Wing Geometric Morphometrics of Workers and Drones and Single Nucleotide Polymorphisms Provide Similar Genetic Structure in the Iberian Honey Bee (Apis mellifera iberiensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Geometric Morphometrics Analysis
2.3. Estimation of Spatial Structure
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Ital. J. Zool. 2004, 71, 5–16. [Google Scholar] [CrossRef][Green Version]
- Oleksa, A.; Tofilski, A. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie 2015, 46, 49–60. [Google Scholar] [CrossRef][Green Version]
- Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Morin, P.A.; Luikart, G.; Wayne, R.K. SNPs in Ecology, Evolution and Conservation. Trends Ecol. Evol. 2004, 19, 208–216. [Google Scholar] [CrossRef]
- Agarwal, M.; Shrivastava, N.; Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008, 27, 617–631. [Google Scholar] [CrossRef]
- Muñoz, I.; Henriques, D.; Jara, L.; Johnston, J.S.; Chávez-Galarza, J.; De la Rúa, P.; Pinto, M.A. SNP s selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol. Ecol. Resour. 2017, 17, 783–795. [Google Scholar] [CrossRef][Green Version]
- Ortego, J.; Aguirre, M.P.; Cordero, P.J. Genetic and morphological divergence at different spatiotemporal scales in the grasshopper Mioscirtus wagneri (Orthoptera: Acrididae). J. Insect Conserv. 2012, 16, 103–110. [Google Scholar] [CrossRef]
- Patterson, J.; Schofield, C. Preliminary study of wing morphometry in relation to tsetse population genetics: Research in action. S. Afr. J. Sci. 2005, 101, 132–134. [Google Scholar]
- Rohlf, F.J.; Marcus, L.F. A revolution morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer; Elsevier Science Publishing Co Inc.: San Diego, CA, USA, 2012. [Google Scholar]
- Tatsuta, H.; Takahashi, K.H.; Sakamaki, Y. Geometric morphometrics in entomology: Basics and applications. Entomol. Sci. 2018, 21, 164–184. [Google Scholar] [CrossRef][Green Version]
- Bernal, V. Size and shape analysis of human molars: Comparing traditional and geometric morphometric techniques. Homo 2007, 58, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Maderbacher, M.; Bauer, C.; Herler, J.; Postl, L.; Makasa, L.; Sturmbauer, C. Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J. Zool. Syst. Evol. Res. 2008, 46, 153–161. [Google Scholar] [CrossRef]
- Viscosi, V.; Lepais, O.; Gerber, S.; Fortini, P. Leaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric methods. Plant Biosyst. 2009, 143, 564–574. [Google Scholar] [CrossRef]
- Parsons, K.J.; Robinson, B.W.; Hrbek, T. Getting into shape: An empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids. Environ. Biol. Fishes 2003, 67, 417–431. [Google Scholar] [CrossRef]
- Tofilski, A. Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 2008, 39, 558–563. [Google Scholar] [CrossRef][Green Version]
- Francoy, T.M.; Wittmann, D.; Steinhage, V.; Drauschke, M.; Müller, S.; Cunha, D.; Nascimento, A.; Figueiredo, V.; Simões, Z.; De Jong, D. Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genet. Mol. Res. 2009, 8, 709–717. [Google Scholar] [CrossRef]
- Francoy, T.M.; Wittmann, D.; Drauschke, M.; Müller, S.; Steinhage, V.; Bezerra-Laure, M.A.; De Jong, D.; Gonçalves, L.S. Identification of Africanized honey bees through wing morphometrics: Two fast and efficient procedures. Apidologie 2008, 39, 488–494. [Google Scholar] [CrossRef][Green Version]
- Barour, C.; Baylac, M. Geometric morphometric discrimination of the three African honeybee subspecies Apis mellifera intermissa, A. m. sahariensis and A. m. capensis (Hymenoptera, Apidae): Fore wing and hind wing landmark configurations. J. Hymenopt. Res. 2016, 52. [Google Scholar] [CrossRef][Green Version]
