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Abstract: Concanavalin A (ConA), a legume lectin, has been drawing increasing attention in recent
years concerning its toxicity against insects and its potential application in pest management. In an
attempt to evaluate the effect of ConA on potato psyllid (Bactericera cockerelli), an economically
important pest of solanaceous crops, the effect of ConA on potato psyllid survival, psyllid gut nuclear
morphology, and expression of psyllid caspase genes were evaluated. Our results determined that
artificial diet-feeding assays using ConA had deleterious effects on potato psyllids, resulting in
significant psyllid mortality following ingestion. We also found that an apoptotic response was
induced by ConA in psyllid midgut cells, which was demonstrated by the DNA fragmentation
and abnormal nuclear architecture in the midgut cells. Following ConA ingestion, there was also
upregulation of caspase genes in the psyllid midguts. Therefore, a key mechanism behind ConA
toxicity towards potato psyllid probably involves the induction of apoptosis in midgut cells. This study
could provide a better understanding of the mechanisms underlying ConA toxicity in insects and be
a stepping stone towards the development of new psyllid control strategies based on plant lectins.
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1. Introduction

Lectins are a class of plant proteins with at least one non-catalytic domain that can specifically
and reversibly bind to carbohydrates without altering the covalent structure of the recognized glycosyl
ligands [1,2]. Lectins with insecticidal properties against pests that could be used as defense molecules
against insect herbivores and plant pathogens have been identified [3,4]. In particular, lectins show the
greatest potential for exploitation in transgenic-based pest control strategies [5]. These proteins could
be important as control agents for hemipteran pests because these insects are not susceptible to Bacillus
thuringiensis (Bt) toxins [6,7].

Concanavalin A (ConA), a lectin from Canavalia ensiformis, is one of the most extensively
investigated members of the lectin family of plant proteins [8]. ConA has previously been demonstrated
to be detrimental to multiple pest species, such as the tomato moth, the cotton bollworm/legume pod
borer, as well as several aphid species [9–12].

Despite the increasing interest in the insecticidal properties of plant lectins, the mechanisms behind
their toxic properties in insects are not well understood. Lectin binding to insect proteins could be an
essential step in exerting a toxic effect. Attempts have been made to identify lectin-binding receptors
in insect guts and to determine the molecular basis of lectin toxicity to insects [13–16]. A majority of
lectins that affect insects were shown to bind in areas of the midgut, the primary insecticide target
tissue, and some lectins, such as Galanthus nivalus agglutinin (GNA) could also cross the gut epithelium
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reaching the hemolymph and other tissues [17,18]. In mammals, the mechanisms behind the toxic
properties of lectins have been extensively studied, and were shown to involve the induction of
programmed cell death, a cell immune process [19–22]. Indeed, some legume lectins such as Lens
culinaris agglutinin (also known as LCA), ConA, and Phytohemagglutinin (PHA) are highly cytotoxic
and can induce apoptosis of cancer cells [23]. Therefore, one key mechanism of lectin toxicity against
insects could be associated with inducing cell death in insect midgut cells. However, the literature
associated with apoptosis induction in hemipterans by lectins is still limited. Only two studies showed
that ConA could induce cell apoptosis in the midgut of grain aphids and bird cherry-oat aphids [11,12].

