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Abstract: The tomato potato psyllid (TPP), Bactericera cockerelli, is a psyllid native to North America 

that has recently invaded New Zealand and Australia. The potential for economic losses 

accompanying invasions of TPP and its associated bacterial plant pathogen Candidatus Liberibacter 

solanacearum (CLso), has caused much concern. Here, we employed ecological niche models to 

predict environments suitable for TPP/CLso on a global scale and then evaluated the extent to which 

global potato cultivation is at risk. In addition, at a finer scale the risk to the Australian potato 

acreage was evaluated. A total of 86 MaxEnt models were built using various combinations of 

settings and climatic predictors, and the best model based on model evaluation metrics was selected. 

Climatically suitable habitats were identified in Eurasia, Africa, South America, and Australasia. 

Intersecting the predicted suitability map with land use data showed that 79.06% of the global 

potato cultivation acreage, 96.14% of the potato production acreage in South America and Eurasia, 

and all the Australian potato cropping areas are at risk. The information generated by this study 

increases knowledge of the ecology of TPP/CLso and can be used by government agencies to make 

decisions about preventing the spread of TPP and CLso across the globe. 

Keywords: climate niche; early detection; insect–pathogen complex; invasive pests; landscape 

structure; potential distribution; risk assessment 

 

1. Introduction 

In recent decades, there has been ever-increasing concern about biological invasions that pose 

large threats to food safety, biodiversity, and human activities [1,2]. Invasions of agricultural pests 

are particularly problematic because increasing global and regional trade of plant products can 

facilitate their introduction and spread [3,4]. Billions of dollars in economic losses have resulted from 

agricultural pest invasions worldwide [5,6]. 

The expanding distribution of psyllids globally over recent decades demonstrates how 

biological invasions have the potential to cause adverse impacts on natural and agricultural 

environments [7–9]. Psyllids (Hemiptera: Psylloidea), also called jumping plant lice, comprise many 

species that are important crop pests [9,10]. Psyllids damage plants both through feeding, which 

negatively affects plant growth, as well as acting as vectors of many plant pathogens [11–14]. Psyllids 
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can be found in almost all regions of the world where solanaceous crop plants are grown, and in 

some regions, psyllid pests have caused severe economic losses with almost complete crop failure 

[10]. In addition to direct losses from crop failure and pest control costs, psyllids can also cause 

indirect losses such as a decline in agricultural exports due to biosecurity restrictions from importing 

countries [15]. 

There is much concern regarding the invasion and spread of the tomato potato psyllid (TPP), 

Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), in Australasia, which includes Australia and New 

Zealand. TPP is native to Central and North America and has been identified as one of the most 

destructive solanaceous crop pests. In recent decades, TPP has been found to transmit the Gram-

negative bacterium Candidatus Liberibacter solanacearum (CLso), which is a pathogen that results in 

severe yield and quality losses, primarily in potatoes and carrots [15–17]. It has been shown that the 

distribution of CLso in New Zealand and the Americas follows the dispersion of its psyllid vector, 

TPP [8]. CLso was reportedly introduced into New Zealand along with TPP from the western USA 

in the early 2000s through the horticulture trade. By the time CLso was first recorded in New Zealand, 

it had already spread to both the North and South Islands [17,18]. Introduction of TPP into new 

regions is likely to lead to the rapid spread of its associated plant pathogen CLso [17]. This indicates 

that the TPP and CLso insect–pathogen complex has enormous potential to expand toward other 

geographic regions of the world where habitats are favorable. 

Tomato potato psyllid is a polyphagous insect that feeds on plants from more than 20 families, 

with a preference toward solanaceous crops (i.e., potato, tomato and eggplant) and solanaceous 

weeds (i.e., nightshade) [10]. In view of the wide availability of host plants, the risk of the global 

dispersion of TPP should be given priority consideration, particularly in regions where economically 

important crops such as potato and tomato are grown in large areas. The invasion and spread of TPP 

coupled with CLso may result in serious economic losses in these regions, and even endanger food 

security. For instance, the economic impact of TPP in the 4 years it has been in New Zealand is 

estimated in the millions of dollars in terms of increased management costs, crop losses and loss of 

export markets [6]. Additionally, there is growing concern about the environmental impact resulting 

from increased use of chemical pesticides [6]. For this reason, mapping the invasion risk areas to 

reveal the likely spatial variation of TPP and CLso and the potential consequences of invasion is 

imperative. 

