta sexdens workers of natural vs. agricultural habitats. (A). Weighted unifrac distance matrix
for samples from natural and agricultural habitats. (B). Unweighted unifrac distance matrix for samples
from natural and agricultural habitats. (C). Weighted unifrac distance matrix for samples from Atlantic
forest and Cerrado. (D). Unweighted unifrac distance matrix for samples from Atlantic Forest and
Cerrado. (E). Weighted unifrac distance matrix for samples from agricultural habitats. (F). Unweighted
unifrac distance matrix for samples from agricultural habitats. Dots were colored according to the
different groups. The distance between bacterial communities represents their underlying distance
in the multivariate space. Statistics highlighted in red show p values greater than 0.05. Besides one
significant p value in the weighted unifrac distance for the agricultural habitat, note that there is not a
clear structuring of the different groupings.
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When analyzing only leaf-cutting ant bacteria associated with agricultural habitats (cane, citrus
and eucalyptus) the beta diversity results indicated an influence in the weighted bacterial community
(permanova weighted unifrac distance: p-value = 0.04, Pseudo F = 1,802) (Figure 3E). Unweighted
analysis differences were not significant (permanova unweighted unifrac distance: p-value = 0.151,
Pseudo F = 1.095) (Figure 3F), confirming that the abundance of bacteria recovered in weighted
unifrac distance are important in helping explain associations with agricultural habitats, but not the
bacterial composition.

To explore this result more deeply, we performed the paired permanova test (weighted unifrac
distance) that allows all samples associated with the agricultural habitat to be analyzed in pairs (see
Figure 4). The only pair that obtained a significant result was of bacterial communities associated with
citrus and eucalyptus agricultural habitats (p-value = 0.04 and Pseudo F = 3.045), contributing to the
difference found in Figure 3. In addition, through the results of SIMPER analysis, the main bacteria
(ASVs) associated with citrus and eucalyptus agriculture are identified in Table 1 (for all groupings see
Table S3). Note that Tsukamurella is responsible for 12.5% of the difference found in this pair (citrus and
eucalyptus), followed by Aeromicrobium with 7.07% and others in smaller abundance. Our heatmap
analysis gives a better view of Tsukamurella’s association with A. sexdens, especially citrus (Figure 5).
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Table 1. Similarity percentage (SIMPER) analysis of main bacteria in citrus and eucalyptus group.
This test indicates the contribution of specific ASVs to the observed differences in community structure
among citrus and eucalyptus. Note that for this group, Tsukamurella is the most influential bacteria.

Habitats Overall Average
Dissimilarity

Most Influential
ASV/Taxonomy

Percent Contribuition to
Difference Cumulative %

Citrus vs.
Eucalyptus 85.00%

Tsukamurella 12.05 12.05
Aeromicrobium 7.07 19.12

Anthococcus 5.89 25.01
Mesoplasma 5.11 30.12

Micrococcales 4.3 34.42
Alphaproteobacteria 3.91 38.32
Enterobacteriaceae 2.84 41.17

Nocardioides 2.66 43.83
Pseudomonas 2.53 46.36

Gammaproteobacteria 2.09 48.45
Burkholderiaceae 2.04 50.49
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Figure 5. Main bacterial ASVs found in Atta sexdens are visualized in this heatmap. The shading
in the heatmap indicate variation in the relative abundance of different bacteria in all samples from
this study, ranging from 0% (white) to 100% (black). Highlighted in blue is the Tsukamurella bacteria,
which although found in different habitats, is mainly associated with citrus (blue boxes).
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3.2. Beta Diversity and the Influence of Geographic Location

Another factor that may be responsible for influencing the diversity of bacterial communities is the
locality where the host was collected. Our results show the influence of the geographic regions of the
state of São Paulo (Brazil) (West, Center, East, South, and North) on the sampled bacterial communities
in terms of abundance (permanova weighted unifrac distance: p-value = 0.026, Pseudo F = 1.534) and
presence/absence (permanova unweighted unifrac distance: p-value = 0.001, Pseudo F = 1.438). That is,
there is a difference not only in the composition but also in the abundance of bacterial communities
associated with leaf-cutting ants when considering the geographic regions of the state of São Paulo
(Brazil) (Figure 6A,B). The network analysis shows the complexity of the bacterial community associated
with A. sexdens (Figure 6C).