Among hemipteran insects, the potato psyllid (also known as the tomato psyllid), Bactericera
cockerelli, is a serious pest of solanaceous crops. This insect species is a phloem feeder that can directly
affect plant growth, and also can transmit the phloem-limited bacterium, ‘Candidatus Liberibacter
solanacearum’ (Lso) [24]. Presently, two Lso haplotypes (LsoA and LsoB) have been identified
in North America. LsoA and LsoB can infect numerous solanaceous crops and cause extremely
damaging diseases (e.g., zebra chip in potatoes). Currently, potato psyllid control relies on insecticide
applications but even with conventional insecticides, this pest is difficult to manage [25]. Furthermore,
commercially acceptable genetic resistance against the potato psyllid or Lso has not yet been identified
in potato or other solanaceous crops [26]. Therefore, it is crucial to explore alternative strategies
to control potato psyllids. ConA, a promising toxic agent against hemipteran insects, could be
detrimental to potato psyllids. In the present study, we evaluated the toxic effect of ConA-containing
artificial diets on potato psyllid survival. To assess if ConA induced apoptosis in the gut of potato
psyllids, we examined the nuclear architecture of gut epithelial cells, performed TUNEL (terminal
deoxynucleotidyl transferase dUTP nick end labeling) assays, and evaluated the expression of caspase
genes after ConA-feeding. Intracellular bacteria such as Lso might be able to manipulate insect
host responses, including programmed cell death [27]. Therefore, we also tested the effect of ConA
on psyllids harboring LsoA and LsoB, on psyllids that did not harboring Lso to evaluate if the
presence of the bacterial pathogen could protect the insects from ConA. This study may be a stepping
stone to unravel the mechanisms behind ConA toxicity towards potato psyllids, and could provide
valuable information for the use of plant lectins for pest management. Additionally, this study also
provides knowledge about apoptosis in the psyllid gut in response to Liberibacter bacteria, which are
intracellular pathogens.

2. Materials and Methods

2.1. Insect

Lso-free, LsoA-, and LsoB-infected psyllid colonies [28] were maintained separately on tomato
plants in insect cages (24 × 13.5 × 13.5 cm, BioQuip, Compton, CA, USA) at room temperature 24 ± 1
◦C and photoperiod of 16:8 h (L:D). Young virgin female adults (1 to 3 days-old) were used for the
artificial diet feeding assays, tissue observations, and gene expression analyses.

2.2. Feeding Bioassays

The liquid diet used for psyllid feeding bioassays was prepared with a sterilized solution of 15%
(w:v) sucrose and 1× phosphate-buffered saline (1× PBS) solution (Sigma-Aldrich, St. Louis, MO, USA).
Concanavalin A (MP Biomedicals, Solon, OH) was incorporated into the diet at a concentration of 2000
µg/mL [11]. Control diets (without ConA) were also included in the experiment. Young female adults
from the Lso-free, LsoA- or LsoB-infected potato psyllid colonies were collected and placed in plastic
feeding chambers (h = 2 cm,Φ = 3 cm). The chambers were covered by two sheets of Parafilm with 100
µL of the liquid diet described above in between the two layers (Figure 1a). The diet was replaced
as required. Psyllid survival was monitored every 24 h. Three replicates consisting of 30 psyllid
individuals each from the Lso-free, LsoA-, or LsoB-infected potato psyllid colonies were analyzed in
the feeding assays.
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observed in apoptotic cell nuclei. These changes mainly occurred in the midgut (Figure 2a,b). Figure 
2b shows the three representative stages of apoptotic changes of nuclei in potato psyllid midgut cells 
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in the guts of the Lso-free, LsoA-, or LsoB-infected potato psyllids exposed to ConA (Figures 3 and 

Figure 1. Feeding assays and Concanavalin A (ConA) toxicity towards potato psyllid. (a) Apparatus
for feeding assays. The chambers were covered by two sheets of Parafilm with liquid diet between the
two layers. (b) Mortality of Candidatus Liberibacter solanacearum (Lso)-free, LsoA-, and LsoB-infected
potato psyllids following feeding on artificial diets without (control) and with ConA at the concentration
of 2000 µg/mL. p-value refers to the log-rank test. The gray region indicates a significant mortality of
psyllids after feeding ConA.