Ecological niche models (ENMs) are increasingly being applied to risk analysis of invasive pests 

because of their capacity to predict suitable habitats for pest colonization, allowing the adoption of 

biosecurity measures to prevent the invasion and spread of alien species in areas of concern [19,20]. 

Correlative models are the most commonly used method to predict the potential distribution of pests 

in a novel environment. This method connects species empirical observation data with bioclimate 

data to create a suitability gradient that can be projected onto a geographic space to generate a 

suitability map [20]. Additionally, a recent study revealed that psyllid population dynamics were 

strongly mediated by climate and landscape factors [21]. Here, ENMs coupled with spatial analysis 

were employed to investigate the potential risk of TPP and its associated plant bacterial pathogen 

CLso spreading around the globe. First, we compared the climate niche similarity between native 

and invasive populations of TPP and CLso using bioclimate data for their known sites of occurrence. 

Then, we employed correlative ENMs to forecast the suitable habitats available to TPP and CLso and 

produced a potential distribution map. Finally, by coupling ENMs with spatial analysis, we assessed 

the area of global potato cultivation and at a finer scale Australian potato production to determine 

the risk of establishment by the TPP and CLso insect–pathogen complex. Together, this information 

will be valuable for making decisions about how to prevent/address the invasion and spread of 

TPP/CLso to suitable regions. In particular this research focuses on the vegetable/potato planting 

areas of Australia. 

2. Materials and Methods 

MaxEnt (version 3.3.3k [22]) was selected to build the ecological niche models (ENMs) because 

it has been shown to be effective in predicting the potential distribution of invasive alien pests when 
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utilizing present-only data [23,24]. Building models with proper complexity is crucial to prevent 

overfitting or underfitting, and to make robust inferences [25,26]. To build an optimal model for our 

target species, we optimized the following steps: (i) collecting and spatially filtering occurrence data; 

(ii) delimiting the background study area; (iii) Comparing the occupied climate space between native 

and invasive populations; (iv) selecting climate variables; and (v) configuring MaxEnt parameters 

(regularization multiplier, feature classes) and selecting the best model. 

2.1. Occurrence Data Collection and Spatial Filtering 

Occurrence records of TPP and CLso were collated from the literature, the Global Biodiversity 

Information Facility (GBIF, http://www.gbif.org/), the European and Mediterranean Plant Protection 

Organization Global Database (EPPO, https://gd.eppo.int/), and a report of occurrences in Australia 

(https://eldersrural.com.au/wp-content/uploads/sites/3/2017/03/) [27]. When only locality names 

were available, georeferenced coordinates were gained with the geolocation software Google Earth. 

To check and reduce spatial biases, these geo-referenced occurrence points were then subjected to 

spatial filtering to rarefy the points with a minimum distance of 50 km between each point [23,28]. 

This spatial filtering analysis was executed using SDMtoolbox [29] and resulted in 114 unique 

localities for TPP, of which 81 points were from the native regions in Central and North America and 

33 points were from invaded regions in Australia and New Zealand. Similarly, 44 geo-referenced 

localities were collected for CLso, 21 of which were from the native areas in North America and 13 

were from invaded regions in New Zealand. 

2.2. Background Study Area Delimitation 

MaxEnt, like other correlative ENMs, generates pseudo-absence points randomly sampled from 

the background area [23,30]. Previous studies indicated that background delimitation is a crucial step 

during the modelling process and can be achieved using different proxies [23,24,31]. Here, we 

selected the background study area by intersecting the occurrence localities with Koppen climatic 

zones downloaded from CliMond (http://www.climond.org) as this approach has been shown to be 

effective for other pests and is less arbitrary than defining a convex that encompasses all occurrence 

points [23,30–34]. The climatic zones with at least one occurrence record were selected as background 

(Figure 1). Random points were generated from the backgrounds to compare the climate niche 

similarity between invasive and native populations using SDMtoolbox [29]. 

