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SNP discovery
A total of 48 individual mosquitoes including 32 A. gambiae and 16 A. coluzzii were selected for SNP discovery and confirmation. Orthologs of human and fruit fly genes with established roles in innate immunity and anti-pathogen signaling were identified in the A. gambiae genome (PEST strain) as previously described (1). All genes were confirmed using Basic Local Alignment Search Tool (BLAST) (2) and conserved domains of each predicted protein sequence were identified using the Conserved Domain Database (CDD) (3). Up to five DNA sequencing primer pairs were designed using Primer3 (http://frodo.wi.mit.edu/primer3/). For optimal sequencing results, we limited GC content of each primer to 45-60% and primer melting temperature to 57-63°C. 
The conserved domains (e.g., catalytic, protein interaction) of a total of 58 immune-related genes (94 PCR amplimers) were sequenced of the immune-related genes listed in (Table S2). A signaling network diagram for the protein products of these genes is provided in Figure 2.
Each 50 µl PCR contained 0.5 µM of forward and reverse primers, 1X PCR buffer (Applied Biosystems, Carlsbad, California), 1.5 mM MgCl2, 200 µM dNTP mix, 1.25 U AmpliTaq DNA polymerase (Applied Biosystems, Carlsbad, CA) and 2 µl of DNA template. The thermocycler was programmed to denature for 5 min at 95˚C followed by 35 cycles of 95˚C for 30 sec, 48-54˚C for 30 sec, 72˚C for 30 sec and then a final extension for 5 min at 72˚C. For each amplimer, the reaction was adjusted as necessary by either modifying the PCR mix and/or thermal cycling annealing conditions for optimal amplification. Amplicons were sequenced at the UCDNA Sequencing Facility (College of Biological Sciences, UC Davis) using an ABI 3730 Genetic Analyzer (Applied Biosystems, Carlsbad, California). ChromasLite ver. 2.01 was used to view chromatograms and convert chromatograms to text sequences. Geneious software was used for sequence alignment. 
Table SI-1. The immune genes investigated using population-scale genotyping. NS stands for the number of non-synonymous SNPs genotyped for each corresponding gene. S stands for the number of synonymous genotyped. The number of SNPs that showed divergence among chromosomal forms is noted in parentheses. Genes with at least one SNP with significant divergence among chromosomal forms are noted as “Y”.
	idx
	chr
	gname
	Ref.
	AGAP0
	domain 
	Form divergence
	NS
	S

	1
	X
	PKD
	(4)
	00040
	MFS
	　
	1
	5

	2
	X
	MAP2K3
	(1)
	00310
	PKc_like, S_TKc
	　
	0
	2

	3
	X
	TRAF6
	(5)
	00388
	MATH_TRAF_C
	Y
	2 (1)
	4

	4
	X
	PKCη
	(4)
	00418
	PKc_like, S_TKc
	　
	0
	5

	5
	X
	MAP3K5
	(1)
	00747
	DUF4071
	Y
	0
	3 (1)

	6
	X
	Toll5A
	(6)
	00999
	TIR
	Y
	2 (1)
	1

	7
	2R
	MAP2K7
	(1)
	01867
	PKc_MKK7, S_TKc
	Y
	1
	4 (3)

	8
	2R
	DUSP12
	(7, 8)
	02108
	DSPc
	Y
	1
	6 (2)

	9
	2R
	AKT
	(9-15)
	02161
	PH-like super family
	Y
	0
	3 (1)

	10
	2R
	MAP3K4
	(1)
	02371
	STKc_MEKK4
	Y
	0
	4 (1)

	11
	2R
	MOK-RAGE
	(16)
	02515
	STKc_MOK
	Y
	2
	7 (3)

	12
	2R
	MAP3K10
	(1)
	02710
	SH3_MKL, STYKc, PTKc
	Y
	0
	4 (1)

	13
	2R
	PKCε
	(4)
	02748
	STKc_nPKC_epsilon
	Y
	1
	2 (1)

	14
	2R
	SMAD4
	(17-24)
	02902
	MH1, MH2
	Y
	1
	4 (2)

	15
	2R
	TAB1
	(17-24)
	02953
	PP2Cc
	Y
	1
	7 (6)

	16
	2R
	IRAK1
	(5)
	02966
	Death_Pelle
	Y
	2 (1)
	1 (1)

	17
	2R
	IRAK4
	(5)
	03062
	Death_Tube, DD_superfamily, PKc
	Y
	5 (4)
	9 (3)

	18
	2R
	PARP1
	(5)
	03230
	parp_like
	Y
	1 (1)
	8 (6)

	19
	2R
	MAP2K4
	(1)
	03365
	PKc_like super family, PKc_MKK4
	Y
	0
	2 (2)

	20
	2R
	DUSP10
	(7, 8)
	04353
	DSPc
	Y
	1
	5 (2)

	21
	2L
	Raf
	(25)
	04699
	PKc
	Y
	1
	5 (5)

	22
	2L
	SOCS44A
	(25)
	04844
	SH2_SOCS_family
	Y
	5 (5)
	2 (2)

	23
	2L
	IMD
	(6)
	04959
	Death
	Y
	2
	4 (2)

	24
	2L
	MYD88
	(5)
	05252
	TIR
	Y
	1
	3 (2)

	25
	2L
	RAC1
	(4)
	05445
	RAC1_like
	Y
	0
	5 (1)

	26
	2L
	BMPR2
	(17-24)
	05567
	PKc, Pkinase
	Y
	0
	3 (2)

	27
	2L
	IKKγ
	(5)
	05898
	STKc_NLK
	　
	1
	5

	28
	2L
	MAP4K4
	(1)
	06340
	STKc_myosinIII_like, CNH
	Y
	1
	7 (1)

