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Abstract: Mating triggers substantial changes in gene expression and leads to subsequent physiological
and behavioral modifications. However, postmating transcriptomic changes responding to mating
have not yet been fully understood. Here, we carried out RNA sequencing (RNAseq) analysis in
the sweet potato whitefly, Bemisia tabaci MED, to identify genes in females in response to mating.
We compared mRNA expression in virgin and mated females at 24 h. As a result, 434 differentially
expressed gene transcripts (DEGs) were identified between the mated and unmated groups, including
331 up- and 103 down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses revealed that many of these DEGs encode binding-related proteins and
genes associated with longevity. An RT-qPCR validation study was consistent with our transcriptomic
analysis (14/15). Specifically, expression of P450s (Cyp18a1 and Cyp4g68), ubiquitin-protein ligases
(UBR5 and RNF123), Hsps (Hsp68 and Hsf ), carboxylase (ACC-2), facilitated trehalose transporters
(Tret1-2), transcription factor (phtf ), and serine-protein kinase (TLK2) were significantly elevated in
mated females throughout seven assay days. These combined results offer a glimpe of postmating
molecular modifications to facilitate reproduction in B. tabaci females.
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1. Introduction

Mating plays a pivotal role in the evolution, development and sex-ratio of species, as it enhances
biodiversity and maintains reproduction rates. Mating makes females get sperm. Along with sperm,
male accessory gland proteins and microorganists are delivered to females [1–9], which causes dramatic
changes in physiology and behavior to females. For example, mating induces the spermatheca to
produce phospholipids, carbohydrates, and proteins that may help maintain sperm viability and
ensure the success rate of fertilization in Drosophila melanogaster [8]. In addition, mating can increase
egg development, oviposition rates and mating refractoriness in Aedes aegypti [10–13]. Mating also
triggers substantial changes in gene expression, and such changes have been studied in D. melanogaster,
Apis mellifera, Anopheles gambiae, A. aegypti and Ceratitis capitata [2–7]. In D. melanogaster, 432 transcripts
were differentially expressed in mated females relative to virgin females. Many of these genes encode
proteins with predicted functions in catalytic activity and nucleic acid binding. Immune response
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genes (cecA1 and att A) also showed a substantial increase in expression in response to mating [8].
In A. gambiae and A. aegypti, differential expression was concentrated in genes that encode various
proteases like matrix metalloproteinase [7]. In addition, genes involved in metabolic processes were
significantly upregulated in A. gambiae, and genes associated with the immune system and antimicrobial
function were upregulated in A. aegypti [7,13,14]. Most of these changes are conducive to mating
success and the continuation of populations [1–8,13,14].

The sweetpotato whitefly, Bemisia tabaci MED (Gennadius) (Hemiptera: Aleyrodidae), a global
invasive insect pest, not only damages crops and horticultural plants by feeding and secreting honeydew
to decrease photosynthesis, but also transmits more than 300 plant viruses [15,16]. Females play a key
role in B. tabaci outbreaks, because only mated females can produce female offspring. In B. tabaci, mating
behavior has been studied in the B-type and Asia II groups [17]. Additionally, studies have shown that
the global invasion and displacement of B. tabaci are associated with mating [18]. By analyzing the
postmating transcriptome changes, we intended to identify specific genes and pathways associated
with B. tabaci reproductive biology. It is our hope that by interfering with the expression of these
key genes/pathways, we can control this invasive pest through reduced female offspring. In this
study, based on the comparative analyses of six B. tabaci transcriptomes between virgin and mated
females, we identified the mating-induced changes in B. tabaci females. Furthermore, genes putatively
involved in mating at different time points were investigated by quantitative reverse-transcriptase
PCR (RT-qPCR) analysis.

2. Materials and Methods

2.1. Insect Rearing and Sample Preparation

The B. tabaci population was originally obtained from poinsettia plants (Euphorbia pulcherrima
Willd. ex Klotz.) in Beijing, China, in 2009. This population was then maintained on cotton in
a glasshouse under natural light. Before sample collection, the purity of the strain was confirmed via
an mtDNA COI marker [19].