 

Figure 1. Occurrence points and delimited background for native and invasive populations of tomato 

potato psyllid (TPP) and Candidatus Liberibacter solanacearum (CLso). Colors refer to the Koppen 

climate zones, and gray represents non-target background. Letter codes refer to climate classification: 

A, equatorial; B, arid; C, warm temperate; D, snow; W, desert; S, steppe; a, hot summer; b, warm 

summer; c, cool summer; f, fully humid; h, hot arid; s, summer dry; w, winter dry. 
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2.3. Occupied Climate Space Comparison between Native and Invasive Populations 

When a MaxEnt model is applied to predict the potential distribution of an alien species in a 

new range, the assumption that an alien species can maintain its climate niche in the invaded regions 

needs to be validated because the realized climate niche of alien species might shift during the 

invasion process [35–37]. Here, we carried out a principal component analysis (PCA) using the values 

of occurrence and random points extracted from 19 bioclimatic variables to analyze the climate niche 

similarity between native and invasive populations of TPP and CLso. A biplot was plotted with the 

first two components of PCA, and convex envelopes defining clusters of the invasive and native 

populations of TPP and CLso were added to visualize their climate niche overlap [34]. The bioclimatic 

variables were downloaded from the Worldclim database version 2.0 at a spatial resolution of 5 

arcmin (http://www.worldclim.org) [38]. These Worldclim bioclimatic variables were employed to 

assess climate conditions because they include the climatic factors that determine species’ geographic 

distributions [39,40]. 

2.4. Climate Variable Selection 

Previous studies have shown that climate variable selection is an important step for model fitting 

[41,42]. Here, two sets of variables were selected following the procedure suggested by Marchioro 

[23]. The first set of bioclimatic variables (Bio1, Bio2, Bio8, Bio12, and Bio15) was selected based on 

previous distribution modeling and life cycle adaption studies of other psyllid species [9]. The second 

set of bioclimatic variables was determined by adding the Bio14 variable to the first set according to 

PCA. We also calculated Pearson’s correlation coefficients using ENMtools software [43] to make 

sure that there was no multicollinearity between the selected variables [44]. 

2.5. MaxEnt Parameter Configuration and Best Model Selection 

Recent studies have shown that using the default automatic configuration of MaxEnt may not 

always be appropriate [23,26,31]. It is recommended that the most appropriate model should be 

selected by evaluating the best potential combination of parameters (regularization multiplier, 

feature classes) [25,45–47]. Thus, we compared models with different feature class and regularization 

multiplier combinations. MaxEnt includes five basic feature classes: Hinge (H), linear (L), product 

(P), quadratic (Q), and threshold (T). As simple models with great explanatory predictive power can 

potentially be produced using various combinations of the feature classes [45,46], seven combinations 

were tested: L, H, LQ, LQP, LQH, LQPT, and LQHPT. The regularization multiplier values were set 

to 0.5, 1 (default), 3, 5, 7, and 9 based on Marchioro [23], Kumar et al. [46] and Morales et al. [47]. 

Combining regularization multipliers and feature classes, we assessed a total of 86 models for two 

environmental datasets, including two default auto-feature models. 

Both threshold-dependent and threshold-independent metrics were employed to evaluate 

model performance. The threshold-independent metrics were the area under the curve (AUC) in a 

receiver operating characteristic (ROC) plot and the Bayesian Information Criterion (BIC). An AUC 

value of 1.0 indicates perfect discrimination ability and a value of 0.5 or less indicates a prediction no 

better than random [20]. The BIC criterion for model selection measures the trade-off between model 

fit and complexity, and the model with the lowest BIC is preferred [25,48]. The software ENMtools 

V1.3 was employed to calculate BIC [43]. 