Insects 2020, 11, x 10 of 21 

 

3.2. Beta Diversity and the Influence of Geographic Location 

Another factor that may be responsible for influencing the diversity of bacterial communities is 
the locality where the host was collected. Our results show the influence of the geographic regions of 
the state of São Paulo (Brazil) (West, Center, East, South, and North) on the sampled bacterial 
communities in terms of abundance (permanova weighted unifrac distance: p-value = 0.026, Pseudo 
F = 1.534) and presence/absence (permanova unweighted unifrac distance: p-value = 0.001, Pseudo F 
= 1.438). That is, there is a difference not only in the composition but also in the abundance of bacterial 
communities associated with leaf-cutting ants when considering the geographic regions of the state 
of São Paulo (Brazil) (Figure 6A and 6B). The network analysis shows the complexity of the bacterial 
community associated with A. sexdens (Figure 6C). 

Figure 6. Plot illustrating bacterial community structure among Atta sexdens workers of different 
regions (West, Center, East, South, and North), and habitats (natural and agricultural). (A). Principal 
coordinates analysis (PCoA) with weighted unifrac distance matrix. (B). PCoA with unweighted 
unifrac distance matrix. (C). Network analyses of bacteria present in Atta sexdens workers in different 
habitats. Note the complexity of the bacterial communities associated with leaf-cutting ants. Colors 
represent different habitats, and shapes represent different geographical regions. 

Figure 6. Plot illustrating bacterial community structure among Atta sexdens workers of different
regions (West, Center, East, South, and North), and habitats (natural and agricultural). (A). Principal
coordinates analysis (PCoA) with weighted unifrac distance matrix. (B). PCoA with unweighted
unifrac distance matrix. (C). Network analyses of bacteria present in Atta sexdens workers in different
habitats. Note the complexity of the bacterial communities associated with leaf-cutting ants. Colors
represent different habitats, and shapes represent different geographical regions.

We also tested for any significant differences between the habitats (natural: Cerrado and Atlantic
Forest; and agricultural: sugar cane, citrus and eucalyptus) present within each geographic region.
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For the Center region we found significant results in both the abundance analysis and composition
analysis (which tests for presence or absence) (Table 2). For the other regions analyzed separately,
our results show that there is a significant difference in bacterial composition (presence and absence)
associated with different habitats, but not in abundance.

Table 2. Abundance (permanova weighted unifrac distance) and composition (permanova unweighted
unifrac distance) analysis of the microbiota associated with A. sexdens collected at different
geographical locations. This table shows significant differences mainly in the composition between the
habitat (natural: Cerrado and Atlantic Forest; and agricultural: sugarcane, citrus and eucalyptus) in
each geographical location.

Regions
Permanova Weighted Unifrac Distance Permanova Unweighted Unifrac Distance

p-Value Pseudo F p-Value Pseudo F

Center 0.025 1.940 0.001 1.162
East 0.254 1.127 0.018 1.212

North 0.494 0.977 0.001 1.192
West 0.075 1.43 0.014 1.280
South 0.376 1.092 0.016 1.198

When we conducted analyses between natural and agricultural habitats, although we were
able to reveal interesting results regarding the Tsukamurella influence mainly associated with citrus,
some data were scrambled and diluted in the vast amount of information generated by this technique.
When first investigating the influence of geographic location (West, Center, East, South and North),
we determined that it does have a large impact on the weighted and unweighted composition of
the bacterial community associated with A. sexdens. However, when the analyses were conducted
by region (separately), the results showed significant differences in the composition (unweighted) of
bacterial communities associated with different habitats, i.e., natural (Cerrado and Atlantic Forest) and
agricultural (sugar cane, citrus and eucalyptus).

To test which pairs of geographic regions contributed to the difference found in Figure 6, paired
permanova tests verified abundance (weighted unifrac distance) and composition (unweighted unifrac
distance) and found that several groupings showed significant differences (see Figure 7). In general, all
regions (West, Center, East, South, and North) influenced the abundance and composition of bacterial
communities associated with this leaf-cutting ant. Therefore, the pairs that obtained significant
results were subjected to SIMPER analysis, where we obtained the main bacteria associated with these
groupings (peer regions) (see Table 3). Our results are consistent, showing that Tsukamurella is one of
the major bacteria responsible for differences in all groupings of geographic regions. These results
were also confirmed by the analysis in Table 1, further supporting that this bacterium has a significant
impact on the bacterial community of A. sexdens. In addition, Mesoplasma, the main bacterium found in
the present study (see Figure 2), was also frequent and one of the major bacterial genera responsible
for the differences found in almost all clusters, except Center vs. North.
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Table 3. SIMPER analysis of main bacteria contributing to differences between each region pair. This test
indicates the contribution of specific ASVs to the observed differences in community structure among
different groups. Note that Tsukamurella remains the most influential bacteria, present in all clusters.