- Charistos, L.; Hatjina, F.; Bouga, M.; Mladenovic, M.; Maistros, A.D. Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. J. Apic. Sci. 2014, 58, 75–84. [Google Scholar] [CrossRef][Green Version]
- Kandemir, İ.; Özkan, A.; Fuchs, S. Reevaluation of honeybee (Apis mellifera) microtaxonomy: A geometric morphometric approach. Apidologie 2011, 42, 618. [Google Scholar] [CrossRef][Green Version]
- Miguel, I.; Baylac, M.; Iriondo, M.; Manzano, C.; Garnery, L.; Estonba, A. Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie 2011, 42, 150–161. [Google Scholar] [CrossRef][Green Version]
- Ruttner, F. Biogeography and Taxonomy of Honeybees; Springer Verlag: Berlin, Germany, 1988. [Google Scholar]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rúa, P. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef][Green Version]
- Arias, M.C.; Rinderer, T.E.; Sheppard, W.S. Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses. J. Apic. Res. 2006, 45, 188–196. [Google Scholar] [CrossRef]
- Chapman, N.C.; Harpur, B.A.; Lim, J.; Rinderer, T.E.; Allsopp, M.H.; Zayed, A.; Oldroyd, B.P. A SNP test to identify Africanized honeybees via proportion of ‘African’ancestry. Mol. Ecol. Resour. 2015, 15, 1346–1355. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, C.; Liu, Z.; Pan, Q.; Chen, X.; Wang, H.; Guo, H.; Liu, S.; Lu, H.; Tian, S.; Li, R. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Mol. Bio. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Meixner, M.D.; Leta, M.A.; Koeniger, N.; Fuchs, S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera-Apis mellifera simensis n. ssp. Apidologie 2011, 42, 425–437. [Google Scholar] [CrossRef]
- Sheppard, W.S.; Meixner, M.D. Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 2003, 34, 367–375. [Google Scholar] [CrossRef][Green Version]
- Pinto, M.A.; Rubink, W.L.; Patton, J.C.; Coulson, R.N.; Johnston, J.S. Africanization in the United States: Replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 2005, 170, 1653–1665. [Google Scholar] [CrossRef][Green Version]
- Daly, H.V.; Balling, S.S. Identification of Africanized honeybees in the Western Hemisphere by discriminant analysis. J. Kansas Entomol. Soc. 1978, 857–869. [Google Scholar]
- Franck, P.; Garnery, L.; Solignac, M.; Cornuet, J.M. The origin of west European subspecies of honeybees (Apis mellifera): New insights from microsatellite and mitochondrial data. Evolution 1998, 52, 1119–1134. [Google Scholar]
- Wallberg, A.; Han, F.; Wellhagen, G.; Dahle, B.; Kawata, M.; Haddad, N.; Simões, Z.L.P.; Allsopp, M.H.; Kandemir, I.; De la Rúa, P. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat. Genet. 2014, 46, 1081. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Whitfield, C.W.; Behura, S.K.; Berlocher, S.H.; Clark, A.G.; Johnston, J.S.; Sheppard, W.S.; Smith, D.R.; Suarez, A.V.; Weaver, D.; Tsutsui, N.D. Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science 2006, 314, 642–645. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chávez-Galarza, J.; Henriques, D.; Johnston, J.S.; Carneiro, M.; Rufino, J.; Patton, J.C.; Pinto, M.A. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: Maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol. Ecol. 2015, 24, 2973–2992. [Google Scholar] [CrossRef] [PubMed]
- Cornuet, J.; Fresnaye, J. Biometrical study of honey bee populations from Spain and Portugal [Apis mellifica ibera]. Apidologie (France) 1989, 20, 93–101. [Google Scholar] [CrossRef][Green Version]
- Smith, D.; Glenn, T. Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica). J. Hered. 1995, 86, 12–16. [Google Scholar] [CrossRef]