Threshold-dependent metrics were the omission rate (OR) at the minimum training presence 

threshold (MTP) and OR at the 10% training presence threshold (TP10). The expected OR value is 0.1 

at the TP10 and 0 at the MTP. Values higher than expected indicate the performance of the model is 

poor [28,49]. The following criteria were adopted to select the best model with low complexity and 

high performance: Lower BIC values, OR at TP10 and MTP approximate to 0.1 and 0, respectively, 

and higher AUC values (>0.8). 
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2.6. Model Projection to Predict the Potential Distribution of TPP and CLso 

Once the parameter combination yielding the best model was determined, the MaxEnt model 

was run with all the known occurrences from native and invaded areas and projected onto the 

remaining parts of the world to predict the potential distribution of TPP and CLso. However, 

interpretation of model predictions outside the range of the independent variables on which models 

were calibrated is problematic [50]. A multivariate environmental similarity surface (MESS) 

implemented in MaxEnt was computed to quantify the extent of the environmental differences 

between model training and model projection data [44,51]. To increase the accuracy and reliability of 

modeling results, the final model was run for 30 replications and output in logistic format. Binary 

maps showing unsuitable, suitable and optimal habitats for TPP and CLso were then produced using 

the thresholds MTP and TP10. Habitats with logistic output values less than the MTP were regarded 

as unsuitable. In a similar way, habitats with values above the MTP and TP10 were considered 

suitable, and optimal respectively. 

2.7. Spatial Analyses for Quantifying the Area at Risk of Attack 

In addition to climate suitability, a recent study indicated that the landscape structure (i.e., host 

availability) and their spatial arrangement of the host can also determine the occurrence and 

abundance of pests and thus affect the damage to invaded ecosystems [21]. Here, we further 

integrated landscape pattern with climate suitability to quantify the area at risk of attack. According 

to previous studies, TPP and CLso primarily feed on potatoes, tomatoes and capsicums, but can be 

found on approximately 20 other plant families [10,16,17]. As potato is the third most important food 

crop worldwide, we first quantified the global potato production area at risk of attack by intersecting 

the TPP suitability map and the global potato distribution map. The global potato production area 

was obtained from geo-referenced data of potato-producing areas [52,53]. The acreage at potential 

risk of attack was calculated using SDMtoolbox with ArcGIS [29]. 

Next, we quantified the area at risk for potential TPP invasion in recently invaded areas of 

Western Australia by overlapping the TPP suitability map and a national scale land use map of 

Australia (https://data.gov.au/data/dataset/land-use-of-australia-2010-11). In addition to the 

cropping and horticulture areas, the residential and farm infrastructure, production forests, and 

modified grazing pastures were recognized as potential risk areas with available hosts such as 

backyard tomatoes and solanaceous weeds where TPP is likely to be introduced by unintentional 

human activities. This is because the new occurrences of TPP in Australia were mainly found in 

backyards containing tomatoes and eggplants [27]. Previous research also showed that non-crop host 

plants adjacent to cropping areas are important in the life cycle and ecology of TPP and CLso; this is 

because the insect’s life stages are present year-round and these host plants provide suitable feeding 

and breeding substrates throughout the year [16]. Similarly, natural conservation areas far from 

cropping areas can be recognized as risk areas but with low potential of invasion. 

3. Results 

3.1. Occupied Climate Space Comparison between Native and Introduced Populations 

TPP was found across nine and three Koppen climate zones in its native America and invaded 

regions in Australasia, respectively. TPP occurred in various climatic zones from tropical to 

temperate in native regions and only occurred in warm and temperate climatic regions in invaded 

regions (Figure 1). Defining the occupied climate space by PCA allowed us to investigate niche 

similarity and divergence. The first two principal components of the PCA captured 72.4% of the total 

variation and these two components were significant. A high degree of overlap between the niches 

of native and introduced populations of TPP and CLso was observed (Figure 2). The available climate 

spaces in the native and invaded regions form two overlapped clouds, indicating that the available 

climate space in Australasia is only a part of the occupied climate space in its native habitat in 

America. 
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Figure 2. Comparison of climatic niches between native and introduced populations using principle 

component analysis. Green and green dotted circles represent native and invasive populations of 

tomato potato psyllid (TPP), respectively. Yellow crossed circles and pink plus symbols are native 

and invasive populations of Candidatus Liberibacter solanacearum (CLso), respectively. Light and 

dark gray dots depict random points generated from invaded and native backgrounds, respectively. 