For sample collection, newly emerged females and males (within 1 h of emergence to ensure
that they did not mate) were separately collected in glass tubes (5.0 × 0.5 cm), and the sex of each
individual was determined with a stereomicroscope. Every five virgin females were released into
a plastic bottle (5.5 cm diameter, 15 cm height) with a cotton seedling, and five males were added
to each plastic bottle for mating experiments. A second set of plastic bottles did not receive males
(25 replicates per treatment). After a 24 h mating [17], the mated and virgin groups were collected.
Each treatment contained 3 biological replicates (virgin: CKD1-1, CKD1-2, CKD1-3; mated: D1-1, D1-2,
D1-3), and each replicate contained 40 individuals. Then they were frozen in liquid nitrogen and stored
at −80 ◦C until RNA extraction.

2.2. RNA Extraction, cDNA Library Construction, and Illumina Sequencing

RNA from each sample was extracted with TRIzol reagent according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA), and RNA concentration was assessed using a NanoDrop
2000 (Thermo Scientific, Wilmington, DE, USA). Purity was checked by 1% w/v agarose gel electrophoresis.
Six samples, containing 6 mg total RNA each, were sent to Biomarker (Biomarker Technologies
Corporation, Beijing, China) for cDNA library construction and Illumina sequencing (Figure S1).

Sequencing libraries were generated by the NEBNext Ultra™ RNA Library Prep Kit for Illumina
(NEB, Ipswich, MA, USA) following the manufacturer’s recommendations, and index codes were
added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T
oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under high
temperature in NEBNext First-Strand Synthesis Reaction Buffer (5×). Then, the first- and second-strand
cDNA was successfully synthesized. The remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. The short fragments and adapters were linked together, and then
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suitable fragments were chosen for subsequent PCR amplification. PCR was performed with Phusion
High-Fidelity DNA polymerase, universal PCR primers and Index (X) Primer to obtain Index-coded
samples. Finally, PCR products were purified (AMPure XP system), and the library quality was
assessed on an Agilent Bioanalyzer 2100 system. Index-coded samples were prepared on a cBot
Cluster Generation System using the TruSeq PE Cluster Kit v4-cBot-HS (Illumina, San Diego, CA,
USA). The library preparations were sequenced on an Illumina platform, and raw data were obtained.
The sequencing data generated in this study have been deposited in the Sequence Read Archive (SRA,
Birmingham, UK) database under the Bioproject accession number PRJNA559034.

2.3. Comparative Analysis and Functional Annotation

The adaptor sequences and low-quality sequences were removed from the raw data to obtain
clean reads for further analysis. These clean reads were then mapped to B. tabaci MED reference
genome sequence [20] through Hisat2 software to obtain the read alignments. The alignments were
then assembled with StringTie, which assembles and quantifies the transcripts in each sample. After the
initial assembly, the assembled transcripts were merged together by a special StringTie module,
which creates a uniform set of transcripts for all samples. The gffcompare program was then used
to compare the genes and merge the transcripts with the annotation and report statistics to obtain
transcript statistics.

To annotate the pooled assembly transcriptome, we performed a BLAST search against the
nonredundant (NR) database in NCBI, Swiss-Prot (http://www.geneontology.org/), Kyoto Encyclopedia
of Genes and Genomes (KEGG; http://www.genome.jp/kegg/) and Clusters of Orthologous Groups of
Proteins (COG; http://www.ncbi.nlm.nih.gov/COG/) with an E-value ≤ 1 × 10−5. Gene Ontology (GO;
http://www.geneontology.org/) terms were assigned by Blast2GO through a search of the NR database.

2.4. Identification of Mating-Related DEGs and Enrichment Analysis

The quantification of gene expression levels was estimated by fragments per kb of transcript per
million fragments mapped (FPKM). FPKM values were used directly to compare gene expression
differences between various samples. The “base means” value for identifying DEGs was obtained
using the DESeq package. The transcripts with a FDR ≤ 0.05 and the absolute value of the log2 fold
change ≥ 1 were considered a DEG in this study. Default parameter settings (p-value cut-off for false
discovery rate 0.001) in the DESeq package were then used for final DEG analysis to generate outputs
in the form of a heatmap [21]. In addition, GO enrichment analysis of DEGs was implemented by the
GOseq R packages-based Wallenius noncentral hypergeometric distribution [22], and KOBAS software
was used to test the statistical enrichment of DEGs in KEGG pathways [23].