- Garnery, L.; Mosshine, E.; Oldroyd, B.; Cornuet, J. Mitochondrial DNA variation in Moroccan and Spanish honey bee populations. Mol. Ecol. 1995, 4, 465–472. [Google Scholar] [CrossRef]
- Miguel, I.; Iriondo, M.; Garnery, L.; Sheppard, W.S.; Estonba, A. Gene flow within the M evolutionary lineage of Apis mellifera: Role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe. Apidologie 2007, 38, 141–155. [Google Scholar] [CrossRef]
- Cánovas, F.; De la Rúa, P.; Serrano, J.; Galián, J. Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). J. Zool. Syst. Evol. Res. 2008, 46, 24–30. [Google Scholar] [CrossRef]
- Pinto, M.A.; Henriques, D.; Neto, M.; Guedes, H.; Muñoz, I.; Azevedo, J.C.; De la Rúa, P. Maternal diversity patterns of Ibero-Atlantic populations reveal further complexity of Iberian honeybees. Apidologie 2013, 44, 430–439. [Google Scholar] [CrossRef][Green Version]
- Pinto, M.A.; Muñoz, I.; Chávez-Galarza, J.; De la Rúa, P. The Atlantic side of the Iberian Peninsula: A hot-spot of novel African honey bee maternal diversity. Apidologie 2012, 43, 663–673. [Google Scholar] [CrossRef][Green Version]
- Smith, D.; Palopoli, M.; Taylor, B.; Garnery, L.; Cornuet, J.-M.; Solignac, M.; Brown, W. Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica). J. Hered. 1991, 82, 96–100. [Google Scholar] [CrossRef] [PubMed]
- De la Rúa, P.; Galián, J.; Serrano, J.; Moritz, R.F. Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands. Mol. Ecol. 2001, 10, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- De la Rúa, P.; Galián, J.; Serrano, J.; Hernández-García, R.; Jiménez, Y. Biodiversity of Apis mellifera iberica (Hymenoptera: Apidae) from northeastern Spain assessed by mitochondrial analysis. Insect Syst. Evol. 2005, 36, 21–28. [Google Scholar] [CrossRef]
- Garnery, L.; Franck, P.; Baudry, E.; Vautrin, D.; Cornuet, J.-M.; Solignac, M. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) I. Mitochondrial DNA. Genet. Sel. Evol. 1998, 30, S31. [Google Scholar] [CrossRef]
- Henriques, D.; Chávez-Galarza, J.; Quaresma, A.; Neves, C.J.; Lopes, A.R.; Costa, C.; Costa, F.O.; Rufino, J.; Pinto, M.A. From the popular tRNA leu-COX2 intergenic region to the mitogenome: Insights from diverse honey bee populations of Europe and North Africa. Apidologie 2019, 50, 215–229. [Google Scholar] [CrossRef][Green Version]
- Chávez-Galarza, J.; Garnery, L.; Henriques, D.; Neves, C.J.; Loucif-Ayad, W.; Jonhston, J.S.; Pinto, M.A. Mitochondrial DNA variation of Apis mellifera iberiensis: Further insights from a large-scale study using sequence data of the tRNA leu-cox2 intergenic region. Apidologie 2017, 48, 533–544. [Google Scholar] [CrossRef]
- Garnery, L.; Franck, P.; Baudry, E.; Vautrin, D.; Cornuet, J.-M.; Solignac, M. Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica) II. Microsatellite loci. Genet. Sel. Evol. 1998, 30, S49. [Google Scholar] [CrossRef]
- De la Rúa, P.; Galián, J.; Serrano, J.; Moritz, R. Microsatellite analysis of non-migratory colonies of Apis mellifera iberica from south-eastern Spain. J. Zool. Syst. Evol. Res. 2002, 40, 164–168. [Google Scholar] [CrossRef]
- Cánovas, F.; De la Rúa, P.; Serrano, J.; Galián, J. Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie 2011, 42, 235–251. [Google Scholar] [CrossRef][Green Version]
- Chávez-Galarza, J.; Henriques, D.; Johnston, J.S.; Azevedo, J.C.; Patton, J.C.; Muñoz, I.; De la Rúa, P.; Pinto, M.A. Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms. Mol. Ecol. 2013, 22, 5890–5907. [Google Scholar] [CrossRef][Green Version]