3.2. Model Calibration and Evaluation 

Overall, 86 MaxEnt candidate models built with various combinations of regularization 

multiplier, feature class and climatic variables were evaluated to select the best fitting model to 

predict the potential distribution of TPP and CLso (Figure 3). Both threshold-independent (AUC, 

BIC) and threshold-dependent (MTP, TP10) evaluation metrics used to assess model performance 

varied with different parameter combinations. Some models showed ORs close to the expected 

values, whereas others showed ORs of up to 0.26, almost three times the expected value. AUC values 

ranging from 0.74 to 0.82 indicated that all models performed better than random. All evaluation 

metrics changed with different regularization multipliers. The change in the evaluation metrics was 

nonlinear and generally consistent between the four metrics. The lowest ORs and BIC values and 

highest AUC values were obtained when the regularization multiplier was 3. Similar trends were 

seen for different feature classes. The models built with the LQ feature usually had lower ORs and 

BIC values and higher AUC values. Although the variation in evaluation metrics was consistent 

between the two climatic sets, the values of evaluation metrics for models built with climatic variables 

set 2 were subtly higher or lower than those for models built with climate variables set 1. Based on 

the model selection criteria, the best model was obtained when using L and Q features, a 

regularization multiplier equal to 3, and climatic variables set 2 (Bio1, Bio2, Bio8, Bio12, Bio14, Bio15); 

this model had the lowest OR and BIC values, as well as an AUC more than 0.8. The performance of 

the selected best model was better than that of the MaxEnt model obtained using the default settings 

(Figure 3). 
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Figure 3. Performance statistics for models of tomato potato psyllid (TPP) distribution built with 

various combinations of regularization multiplier, feature class and climatic variables. (Feature 

abbreviations: L, linear; Q, quadratic; P, product; H, hinge; T, threshold). 

3.3. Potential Global Distributions of TPP and the Bacterial Pathogen It Transmits 

Predicted climatic suitability maps with logistic and binary outputs are shown in Figure 4. The 

suitable and optimal areas were mainly distributed between 47° S and 65° N. In addition to the known 

regions in Central and North America, four vast climatically suitable and optimal regions were 

identified in South America, Eurasia and North Africa, sub-Saharan Africa, and Australasia. The 

optimal areas in South America were in the Andean Highlands and Pampas. The largest optimal area 

was in Eurasia and North Africa, and largely consisted of regions around the Mediterranean and a 

belt running from northwestern to southern China and continuing into the Gangetic plains in 
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northern India and Bangladesh. Botswana, Zimbabwe, Southern Africa, Southern Australia, and 

most parts of New Zealand were also climatically optimal regions. 

 

Figure 4. Predicted suitable habitats for tomato potato psyllid (TPP) and the associated plant 

pathogen Candidatus Liberibacter solanacearum (CLso) shown as logistic (a) and binary (b) output. In 

the logistic map, dark red colors represent higher suitability. Orange and red colors in the binary map 

represent suitable and optimal conditions for TPP and CLso, defined by the minimum training 

presence threshold (MTP) and 10% training presence threshold (TP10), respectively. The black simple 

hatch lines in the binary map indicate the non-analogous environments between the model’s 

calibration and projection areas identified by MESS analysis. 

MESS analysis identified environments that exist in the model’s calibrated regions but not in the 

model’s projection areas, and these non-analog environments are shown in Figure 4b. These areas 

included Mauritania, Mali, Niger, Chad, Sudan, and Southern Algeria in Africa, the Tibet Plateau 

region in Asia and most regions above 60° N latitude in Europe and North America. 

3.4. Risks to Global Potato Production and Australian Crop Production 

The predicted suitable and optimal areas for TPP and CLso almost completely overlap with the 

global potato cultivation area; 79.06% of the known global potato cultivation acreage and 96.14% of 

main potato production acreage in South America and Eurasia were predicted as both suitable and 

optimal areas for TPP and CLso (Figure S1). The newly invaded areas that are at high risk for potential 

invasion are located in eastern, western and southern Australia, and include different land use types 

with host availability. The acreage of Australian lands under risk of attack varies widely between 

land use types (Figure 5). The cropping and horticulture areas are at highest risk, with almost all the 

area within the optimal range for TPP and CLso, followed by residential, transport and 
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communication areas (97.3%), plantation forest and grazing modified pasture (88.0%), and nature 

conservation areas (38.67%). The known sites of occurrence in Australia were mainly located in 

residential regions surrounded by cropping and horticulture areas (Figure 5). 