2.5. RT-qPCR Analysis

Triplicate samples of both mated and virgin females were collected again, snap frozen in liquid
nitrogen, and stored at −80 ◦C. Each treatment was divided into 3 replicate RNA preparations of
40 whiteflies each for the subsequent RT-qPCR analysis. Total RNA was extracted as described above,
and first-strand cDNA was prepared using 1 µg of total RNA with the PrimeScript RT Reagent Kit
(TaKaRa Biotech, Mountain View, CA, USA). The resulting cDNA was diluted to 0.1 mg/mL for
further analysis by RT-qPCR (ABI-Q3) using SuperReal PreMix Plus (SYBR Green) (Tiangen, Beijing,
China) according to the manufacturer’s instructions. Each reaction system contained 1 µL of cDNA
template, 10 µL of SuperReal PreMix Plus, 0.4 µL of ROX reference dye, 0.6 µL of specific primers
and 7.4 µL of ddH2O. PCR was performed under the following conditions—denaturation at 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s and 72 ◦C for 30 s. We selected
15 DEGs for RT-qPCR validation, and some homologies of those genes had been reported in other
species of previous mating related transcriptomes documents [1–8]. Carboxylases and hydrolases were
unique to the postmating B. tabaci females. Specific primers were designed using Primer Premier 5.0
software (Table S1). Three independent biological replicates were executed for each sample. Data were
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normalized to the RPL29 gene [24], and relative gene expression was calculated using the 2−∆∆Ct

method [25]. SPSS 19.0 was used to analyze correlations between RT-qPCR data and RNA-seq data.

2.6. Mating-Related Genes Expression Profiles Analysis at Different Time Points

We collected 1-, 3-, 5- and 7-day mated and virgin females. Each sample was collected in triplicate.
RNA was extracted and stored at −80 ◦C.

We selected all significantly upregulated DEGs which were verified in “materials and methods
2.5”, and analyzed their expression profiles in mated and virgin females at different time points
by RT-qPCR.

2.7. Statistical Analysis

One-way ANOVA with Tukey’s test (p < 0.05) was used to evaluate differences among treatments.
Values presented in figures represent the means calculated from biological replicates and their
corresponding standard errors.

3. Results

3.1. Illumina Sequencing and Clean-Read Map

Through transcriptome analysis of the six samples, a total of 41.10 Gb clean data was obtained.
The clean data of each sample reached 6.18 Gb and the Q30 base percentage was 92.27% or
higher. GC content ranged from 39.16% to 43.90%. The clean reads of each sample were aligned
against the B. tabaci MED reference genome [20], with an efficiency ranging from 75.51% to 83.52%
(Table S2). A total of 25,594 transcripts were obtained, including 4846 novel genes that were named
Bemisia_tabaici_newGene, of which 2510 were functionally annotated (Table S3).

3.2. Functional Annotation and Classification

A total of 25,594 transcripts were searched against eight databases (NR, Swiss-Prot, Pfam,
KEGG, COG, GO, euKaryotic Orthologous Groups (KOG) and evolutionary genealogy of genes:
Nonsupervised Orthologous Groups (eggNOG)) and annotated in at least one database (Table S3).
Of the 25,594 transcripts, approximately 80% (20,474) could be annotated in NR. Of these 20,474
transcripts, 60.1% were longer than 1000 bp, 36.8% were 300–1000 bp, only 3.1% transcripts were less
than 300 bp (Table S3). Additionally, 4320 transcripts could be annotated into 51 GO terms. Of these
4320 transcripts, genes related to catalytic activity were the most abundant (2199/50.90%), followed by
genes related to binding (1953/45.21%) and metabolic processes (1849/42.80%) (Figure S2 and Table S4).
Although 8008 transcripts were annotated to the KEGG database, only 3718 transcripts were annotated
to 223 KEGG pathways. The analysis revealed that lysosome-related genes were the most abundant
for 244 transcripts (3%), then 191 transcripts (2%) were associated with RNA transport (Figure S3,
Tables S3 and S5).

3.3. Statistics Analysis of Mating-Related DEGs

The PCA analysis of samples (Figure S4) showed a satisfactory biological replicate in mated
and virgin groups. Based on those, we identified 434 DEGs by comparing mated and virgin females,
of which 331 were upregulated and 103 were downregulated (Table 1 and Figure 1). Four novel genes
(Bemisia_tabaci_newGene_33448, Bemisia_tabaci_newGene_4341, Bemisia_tabaci_newGene_20113,
Bemisia_tabaci_newGene_35238) were unique to the postmating B. tabaci females (Table S6).
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Table 1. Statistics of the differentially expressed gene (DEG) results.