Regions Overall Average
Dissimilarity Most Influential ASV/Taxonomy Percent Contribution to

Difference Cumulative %

Center vs. East 74.77%

Alphaproteobacteria 10.63 10.63
Aeromicrobium 8.38 19.01

Gammaproteobacteria 7.64 26.65
Mesoplasma 6.925 33.58

Pseudomonas 6.403 39.98
Tsukamurella 5.928 45.91
Micrococcales 5.739 51.65

East vs. North 75.89%

Alphaproteobacteria 8.30 8.30
Gammaproteobacteria 8.14 16.44

Aeromicrobium 7.96 24.40
Tsukamurella 7.43 31.83
Mesoplasma 7.30 39.13
Nocardioides 6.23 45.36
Pseudomonas 4.92 50.28

Center vs. North 73.01%

Aeromicrobium 12.93 12.93
Tsukamurella 11.34 24.27
Micrococcales 6.81 31.08

Gammaproteobacteria 6.52 37.60
Nocardioides 5.188 42.79

Alphaproteobacteria 4.634 47.42
Pseudomonas 4.315 51.74

Center vs. West 82.17%

Tsukamurella 11.01 11.01
Aeromicrobium 9.871 20.88

Enterobacteriaceae 7.052 27.93
Mesoplasma 6.649 34.58

Micrococcales 6.587 41.17
Alphaproteobacteria 6.284 47.45

Bacteria 5.37 52.82

Center vs. South 79.77%

Aeromicrobium 8.51 8.51
Mesoplasma 8.15 16.66
Anthococcus 8.05 24.70
Tsukamurella 7.87 32.57
Micrococcales 5.74 38.31

Burkholderiaceae 5.10 43.41
Pseudomonas 4.73 48.14

Alphaproteobacteria 4.57 52.71

East vs. West 82.48%

Mesoplasma 12.77 12.77
Alphaproteobacteria 10.09 22.86
Enterobacteriaceae 7.458 30.32

Tsukamurella 6.881 37.20
Gammaproteobacteria 6.798 44.00

Pseudomonas 5.869 49.87
Bacteria 4.881 54.75

North vs. West 81.97%

Tsukamurella 11.83 11.83
Aeromicrobium 9.297 21.13

Mesoplasma 6.928 28.06
Nocardioides 5.837 33.89

Gammaproteobacteria 5.473 39.37
Enterobacteriaceae 5.438 44.8

Bacteria 4.399 49.2
Nocardiopsis 4.18 53.39

North vs. South 80.48%

Anthococcus 9.13 9.13
Tsukamurella 8.84 17.98
Mesoplasma 8.41 26.39

Aeromicrobium 8.16 34.55
Nocardioides 5.86 40.41

Gammaproteobacteria 5.39 45.79
Burkholderiaceae 4.52 50.31

West vs. South 86.00%

Mesoplasma 13.33 13.33
Tsukamurella 8.571 21.90
Anthococcus 8.282 30.18

Enterobacteriaceae 5.651 35.83
Aeromicrobium 5.253 41.08

Burkholderiaceae 4.228 45.31
Bacteria 4.195 49.51

Pseudomonas 4.104 53.61
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3.3. Alpha Diversity: Different Habitats and Geographical Locations

Alpha diversity also presented distinct results when the analysis was conducted comparing
only the different habitats and geographic regions with the Faith phylogeny index. According to a
Kruskall–Wallis test, only geographic region influences the alpha diversity associated with A. sexdens
(H = 16,795, p-value = 0.002). As this richness index is qualitative, it takes into account the composition
of the bacterial community (presence and absence). However, the same analysis conducted with the
Shannon index regardless of abundance did not yield any significant results (see Figure S4). Therefore,
the different geographical regions may influence the composition of alpha diversity associated with
A. sexdens, but do not appear to influence the abundance.