 

Figure 5. Potential areas in Australia at risk for invasion identified by spatial overlay analysis of 

predicted climate suitability for tomato potato psyllid (TPP) and Candidatus Liberibacter 

solanacearum (CLso) and national scale land use data. 

4. Discussion 

More and more invasive alien pests are being recognized as having an adverse effect on crop 

production, biodiversity, economies and society [2,4]. Quantitative assessment or prediction of the 

probability of an alien pest invasion and creation of a risk map conveying the spatial variation of a 

pest is the key to developing strategic and tactical approaches for invasive pest management [19]. 

Frequently, predicting an invasion is dependent on prediction of climate suitability using 

extrapolations made from limited information to project how a species might arrive, establish, or 

spread in novel environments and impact these environments [19,20]. In particular, a recent study 

found that the occurrence and abundance of TPP in its native habitat in the USA could be best 

described by incorporating climate and landscape factors [21]. Here, we applied MaxEnt models with 

known occurrence data and spatial bioclimatic layers to predict areas climatically suitable for 

establishment of the TPP/CLso complex on a global scale and then combined information about 

climate suitability from these models with spatial land use layers to assess the risks of invasion in 

global potato cultivation areas and major crop production regions in Australia that have recently 

been invaded. 

According to the ecological niche model assumption, we evaluated niche conservatism before 

model calibration [20,35,39]. No niche shift was found between native and invasive populations of 

TPP and its associated pathogen CLso. The occupied niches of CLso were found within those of its 

host TPP and this niche similarity provided us a chance to predict the potential distribution of TPP 

and CLso as a complex, as it is usually difficult to detect the pathogen [8,21]. Niche comparison 

further indicated that the climate space occupied by the invasive populations is only a portion of that 
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occupied in their native regions, implying that TPP and CLso may continue to expand their range in 

Australasia unless efficient biosecurity measures are taken. 

The performance of 86 candidate models varied largely with changes to MaxEnt’s settings. 

Values of the regularization multiplier had the most impact on model performance, followed by 

combinations of feature class and climatic variables. Nonlinear variation of model performance with 

different regularization multiplier values and combinations of feature classes revealed that an 

appropriate degree of complexity is an ideal property for improving the transferability of ENM 

models from native to non-native regions when using an ENM model to predict potential 

distributions, as previous studies indicated [45,48,54,55]. Therefore, our results corroborate the 

findings of other studies [23,25,26,47,48] that it is important to build a MaxEnt model for specific 

species by testing different combinations of parameters instead of adopting default settings, and that 

the optimization model should have an appropriate level of complexity. 

The final selected climatic suitability model for the TPP/CLso complex revealed four large 

regions suitable for invasion and establishment in South America, Eurasia, Africa, and Australasia. 

However, we cannot absolutely infer that TPP and CLso cannot survive in the unsuitable areas 

because there are some limitations to our predicted potential invasion areas. Our MaxEnt model, built 

with occurrence data, predicted the realized niche, which is regulated by both biotic interactions and 

abiotic factors that shape the species distribution [20,35,39]. Potentially important biotic interactions 

(competition with local species, presence/absence of natural enemies, population recruitment) were 

not taken into account due to the lack of relevant information for most psyllid species. Acquiring 

such information is hindered by the fact that psyllids are small insects and often overlooked in 

general biodiversity collecting [9]. Our model projection outside of the native range is thus a relative 

approximation of the climate niche. It is possible that TPP and CLso could survive in the areas that 

were predicted as being of low suitability when the amount of the TPP/CLso complex introduced 

from occurrence regions is high enough. But despite the above drawbacks, the model we built is 

valuable and informative and provides a fundamental tool for predicting suitable areas for the 

TPP/CLso complex, revealing areas that are more vulnerable to invasion and establishment than 

those with unsuitable conditions. Large potentially suitable areas outside its native range suggest 

that TPP and its associated plant pathogen CLso should be considered an emerging global crop/pest 

complex. 