Databases Total COG GO KEGG KOG NR Pfam Swiss-Prot eggNOG

DEGs 434 - - - - - - - -
DEGs-annotated 372 111 77 163 206 372 255 218 307

Upregulation 331 - 66 68 - - - - -
Downregulation 103 - 11 15 - - - - -
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Figure 1. MA plot of the differences in gene expression of mated females relative to gene expression of
virgin females.

3.4. GO Annotation and KEGG Pathways Analysis of DEGs

A total of 77 DEGs were annotated in GO terms, of which 66 were upregulated and 11 were
downregulated (Table 1). The analysis showed that upregulated DEGs related to binding (32) and
catalytic activity (28) were the most abundant in molecular function, followed by cellular processes
(28), metabolic processes (27) and single-organism processes (23) in biological process (Figure 2 and
Table S7). In turn, the 11 downregulated DEGs were associated with binding (7), cellular processes
(6), and catalytic activity (5) (Figure 2 and Table S7). Among these GO terms, the cellular component
contained the nucleus and intracellular part, and the molecular function contained transcription factor
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activity, sequence-specific DNA binding, and oxidoreductase activity, acting on the CH-OH group of
donors terms were significantly enriched (Table S8).
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Figure 2. Distribution of up- and down-regulated DEGs among the Gene Ontology (GO) terms in the
biological process, cellular component, and molecular function categories.

The DEGs were also mapped into canonical KEGG pathways to identify possible active biological
pathways. In those pathways, most genes were upregulated. Specifically, protein processing in the
endoplasmic reticulum, endocytosis, longevity regulating pathway-multiple species, foxo signaling
pathway, phosphatidylinositol signaling, pyruvate metabolism and spliceosome contained more
than five upregulated DEGs (Figure S5 and Table S9). Regarding downregulated DEGs in pathways,
the phagosome pathway contained three DEGs and the spliceosome contained two DEGs. In 11
pathways, each pathway only contained one DEG, with the rest of the pathway without any DEGs
(Figure S5 and Table S9). Among these pathways, longevity regulating pathway-multiple species was
significantly enriched (Table 2). NR annotation revealed that some of the genes previously reported to
be associated with mating have also been found in DEGs, including cytochrome P450, serine-protein
kinases (SPK), ubiquitin-protein ligase, etc. A detailed description of those DEGs is shown in Table S6.

Table 2. KEGG pathway enrichment of the top 5.

KEGG Pathway koID DEGs Numbers p-Value Corrected p-Value

Longevity regulating pathway—Multiple species ko04213 7 0.0005238 0.0413826
Protein processing in endoplasmic reticulum ko04141 10 0.0025248 0.1994616
Pyruvate metabolism ko00620 5 0.0043336 0.3423515
Phosphatidylinositol signaling system ko04070 5 0.0125282 0.9897258
Endocytosis ko04144 8 0.0218859 1

Comparison of GO terms with KEGG pathways indicated that 33 DEGs were in common which
have played different roles in key pathways that are possibly responsive to mating in B. tabaci.
Especially, ubiquitin-dependent protein catabolic process, trehalose biosynthetic process, response
to stress and lipid metabolic process of biological process in GO terms were related to ubiquitin
mediated proteolysis, starch and sucrose metabolism, longevity regulating pathway-multiple species
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and glycerolipid metabolism pathways, respectively (Table S10). Regarding molecular function,
glucose-6-phosphate dehydrogenase activity and phosphoenolpyruvate carboxykinase activity were
associated with pentose phosphate, glycolysis/gluconeogenesis, citrate cycle and pyruvate metabolism
pathways (Table S10).