4. Discussion

There are several factors that can predict and influence the diversity (composition and abundance)
of microbial communities associated with a given host [8]. The microbiota of leaf-cutting ants has
already been addressed in several studies [23,27,34–36,69–71], but there remains much to understand
about the drivers of these symbioses. This lack of knowledge motivates the present study, which is
the first to compare the bacterial communities of ants in natural (Cerrado and Atlantic Forest) to
agricultural (sugar cane, citrus and eucalyptus) habitats, as well as consider geographical location
(West, Center, East, South, and North of the state of São Paulo-Brazil), to assess the factors that may
influence microbial diversity. We found differences in microbiota of the different samples from the
same species in different habitats and geographic locations. While each strain of bacteria can be
acquired in a different way [72], our results may reflect the fact that these bacteria are being acquired
from different environmental conditions (e.g., landscape simplification, different plant availabilities,
agrochemicals, and soil), through horizontal more than vertical transmission. That is, even with
sophisticated defense systems and behavior utilized by A. sexdens [49,73,74], the bacterial communities
of the present study were altered mainly due to differing geographical locations, and secondarily due
to natural and agricultural habitats.

There are several studies that show that the composition and abundance of the microbiota is
impacted by horizontal acquisition [3,47,70,75–77]. Our study corroborates those that have found that
the geographic location of the host influences the diversity of the bacterial community, whether in the
case of mammals [75], birds [78,79], other insects [47,77,80], or also of ants [3,70,76,81]. For example,
the bacterial diversity recovered from the mesosoma and head of Camponotus workers is influenced
by the habitat where these ants were collected, which suggests that these bacteria are being acquired
via horizontal transfer [3]. Another study that reinforces the impact of geographical location on the
diversity of bacterial communities was conducted by Martins and Moreau [76] with Pheidole species
collected around the world. The same pattern of acquisition of microbial communities was also
reported in fourth-instar larvae of Solenopsis invicta ants [81] and the lower attine species Mycocepurus
smithii [70].

Atta cephalotes workers also showed a diverse and unstable microbiota with Mollicutes being
the main bacteria recovered [36]. The bacterial community recovered from A. sexdens is also very
complex, and this study was able to identify several important bacterial taxa associated with this species.
ASVs identified as Mesoplasma sp. (Mollicutes, Entomoplasmatales) is one of the most prevalent
bacteria in our sample with 7% relative frequency. Our results corroborate a previous study [23] that
reports evidence of this bacterium mainly associated with the post-pharyngeal gland (70%) and also in
smaller quantities in the midgut of the queen and the whole body of the worker of A. sexdens. Meirelles
et al. [35] describes the association of Mesoplasma sp. with infrabucal pellets carried by A. texana
queens. Also in this study, through phylogenetic analysis, the authors show specificity of this bacterium
associated with eight different genera of Attine, since it formed a monophyletic clade. Mesoplasma
sp. associated to the army ants [82] was also grouped in another clade, also showing specificity to
army ants [83]. The function of this ant-associated bacterium was investigated with the genome of two
strains, and it was found that each strain was acquired independently from a different origin. These
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bacteria are capable of decomposing arginine and providing nitrogen-rich amino-acid [84]. In that
same study, the authors also concluded that the relative abundance of Mesoplasma sp. is related to
the type of substrate that the ant worker offers to the fungus garden. Our study found a high relative
abundance of these bacteria, which suggests that it must have been facilitated by the substrate of
A. sexdens.

The next most abundant ASV recovered in the present study is Tsukamurella sp. (Actinobacteria),
which despite occurring in other habitats was strongly related to the citrus agricultural habitat.
Although its function is not fully understood, there are studies reporting that these bacteria may be
an endophytic growth promoter [85] minimizing the growth of phytopathogenic fungi [86], and also
may act as a nematicide [87] used in agriculture. The third most common ASV was identified as
Aeromicrobium sp. (Actinobacteria), which has also been reported on species of ants as well [88] but
is generally associated with the soil [89]. Other studies have reported the presence of ant-associated
Actinobacteria, especially the genus Pseudonocardia sp., often associated with other Attines ants [71,90].
These bacteria are capable of producing compounds with antibiotic properties that defend the fungal
garden and the ant colony from disease [25,71,90]. The samples of A. sexdens from our study were also
associated with these bacteria in smaller quantities compared to the literature, which suggests that
perhaps A. sexdens is also relying on other measures to maintain the health of the fungus garden and
the colony. Further studies are needed to address this issue.