2.3. Nuclear Architecture and TUNEL Assay of Gut Epithelial Cells

To investigate whether ConA impacted the nuclear architecture of the gut epithelial cells, Lso-free,
LsoA-, or LsoB-infected potato psyllids were allowed to feed on diets containing 2000 µg/mL of
ConA or control diet (without ConA) for 72 h. Subsequently, the psyllid guts were dissected in 1×
PBS under the stereomicroscope (Olympus) and then fixed in 4% paraformaldehyde for 30 min at
room temperature. After fixation, the guts were incubated with Sudan Black B (SBB) (Sigma-Aldrich,
MO) for 20 min to quench autofluorescence [29]. Then, the guts were washed three times with 1×
PBS containing 0.05% Tween 20 (PBST), mounted using Vectashield mounting medium with DAPI
(Vector Laboratories Inc., Burlingame, CA, USA), covered with a glass coverslip and sealed with nail
polish. At least 20 guts per treatment were examined using an Axioimager A1 microscope (Carl Zeiss
microimaging, Thornwood, NY, USA). The images were collected and analyzed with the Axiovision
Rel 4.8 software (Carl Zeiss, Göttingen, Germany).

To test DNA fragmentation of apoptotic cells, the guts from Lso-free, LsoA-, or LsoB-infected
female potato psyllids were dissected in 1× PBS under the stereomicroscope (Olympus) and then fixed
in 4% paraformaldehyde for 2 h at room temperature. The guts were blocked by 5% bovine serum
albumin in 1× PBS with 0.1% Tween 20, then incubated with TUNEL for 6 h. TUNEL staining was
performed using the In Situ Cell Death Detection Kit (Roche, Basel, Switzerland) [30]. After washing
three times with PBS, samples were mounted using Vectashield mounting medium with DAPI,
covered with a coverslip and sealed with nail polish. At least 20 guts per treatment were examined
using Axioimager A1 microscope and analyzed as previously described.
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2.4. Gene Expression of Caspases

The caspase genes involved in apoptosis pathways were identified by searching the psyllid
transcriptome datasets [31] and verified by sequencing [32]. The primers for sequence validation can
be found in Table S1. For the gene expression experiment, young female adults from the Lso-free,
LsoA-, or LsoB-infected colonies were allowed to consume 2000 µg/mL ConA-containing diets for
72 h. Control treatments (without ConA) were also included. Three replicates were analyzed for
each treatment, and each replicate had 30 psyllid individuals. After the exposure to ConA-containing
diet, the psyllid guts were dissected under the stereomicroscope (Olympus) as previously described.
RNA from a pool of 30 psyllids guts was purified using RNeasy Mini Kit (Qiagen, Hilden, Germany).
The total RNA was reverse transcribed using Verso cDNA Synthesis kit (Thermo, Waltham, MA, USA)
plus anchored-Oligo (dT) primers following the manufacturer’s instructions. Genomic DNA was
eliminated by DNase I treatment with Turbo DNase (Ambion, Invitrogen, CA, USA). The expression of
caspase genes was evaluated by quantitative PCR (qPCR). The gene-specific primers for qPCR can
be found in Table S1. qPCR reactions were performed using SensiFAST SYBR Hi-ROX Kit (Bioline,
Taunton, MA, USA) according to the manufacturer’s instructions. Each reaction contained 5 ng of
cDNA, 250 nM of each primer (Table S1) and 1× of SYBR Green Master Mix; the volume was adjusted
with nuclease-free water to 10 µL. The qPCR program was 95 ◦C for 2 min followed by 40 cycles
of 95 ◦C for 5 sec and 60 ◦C for 30 sec. The qPCR assays were run using an Applied Biosystems
QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). Reactions for all samples were
performed in triplicates with a negative control (no cDNA) in each run. The relative expression of
the candidate genes was estimated with the delta delta Ct method [33] using two reference genes:
elongation factor-1a (GenBank KT185020) and ribosomal protein subunit 18 (GenBank KT279693) [34].

2.5. Statistical Analyses

All data analyses were carried out with JMP Version 12 (SAS Institute Inc., Cary, NC, USA) and
GraphPad Prism 7 Software (GraphPad Software, San Diego, CA, USA). Survival test was determined
using Kaplan-Meier survival curves and log-rank test. The P-values of comparisons between the
psyllids feeding on diets lacking ConA or with ConA (“Lso-free” vs. “Lso-free + ConA”, “LsoA” vs.
“LsoA + ConA”, and “LsoB” vs. “LsoB + ConA”) were calculated. The test among the six groups
was conducted as well. In addition, the mortality among Lso-free, LsoA-, and LsoB-infected psyllids
feeding on ConA-containing diets at each day were compared using one-way ANOVA with Tukey’s
post hoc test. Effects of ConA on caspase gene expression were determined with Student’s t-tests.