	29
	2L
	MAP3K12
	(1)
	06461
	PTKc, TyrKc
	　
	1
	2

	30
	2L
	FAF1
	(5)
	06473
	UAS_FAF1
	　
	0
	4

	31
	2L
	REL2
	(5)
	06747
	RHD-n_Relish
	Y
	2 (1)
	1

	32
	2L
	MOS
	(26)
	07598
	PKc
	Y
	3 (1)
	1

	33
	3R
	IκBα
	(5)
	07938
	ANK
	Y
	5 (1)
	0

	34
	3R
	TGFBR1
	(17-24)
	08247
	PKc, PTKc_VEGFR, Pkinase
	　
	1
	2

	35
	3R
	MAPKAP1
	(27)
	08831
	SIN1
	Y
	4
	12 (1)

	36
	3R
	IKKβ
	(5)
	09166
	S_TKc
	Y
	1
	2 (1)

	37
	3R
	MAPK1
	(1)
	09207
	STKc_ERK1_2_like
	Y
	0
	1 (1)

	38
	3R
	MAPK10
	(1)
	09460
	STKc_JNK, PKc_like super family
	　
	3
	2

	39
	3R
	MAPK8
	(1)
	09461
	STKc_JNK
	Y
	2
	5 (1)

	40
	3R
	REL1
	(5)
	09515
	IPT_NFkappaB
	Y
	1
	5 (3)

	41
	3R
	PTEN
	(9-15)
	09628
	CDC14
	Y
	1
	2 (1)

	42
	3R
	DUSP19
	(7, 8)
	09903
	DSPc
	Y
	3 (1)
	2

	43
	3L
	ILP2 
	(9-15)
	10600
	Insulin/IGF/Relaxin family, IIGF_like super family
	Y
	1
	3 (1)

	44
	3L
	ILP4 
	(9-15)
	10601
	IIGF_insulin_bombyxin_like
	Y
	3
	3 (1)

	45
	3L
	ILP3 
	(9-15)
	10604
	IIGF_insulin_bombyxin_like
	　
	0
	3

	46
	3L
	Toll5B
	(6)
	10669
	PLN00113, LRR_RI
	Y
	18 (1)
	4 (1)

	47
	3L
	MAP4K1
	(1)
	10837
	STKc_MAP4K3_like
	Y
	1 (1)
	5 (2)

	48
	3L
	SOCS36E
	(25)
	11042
	SH2_SOCS_family
	Y
	0
	6 (2)

	49
	3L
	RAS
	(25)
	11133
	PTZ00314,TIM_phosphphate_binding
	　
	0
	2

	50
	3L
	PLCγ
	(4)
	11152
	PH_PLC
	Y
	1
	4 (1)

	51
	3L
	Toll11
	(6)
	11186
	LRR_8, LRR_RI, TIR
	Y
	2 (1)
	9 (2)

	52
	3L
	Toll10
	(6)
	11187
	LRR, LRR_8, LRR_RI
	　
	0
	5

	53
	3L
	MAPKAPK3
	(28, 29)
	11890
	STKc_AGC, PKc_like super family
	Y
	2
	4 (1)

	54
	3L
	PKCζ
	(4)
	11993
	PB1_aPKC
	　
	0
	2

	55
	3L
	MAPK11
	(1)
	12148
	PKc_like
	　
	0
	1

	56
	3L
	DUSP7
	(7, 8)
	12237
	DSP_MapKP, DSPc
	　
	0
	4

	57
	3L
	Toll7
	(6)
	12326
	LRR_RI, PLN00113, LRRCT
	　
	1
	10

	58
	3L
	Toll6
	(6)
	12387
	PLN00113, LRR_RI, TIR
	Y
	1 (1)
	14



Whole genome sequencing and data analysis
We performed whole-genome sequencing on 12 Bamako, 12 Mopti and 11 Savanna form mosquitoes collected from Kela, Mali. We followed the protocol described in Norris et al. (30) for genomic DNA library construction. Genomic DNA libraries were sequenced by the QB3 Vincent J Coates Genomics Sequencing Laboratory at UC Berkeley on the Illumina HiSeq2500 platform with paired-end 100 bp reads. 
	Adaptor sequences and poor quality sequence was trimmed from the Illumina fastq files using the Trimmomatic software (31), using default options. Reads were aligned to the A. gambiae reference genome (AgamP3 (32)) with the BWA-MEM aligner (33). Freebayes v9.9.2-46 (34) was used for SNP identification employing standard filters. Non-synonymous and synonymous SNPs were identified with SnpEff 3.4i (35) using the Agam3 (32) reference. Codon-usage-ratio changes of variants were calculated with the SnpEff annotations and data from the Codon Usage Database (http://www.kazusa.or.jp/codon/). Filtering was performed using SnpSift 4.0e (35).
FST values were calculated using the Weir and Cockerham estimator implemented in VCFtools 0.1.12b (36). A list of 231 known immune genes (Table S2) was compiled from the published literature of A. gambiae (1, 37-40). We excluded genes with unknown chromosome location (UNKN scaffold), mitochondrial genes and genes located in the centromeric “speciation islands” (Figure 1). To be specific, we excluded the 5Mb region adjacent to the X centromere and 2Mb regions from both 2L and 3L where previous studies reported elevated divergence between populations of A. gambiae (41, 42). Bootstrap p-values (43, 44) were generated by comparing the FST value of the set of immune genes to values computed for a random sample of 231 genes (out of 12,519 total genes, Table S2) repeated 1,000 times. The weighted FST values were computed using all the potentially functional (non-synonymous or at least 2-fold change in codon usage ratio) SNPs in this set of genes as opposed to averaging per-SNP or per-gene FST values.
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