3.5. Real-Time PCR Validation of Mating-Related Genes

In this study, we selected 15 DEGs to confirm the validity of mating-related genes in RNA-seq results.
Three ubiquitin-protein ligase genes (UBR5, UHRF1 and RNF123), two cytochrome P450 genes (Cyp4g68
and Cyp18a1), two heat-shock protein genes (Hsp68 and Hsf ), two facilitated trehalose transporter
genes (Tret1 and Tret1-2), two serine-protein kinase genes (TLK2 and SBK1), two carboxylase genes
(ACC-1 and ACC-2), transcription factor (phtf ) and hydrolase (DDAH-1). Cytochrome P450 families
and Hsp families have been reported before [1–8]. However, Cyp4g68, Cyp18a1, Hsp68, and the rest
genes were unique to mated B. tabaci females. These were chosen for RT-qPCR validation (Table S11).
As observed by RNA-seq and RT-qPCR (Figures 3 and 4), 93.3% of these selected genes had consistent
expression, except for ubiquitin-protein ligases UHRF1. The correlation analysis showed that RT-qPCR
and RNA-seq data were significantly correlative except for UHRF1 (Table S12).
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Figure 3. Expression profile of transcripts that are differentially expressed between mated and virgin
B. tabaci females by RNA-seq. The heatmap shows the transcriptome data of the selected genes, which
are based on the log2(fragments per kb of transcript per million fragments mapped (FPKM)) of genes
in virgin and mated females. The color scale represents the median-centered log2(FPKM).
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3.6. Expression Profiles of Mating Related Genes at Different Time Points

A total of 13 mating-related DEGs (verified in result 3.4) were used to verify the expression profiles
at different time points within 7 days. Cyp18a1 was gradually increased for mated females within
7 days, while UBR5 and RNF123 showed a downward trend after the first rise (Figure 5). In contrast,
the expression profiles of Hsf and TLK2 did not change at different time points (Figure 5). Although
the expression level of Tret1-2 and phtf tended to fluctuate, it was still always higher than that of virgin
females at different time points (Figure 5).

The expression levels of the remaining genes gradually decreased. However, within 7 days, ACC-2,
Hsp68 and Cyp4g68 were always upregulated in mated females in comparison with virgin females
(Figure 5). Interestingly, the expression levels of SBK1, Tret1 and ACC-1 in mating females decreased
sharply after mating for 1 day, and reached levels similar to those of virgin females, especially at 5 and
7 days (Figure 5). For virgin females, most mating-related genes maintained low expression levels at
the different time points (Figure 5).
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4. Discussion

Mating is central to reproductive success in vertebrates and invertebrates [5,7,26,27], and previous
studies have shown that mating has profound effects on female biology and behavior [5–7]. The whitefly,
B. tabaci (Hemiptera: Aleyrodidae), is a complex species with a haplodiploid reproductive system [28].
Studies showed that asymmetric mating interactions lead to widespread invasion and displacement of
whiteflies [18]. Because only mated females of B. tabaci can produce female offspring, we compared
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transcript abundance levels in virgin females with those of mated females. Six samples were used for
library construction and comparative analysis. Though DESeq to comparative transcriptome analysis
resulted in 434 candidate mating-related genes, which was a cost-effective strategy [29]. Comparison
of these DEGs with other mating related transcriptome results revealed that lipid transport proteins,
cytochrome 450 families, immune response genes, transcription factors, heat shock proteins, response
to stimulate genes and serine/threonine-protein kinases had similar expression profiles [3,7,8,30].
However, glucose dehydrogenases were upregulated in B. tabaci females, and were downregulated
in A. aegypti [7]. Histones were upregulated in Drosophila females, but downregulated in postmating
B. tabaci (Table S6) [30]. The number and expression profile of DEGs varies within time points, with
some genes maintaining a steady expression trend and others reversing it [7,30]. With the passing of the
time, multiple mates induce complex changes, especially in metabolism. Some genes were expressed
immediately after mating and maintained their expression profiles subsequently, and some genes had
fluctuating expression levels. These may be related to gene function at different time points [3,7,26].

The GO function categories of these DEGs were associated with molecular transducer activity,
binding, response to stimulus, and metabolic processes (Table S4), which is consistent with previous
reports in D. melanogaster, A. gasmbiae and A. aegypti [6,7,14]. Other genes, particularly those related
to cell, signal transducer activity, and biological adhesion were unique to the postmating B. tabaci
females, which may cause physiological changes related to fertilization in mated B. tabaci females.
Enrichment of differentially expressed genes of KEGG pathways showed that longevity regulating
pathway-multiple species was the significant enrichment, which was related to longevity. Mating
decreased the longevity of mated females by transmitting virus and mating behavior caused damage
to females [9,12], so we speculate that mating would decrease the longevity in mated B. tabaci females.
The accuracy of the corresponding genes that were differentially expressed in the transcriptome was
confirmed by RT-qPCR analysis. Among 15 DEGs selected from the transcriptome for validation,
one DEG showed inconsistencies between qPCR and RNE-Seq data. This situation also happens in
other species [31], and it is likely caused by false-positivity [9].