3. Results

3.1. Mortality of Potato Psyllids Following ConA Treatment

The mortality of Lso-free, LsoA-, or LsoB-infected potato psyllids was monitored following feeding
on diets containing ConA. The results showed that ConA significantly increased psyllid mortality when
compared to the control diets lacking ConA whether psyllids were Lso-free, LsoA-, or LsoB-infected
(log-rank test: p < 0.0001 for all the comparisons) (Figure 1b). In particular, after two days of feeding on
the ConA-containing diets, the number of dead LsoA-infected psyllids was significantly higher than
Lso-free psyllids (F2,6 = 5.182, p < 0.05), however, there was no significant difference in the survival
rate among Lso-free and Lso-infected psyllids feeding on ConA after three days (p > 0.05). By day six,
none of the potato psyllids were alive in the ConA-containing treatments, while around 90% of the
Lso-free, LsoA- or LsoB-infected psyllids were still alive in the control treatment (Figure 1b).

3.2. Nuclear Architecture and TUNEL Assay

The midgut epithelial cell nuclei of ConA-treated psyllids showed a typical pattern of changes
observed in apoptotic cell nuclei. These changes mainly occurred in the midgut (Figure 2a,b). Figure 2b
shows the three representative stages of apoptotic changes of nuclei in potato psyllid midgut cells
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after ConA feeding as described by Kihlmark, et al. [35]. These morphological events were observed
in the guts of the Lso-free, LsoA-, or LsoB-infected potato psyllids exposed to ConA (Figure 3 and
Figure S1). Specifically, the gut cells of insects fed with ConA (Figures 2 and 3) showed several nuclei
that seemed to be in the earliest stage of apoptosis, Stage I, displaying a punctate distribution. A few
nuclei were condensed and collapsed, showing the signs of stage II. In stage III, many nuclei formed
grape-shaped apoptotic bodies and exhibited pyknosis and/or karyorrhexis, and most of the nuclei
had lost their elliptical round shape. In contrast, midgut cell nuclei from the psyllids feeding on the
control diet appeared regularly dispersed in the cells and their shape, size, and DAPI staining were
uniform (Figure 3).
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Figure 2. Nuclear architecture changes after ConA feeding. (a) Light micrograph of the potato
psyllid alimentary canal showing characteristic structures. FC: filter chamber, M: midgut, MA: midgut
appendages. (b) The nuclear morphology (blue, DAPI staining) in the gut of potato psyllids after
feeding in sucrose diets containing ConA for 72 h. Stages I, II, and III represent the three stages of
apoptotic nuclei changes. Scale bar is 20 µm.

Concomitantly, no signal was detected in the midgut of psyllids from the control treatment by
TUNEL assay. In contrast, several cell nuclei from Lso-free, LsoA- or LsoB-infected psyllid midguts
showed signals of DNA fragmentation following ConA treatment. Importantly, the signal of DNA
fragmentation co-localized with the broken nuclei as observed in the merged views (Figure 3 and
Figure S1).