The phylum Proteobacteria has also been reported in A. cephalotes Linnaeus 1758 and A.
colombica Guérin-Méneville 1844 [69,91]. Pseudomonas and Burkonderialles are bacteria belonging
to this phylum, and were associated with the workers of leaf-cutting ants of the present study,
although in smaller abundances. Some bacteria present in the insect microbiome may be able to
metabolize agrochemicals, making the host pesticide-resistant [92–94], and it has been shown that
certain strains of the genus Pseudomonas sp. are associated with insect resistance to insecticides [95].
The bacterial community is subject to several environmental stressors that may alter its composition [96].
As an example, certain strains of Burkholderia sp. are capable of degrading insecticide fenitrothion
(organophosphate) [97]. Tago et al. [98] found an increase of this bacterium in the soil after the
application of the pesticide in sugar cane agricultural habitats.

In another study of Acromyrmex spp., besides Entomoplasmatales, the bacteria Wolbachia and
Rhizobiales were highlighted in association with these ants. These latter two bacteria are highly
associated with several genera of ants [2,8,36,99]. While the function of Wolbachia associated with ants is
still unknown, it is transmitted vertically, although its diversity is influenced by geography [17,36,100].
On the other hand, Rhizobiales is also often associated with nitrogen fixation and recycling [2,69],
which is extremely important especially in the case of herbivorous ants. Our results also recovered
both bacteria associated with A. sexdens.

The microbiota associated with a host can be composed of mutualists, commensals and pathogens,
and many of the bacteria associated with A. sexdens are probably transient bacteria that have no
associated role in ants. With the 16S rRNA amplicon technique, we cannot be sure of the microbe–host
relationships or their functions. However, overall these bacteria may have been acquired horizontally
and thus may reflect the environment (habitats). In addition, although the bacterial community of
A. sexdens is unstable and highly variable, we do not know how this complexity varies in the different
castes within the colony, and its implications for the host. In the case of Atta cephalotes it was found
that the bacteria Mollicutes passes via social transmission of workers to the larvae [36]. Future studies
that consider the different castes and location of this microbiota in the ant body may help to elucidate
the mode of transmission and consequently the function of these bacteria associated with A. sexdens.

5. Conclusions

Genomic approaches have become increasingly accessible and can be used as excellent tools to
explain several biological phenomena such as intra- and interspecific relationships, species ecology such
as diet and symbioses, as well as molecular, physiological, behavioral and evolutionary features of the
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host. These approaches have the potential to generate data that can contribute to the understanding of
symbiotic interactions within the field of myrmecology [2,101–105]. Recent next-generation sequencing
techniques have made it possible to analyze the communities of bacteria present in several hosts.
Specifically for ants, many studies have demonstrated the importance of these symbionts and how
they can influence host attributes [2,6,8,10,20,106]. However, studies of microbial interactions are
challenging because they involve dynamic systems that can be shaped by the sum of abiotic factors, as
presented here. This is the first study that compared the bacterial communities of A. sexdens in natural
habitats, such as Cerrado and Atlantic Forest, to those in agricultural habitats (sugar cane, citrus and
eucalyptus) and that considered geographic location (West, Center, East, South, and North of the state
of São Paulo-Brazil), showing that all these factors may influence microbial diversity. Knowledge
about this insect-associated microbiota may help to develop strategies to increase insect pest resistance
in agricultural habitats, as well identify bacteria that can act as bioremediation of pesticides and help
recover degraded areas [107].

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/6/332/s1,
Figure S1: Location of Atta sexdens collection areas in São Paulo State, Brazil, Figure S2: Rarefaction curves were
used to estimate richness in the Shannon index for 16S rRNA. The vertical axis shows the Shannon index observed
and the number of sequences per sample is shown on the horizontal axis, Figure S3: The overview of bacteria
relative abundance recovered from this study of Atta sexdens, Figure S4: Alpha diversity associated with Atta
sexdens, Table S1: Samples of Atta sexdens collected from different natural and agriculture habitats, Table S2:
Amplicon Sequence variants (ASVs) table highlighting each bacterium recovered from each sample of Atta sexdens,
Table S3: SIMPER analysis of main bacteria in all differents habitats. This test indicates the contribution of specific
ASVs to the observed differences in community structure among different groups. Note that Tsukamurella remains
the most influential bacteria associated with citrus crop.
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