Mating triggers large changes in gene expression. The response of genes to mating is complex,
especially in P450 genes. Insect cytochrome P450 families comprise a diverse class of enzymes involved
in detoxification and the biosynthesis of ecdysteroids and juvenile hormones [32]. In Drosophila,
six cytochrome P450 genes (Cyp9f3, Cyp307a1, Cyp315a1, Cyp4p3, Cyp313a4 and Cyp6a21) were
upregulated in mated females, while 22 were downregulated [8,30]. In this paper, all cytochrome P450s
were upregulated in mated females compared to virgin females at different time points (Figure 5).
During the mating process, males introduce slightly toxic seminal fluid and pathogens into females,
which changes the microenvironment of spermatheca, and the upregulated P450 genes may take part in
detoxification to ensure successful fertilization [33–35]. In addition, the role of P450s in the biosynthesis
of juvenile hormones and ecdysteroids could help regulate hormone levels after mating [30]. Specifically,
Cyp18a1 was significantly upregulated and its expression levels increased steadily in mated females
(Figure 5). Cyp18a1 shows a positive response to mating because it was annotated in insect hormone
biosynthesis (Table S8) and played a key role in hormone metabolism due to the increase of hormone
synthesis after mating [36].

Among insects, heat-shock proteins are synthesized and induced by environmental and genetic
stressors. They act as molecular chaperones to help organisms cope with different kinds of stresses
in biological process to improve species survival and population development [37,38]. In this study,
mating led to the upregulation of Hsp68 and Hsp70 genes at different time points in mated females.
Other members of Hsp families were also found in mated A. mellifera and Drosophila females [2,8,26].
With the increase of mating times, the upregulation of Hsp genes likely contributes to resistance to
changes in the female microenvironment and to maintaining sperm activity to successful mating and
fertilization [38,39].

Successful mating and fertilization require energy [40,41]. The energy metabolism pathway was
activated after mating in this study. Trehalose is the major blood sugar in insects and an instant source
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of energy [42]. Trehalose transporters can facilitate trehalose transfer and maintain haemolymph
trehalose levels in insects [43,44]. Tret1-2 may be more important than Tret1 because the expression
of Tret1-2 was always higher in mated females within 7 days (Figure 5). In addition, two maltase
genes (BTA000413.1.gene and BTA022129.2.gene) were also upregulated in mated females (Table S6),
which also help digestion in order to get energy [45]. In mated females, ubiquitin ligases encoded by
UBR5 and RNF123 were similar to Tret1-2 in terms of expression level. Ubiquitin ligases have been
reported to be essential for substrate recognition and ubiquitination and contribute to supporting
the next identification, maintenance, and modification of gametes [46,47], which are beneficial to
successful fertilization. Pheromones play an important role in mating by promoting mate attraction
and selection, alertness, defences and aggregation [48–50]. Carboxylases are involved in the production
and biosynthesis of pheromones [51,52], therefore, the upregulation of carboxylases (ACC-2) in mated
females within 7 days may attract males to increase the success rate of mating.

Mating usually induces upregulation of immune response-related genes [8,30]. We demonstrated
two upregulated heparan sulfate genes (BTA014754.1.gene and BTA017216.1.gene) that were ubiquitous
glycosaminoglycan with multiple roles in immunity [53]. Similarly, four serine-protein kinases
(BTA024078.1.gene, BTA007976.1.gene, TLK2 and SBK1), two retrovirus-related Pol polyproteins
(BTA016721.2gene and BTA004002.2gene), and two Hsp70 genes (BTA003886.2.gene and Bemisia_
tabaci_newGene_18814) were obtained from DEGs, and these types genes have been reported to be
related to immunity response in pearl oyster [54–57]. They may contribute to the defense against
invading microbes transmitted by mating to ensure successful mating. All of these key genes discussed
above might play different roles in postmating females to ensure successful fertilization. Next, their
functions in B. tabaci need further investigation.

5. Conclusions

Undoubtedly, successful mating is essential to the survival of all species. This study provides
a detailed understanding of the mating-related genes in B. tabaci. The mating process causes some genes
to be overexpressed. The overexpressed genes described here play different roles in the sophisticated
mating process by redistributing resources from somatic maintenance to mating processes and
microenvironmental protection. Finally, 10 genes were upregulated in mated females at different time
points, which may play key roles in mating.
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