3.3. Expression of Caspase Genes

In total, three caspase genes (caspase 1–3) were identified in the psyllid transcriptome dataset [31].
The domains of caspases were identified in our previous study [32]. Caspase 1 is a putative effector
caspase with a short pro-domain, while caspase 2 is a putative initiator caspase with a caspase
recruitment domain (CARD). Caspase 3 is another putative effector with its serine- and threonine-(ST-)
rich pro-domain (Figure 4a). Our results showed that the three caspases exhibited upregulation at
the transcriptional level in the gut of Lso-free or Lso-infected psyllid after 72 h of exposure to ConA
(Figure 4b). Caspases 1 and 2 were significantly upregulated in the gut of Lso-free psyllids after
72 h of exposure to ConA. All caspases (1, 2 and 3) were significantly upregulated in the gut of
LsoB-infected psyllids exposed to ConA, while, only caspase 3 was significantly upregulated in the gut
of LsoA-infected psyllids exposed to ConA.
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Figure 3. ConA induced apoptosis in the gut of Lso-free, LsoA-, and LsoB-infected potato psyllid.
The tissues were stained using TUNEL assays to detect the apoptotic signals (green) and counterstained
with DAPI to show the nuclei (blue) of the gut cells. The white arrows indicate the apoptotic nuclei.
Scale bar is 20 µm.
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CARD indicated caspase recruitment domain. CASc domain comprised of a large and a small subunit.
(b) Significant upregulation of caspase 1, caspase 2 and caspase 3 genes in the guts of Lso-free, LsoA-,
and LsoB-infected potato psyllids after 72 h exposure to ConA. * indicates p < 0.05.

4. Discussion

Lectins have received much attention for their remarkable pesticidal activities and their potential for
pest control applications (e.g., insect-resistant transgenic crops) [36–38]. In particular, lectins comprise
the best available toxins and display a wide array of molecular targets for the control of hemipteran
pests [39–41]. In the present study, we found that ConA possesses high toxicity against potato
psyllids and caused significant mortality. Indeed, this is consistent with other artificial diet studies,
which showed that ConA has insecticidal activity, particularly towards hemipteran pests [11,12,42].
Interestingly, ConA caused greater mortality in LsoA-infected psyllids after two days of feeding when
compared to the effects on Lso-free psyllids. It is most likely that ConA toxicity coupled with Lso
infection pose a dual detrimental effect on psyllids because Lso has negative effects on the potato
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psyllid physiology; for example, Lso infection results in decreased psyllid oviposition and nymphal
survival [28,43]. Recently, a study in the interaction of Asian citrus psyllid—‘Ca. L. asiaticus’ (CLas)
determined that the presence of CLas-induced apoptosis in adult psyllid midgut cells [44]. However,
this phenomenon does not appear to occur in the potato psyllid in response to Lso [32]. One hypothesis
to explain the absence of detectable apoptosis in the gut of Lso-infected adults is that the Lso-induced
intracellular immune response did not reach or exceed the threshold to trigger an intracellular apoptotic
immune reaction [45]. However, higher mortality was observed for the LsoA-infected psyllids than the
uninfected psyllids after two days of feeding on the ConA-containing diets. Therefore, it is possible that
intense death-inducing stimuli might have resulted from the combination of Lso infection and ConA
treatment [45], reaching the threshold of cell death and resulting in greater mortality for Lso-infected
psyllids in less amount of time. In addition, although intracellular bacteria are known to manipulate
(usually inhibit) insect host apoptotic responses [27], it appears that the presence of Lso in potato
psyllids is not able to disrupt the ConA-induced apoptosis. Therefore, ConA is a promising tool as a
novel strategy to control Lso-free and Lso-infected psyllids.