- Henriques, D.; Wallberg, A.; Chávez-Galarza, J.; Johnston, J.S.; Webster, M.T.; Pinto, M.A. Whole genome SNP-associated signatures of local adaptation in honeybees of the Iberian Peninsula. Sci. Rep. 2018, 8, 11145. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dworkin, I.; Gibson, G. Epidermal growth factor receptor and transforming growth factor-β signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 2006, 173, 1417–1431. [Google Scholar] [CrossRef][Green Version]
- Dujardin, J.-P. Morphometrics applied to medical entomology. Infect. Genet. Evol. 2008, 8, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R. Sexual dimorphism in the wing morphology of social vespid wasps—A case study on the genus Polistes Latreille using geometric morphometrics: (Hymenoptera: Vespidae). Zool. Middle East 2009, 47, 83–92. [Google Scholar] [CrossRef]
- Pretorius, E. Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera—A case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae). Aust. J. Ent. 2005, 44, 113–121. [Google Scholar] [CrossRef]
- Benítez, H.A.; Bravi, R.; Parra, L.E.; Sanzana, M.-J.; Sepúlveda-Zúñiga, E. Allometric and non-allometric patterns in sexual dimorphism discrimination of wing shape in Ophion intricatus: Might two male morphotypes coexist? J. Insect Sci. 2013, 13, 143. [Google Scholar] [CrossRef][Green Version]
- Stubblefield, J.W.; Seger, J. Sexual Dimorphism in the Hymenoptera; Cambridge University Press: Cambridge, UK, 1994; pp. 71–103. [Google Scholar]
- Casteel, D.B.; Phillips, E.F. Comparative variability of drones and workers of the honey bee. Biol. Bull. 1903, 6, 18–37. [Google Scholar] [CrossRef][Green Version]
- Rohlf, F. tpsUtil version 1.44. Department of Ecology and Evolution, State University of New York at Stony Brook. Available online: https://life.bio.sunysb.edu/morph/ (accessed on 10 November 2016).
- Rohlf, F.J. TPSdig,v.2.17. State University of New York at Stony Brook. Available online: https://life.bio.sunysb.edu/morph/ (accessed on 10 November 2016).
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Bookstein, F. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge Univ. Press: Cambridge, UK, 1991. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 10 September 2019).
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef][Green Version]
- Dray, S.; Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef][Green Version]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Devillard, S.; Dufour, A.-B.; Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 2008, 101, 92. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wells, C.; Munn, A.; Woodworth, C. Geomorphic morphometric differences between populations of Speyeria diana (Lepidoptera: Nymphalidae). Fla. Entomol. 2018, 101, 195–203. [Google Scholar] [CrossRef]
- Carvajal, T.M.; Hernandez, L.F.T.; Ho, H.T.; Cuenca, M.G.; Orantia, B.M.C.; Estrada, C.R.; Viacrusis, K.M.; Amalin, D.M.; Watanabe, K. Spatial analysis of wing geometry in dengue vector mosquito, Aedes aegypti (L.)(Diptera: Culicidae), populations in Metropolitan Manila, Philippines. J. Vector Borne Dis. 2016, 53, 127. [Google Scholar]
- Krtinić, B.; Francuski, L.; Ludoški, J.; Milankov, V. Integrative approach revealed contrasting pattern of spatial structuring within urban and rural biotypes of Culex pipiens. J. Appl. Entomol. 2016, 140, 757–774. [Google Scholar] [CrossRef]
- Francuski, L.; Milankov, V.; Ludoški, J.; Krtinić, B.; Lundström, J.O.; Kemenesi, G.; Ferenc, J. Genetic and phenotypic variation in central and northern European populations of Aedes (Aedimorphus) vexans (Meigen, 1830)(Diptera, Culicidae). J. Vector Ecol. 2016, 41, 160–171. [Google Scholar] [CrossRef][Green Version]