According to our analysis, substantial portions of Eurasia, South and North Africa, South 

America, and Australasia were identified as climatically suitable areas with hosts available for TPP 

and CLso. Most of the host plants of TPP in its native America, including cultivated and wild 

Solanaceae species, are widely distributed in the predicted suitable regions and may form a plant 

corridor that promotes the invasion and spread of TPP and CLso. The invasion and spread of this 

complex to the predicted suitable and optimal regions may cause significant economic losses for local 

crop producers, because almost all the acreage cultivated with potato, the third most important food 

crop worldwide, is located within these regions. The use of pesticides to control TPP might also have 

potential impacts on the local environment and thus increase social costs. It is imperative to formulate 

biosecurity measures to prevent the global invasion and spread of the TTP/CLso complex, 

particularly in the newly invaded regions of Australia. Strict quarantine measures, particularly for 

crop and horticulture products from regions with known occurrence of TPP and CLso, should be 

adopted for the countries and regions identified as high risk areas with a suitable climate and hosts 

available for TPP and CLso. 

Although prevention strategies before pests have established viable populations in a novel 

region is broadly considered more cost-efficient than eradication or control of the invading 

populations [56,57], not all prevention methods are effective. This is particularly true in the current 

globalization era with increasing global and regional communication; even the best prevention efforts 

cannot stop all invasions of alien species. Early detection coupled with rapid response is a critical 

second defense against the establishment of newly invaded populations. TPP has already been 

introduced in New Zealand and Australia, and it is thought to be in the earlier stages of invasion in 

these regions, which highlights the importance of early detection and rapid response to increase the 
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likelihood that localized newly invaded populations will be found, contained, and eradicated before 

they become widely established. To increase the probability of detecting established populations, it 

is important to identify highly vulnerable regions with suitable climates and host plants available for 

the survival of introduced propagules. Our spatial analysis performed by overlaying suitable areas 

and land use types delimited the areas at risk for potential invasion in Australia. Nearly all the crop 

areas and residential areas in Eastern, Southern, and Western Australia are located in the optimal 

climate regions and thus can be recognized as high-risk areas. 

Considering that the currently invaded localities are mainly confined to non-cropping areas (i.e., 

backyards of residential regions) and that a related study revealed the TPP in its native habitat in the 

USA was more abundant in landscapes with high connectivity, low crop diversity and large natural 

areas [21], monitoring efforts should put more emphasis on the corridors or routes connecting the 

currently invaded localities and the neighboring crop cultivation regions, particularly those planted 

with potato and other Solanaceae mono-crops. In summary, the risk maps generated here can be used 

by biosecurity policy makers and frontline practitioners to delimit priority areas for installing 

detection traps and conducting field surveys, and to coordinate management efforts strategically and 

tactically in areas at risk of invasion so as to prevent the invasion and spread of TPP beyond the 

currently occupied areas as soon as possible. 

5. Conclusions 

Our study highlights the importance of integrating climate and landscape factors using ENM 

and spatial approaches to identify the areas at risk from invasive pests. Species-specific ENMs should 

be built with appropriate complexity by configuring the potential parameters to characterize the 

climate niche and to predict the outbreak of pests across variable landscapes. Large climatically 

suitable regions with available hosts were identified in Eurasia, South and North Africa, South 

America, and Australasia. Spatial analysis indicated that predicted suitable areas highly overlap with 

global potato cultivation areas: 96.14% of the main potato production acreage in South America and 

Eurasia, and all the Australian potato growing areas are under potential risk of invasion. Our results 

and generated risk map can provide scientific guidance for implementing early detection or 

eradication measures and thus prevent the introduction or spread of TPP and CLso over the globe. 

In addition, our study contributes to the ecological knowledge of TPP and CLso, and could serve as 

a guide for further experiments to develop novel models for assessing the potential invasion and 

impact of this pest/pathogen complex. 
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