A limitation of the current study is that a no-diet control was not included. While in our experience
low mortality is registered when potato psyllids adults are kept for two or three days without any diet,
other studies have shown that hemipteran first instar nymphs die quickly in the absence of diet [46].
Future experiments should include the no-diet control to confirm that ConA has a toxic effect rather
than preventing or reducing feeding, and if psyllid mortality is the result of toxicity or combination
of both toxicity and reduced feeding. Although the insecticidal properties of ConA are well studied,
the mechanisms or molecular bases of this effect remain largely unknown. Lectins are known to cause
a range of effects on mammalian cells including agglutination, induction of mitosis, interference with
general metabolism, impairment of membrane transport systems or increased membrane permeability
to intracellular proteins [47,48]. In insects, both ultrastructural and immunolocalization studies
showed that lectins could bind to glycosylated targets or receptors in the gut epithelium cells [10,49],
and this binding can cause severe cellular swelling of the midgut epithelium cells [10]. In the present
study, we observed ConA-induced morphological changes of the nucleus architecture in the midgut
epithelium cells of potato psyllids. These morphological changes in the epithelium cells are potential
signs of apoptosis. Indeed, the three stages of nuclei disruption from cells undergoing apoptosis
were identified in the psyllid midgut cells following ConA ingestion [35]. In addition, apoptosis is
characterized by producing characteristic DNA fragmentation, which is a hallmark of apoptosis that
distinguishes apoptosis from necrosis [50]. Signals of DNA fragmentation based on TUNEL assay were
only identified in the midgut cells of ConA-treated psyllids. Furthermore, the TUNEL signals were
simultaneously detected with the broken nuclei in the midgut epithelium, which further confirmed that
apoptosis was induced in the psyllid midguts after feeding ConA-containing diets. We hypothesize
that the abnormal nuclear architecture caused by apoptosis may result in the disruption of the gut
epithelium homeostasis with subsequent impairment of the insect physiology. Indeed, it has been
shown that the cytotoxicity of lectins could be mediated via induction of apoptosis [11,12,51] as was
determined in grain aphids fed with ConA, resulting in apoptosis and subsequent death [11].

Apoptosis is known to play a major role in the development and/or stress responses of
organisms [52–54]. In insects, apoptosis is a vital defense mechanism against pathogens [55,56],
and it can affect the efficiency of pathogen transmission [57]. Caspases, a group of cysteine proteases,
are the central components of the apoptotic response that initiate and execute the apoptotic cell
death [58,59]. Although caspases are well characterized in many organisms, little is known about
insect caspases compared to those in mammals, and especially hemipteran caspases. Three caspase
genes were identified from the published potato psyllid transcriptome datasets, which included
one putative initiator caspase (caspase 2) and two putative effectors (caspases 1 and 3). The three
caspases were upregulated at the transcriptional level in the guts of psyllids from the ConA treatment,
which represents further evidence that ConA induces apoptosis in the psyllid midgut cells. Therefore,
the caspase-dependent pathway appears to be one of the responses induced in the potato psyllid
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midgut after feeding on ConA-containing diets. However, differences in the regulation of those
caspases among Lso-free, LsoA-, and LsoB-infected insects were observed. It cannot be excluded that
those differences are the result of differences in the mechanisms or proteins used by different Lso
haplotypes to manipulate the insect vector defenses.

The observation of apoptosis may imply that binding to midgut epithelial cells could be a causative
factor in the toxicity of ConA. In detail, the changes inflicted by ConA-binding to gut surface receptors
could result in changes in metabolism and cell function in the epithelium, which in turn may lead
to high mortality [18]. Therefore, the insecticidal activity of lectins is probably associated with the
sugar-binding capacity of these proteins [12]. However, not all the lectins can bind to the midgut
or even the whole digestive tract, causing morphological changes in the cells as well as increased
secretion and detachment of the apical membrane. For example, no lysis of epithelium cells was seen
in another hemipteran insect, Lygus hesperus, following PHA treatment [60].

5. Conclusions

In summary, we demonstrated that ConA has a significant deleterious effect on potato psyllid
survival. A key mechanism underlying this detrimental effect was associated with apoptosis in midgut
epithelial cells. While not tested, binding of ConA to the midgut epithelium cells could result in
changes in the gut nuclei morphology and function, or even the metabolism as shown in other species.
In the future, efforts should be aimed at identifying the specific targets or receptors in psyllid midgut.
Overall, this study helps us better understand the mode of action of ConA at the cell and tissue levels,
which could work as a prerequisite for its use in transgenic crops.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/4/243/s1,
Figure S1: ConA induced apoptosis in the gut of Lso-free, LsoA-, and LsoB-infected potato psyllid. The tissues
were stained using TUNEL assays to detect the apoptotic signals (green) and counterstained with DAPI to show
the nuclei (blue) of the gut cells. Scale bar is 20 µm, Table S1: Primers for bioinformatics validation and gene
expression analyses by qPCR of caspase genes.
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