- Cardini, A.; Jansson, A.U.; Elton, S. A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. J. Biogeogr. 2007, 34, 1663–1678. [Google Scholar] [CrossRef]
- Hernández-Romero, P.C.; Guerrero, J.A.; Valdespino, C. Morphological variability of the cranium of Lontra longicaudis (Carnivora: Mustelidae): A morphometric and geographic analysis. Zool. Stud. 2015, 54, 50. [Google Scholar] [CrossRef][Green Version]
- Combey, R.; Teixeira, J.S.G.; Bonatti, V.; Kwapong, P.; Francoy, T.M. Geometric morphometrics reveals morphological differentiation within four African stingless bee species. Ann. Bio. Res. 2013, 4, 93–103. [Google Scholar]
- Francoy, T.M.; Grassi, M.L.; Imperatriz-Fonseca, V.L.; de Jesús May-Itzá, W.; Quezada-Euán, J.J.G. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 2011, 42, 499. [Google Scholar] [CrossRef]
- Chiari, Y.; Hyseni, C.; Fritts, T.H.; Glaberman, S.; Marquez, C.; Gibbs, J.P.; Claude, J.; Caccone, A. Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise. PLoS ONE 2009, 4, e6272. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carreira, G.P.; Shaw, P.W.; Gonçalves, J.M.; McKeown, N.J. Congruent molecular and morphological diversity of Macaronesian limpets: Insights into eco-evolutionary forces and tools for conservation. Front. Mar. Sci. 2017, 4, 75. [Google Scholar] [CrossRef][Green Version]
- Garnier, S.; Magniez-Jannin, F.; Rasplus, J.Y.; Alibert, P. When morphometry meets genetics: Inferring the phylogeography of Carabus solieri using Fourier analyses of pronotum and male genitalia. J. Evol. Biol. 2005, 18, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Patané, J.S.; Suesdek, L. Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus. Infect. Genet. Evol. 2015, 35, 144–152. [Google Scholar] [CrossRef][Green Version]
- De Oliveira, L.R.; Hoffman, J.I.; Hingst-Zaher, E.; Majluf, P.; Muelbert, M.M.; Morgante, J.S.; Amos, W. Morphological and genetic evidence for two evolutionarily significant units (ESUs) in the South American fur seal, Arctocephalus gazella. Conserv. Genet. 2008, 9, 1451–1466. [Google Scholar] [CrossRef]
- Camara, M.; Caro-Riano, H.; Ravel, S.; Dujardin, J.-P.; Hervouet, J.-p.; De Meeüs, T.; Kagbadouno, M.S.; Bouyer, J.; Solano, P. Genetic and morphometric evidence for population isolation of Glossina palpalis gambiensis (Diptera: Glossinidae) on the Loos islands, Guinea. J. Med. Entomol. 2006, 43, 853–860. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriques, D.; Chávez-Galarza, J.; S. G. Teixeira, J.; Ferreira, H.; J. Neves, C.; Francoy, T.M.; Pinto, M.A. Wing Geometric Morphometrics of Workers and Drones and Single Nucleotide Polymorphisms Provide Similar Genetic Structure in the Iberian Honey Bee (Apis mellifera iberiensis). Insects 2020, 11, 89. https://doi.org/10.3390/insects11020089
Henriques D, Chávez-Galarza J, S. G. Teixeira J, Ferreira H, J. Neves C, Francoy TM, Pinto MA. Wing Geometric Morphometrics of Workers and Drones and Single Nucleotide Polymorphisms Provide Similar Genetic Structure in the Iberian Honey Bee (Apis mellifera iberiensis). Insects. 2020; 11(2):89. https://doi.org/10.3390/insects11020089
Chicago/Turabian StyleHenriques, Dora, Julio Chávez-Galarza, Juliana S. G. Teixeira, Helena Ferreira, Cátia J. Neves, Tiago M. Francoy, and M. Alice Pinto. 2020. "Wing Geometric Morphometrics of Workers and Drones and Single Nucleotide Polymorphisms Provide Similar Genetic Structure in the Iberian Honey Bee (Apis mellifera iberiensis)" Insects 11, no. 2: 89. https://doi.org/10.3390/insects11020089