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Simple Summary: The diamondback moth, Plutella xylostella, is a destructive pest of cruciferous
crops worldwide. Integrated pest management (IPM) strategies, largely involve the use chemical
pesticides which are harmful for the environment and human health. In this study, the virulence
of three species of entomopathogenic fungi were tested. Metarhizium anisopliae proved to be
the most effective by killing more than 90% of the population. Based on which the fungus
was selected to study the host-pathogen immune interactions. More precisely, after infection,
superoxide dismutase (SOD) and phenoloxidase (PO), two major enzymes involved in immune
response, were studied at different time points. The fungus gradually weakened the enzyme activities
as the time progressed, indicating that physiological attributes of host were adversely affected.
The expression of immune-related genes (Defensin, Spaetzle, Cecropin, Lysozyme, and Hemolin)
varied on different time points. Moreover, the fungus negatively impacted the development of the
host by reducing the life span and egg laying ability. Thus, M. anisopliae can become a potent prospect
for the control of this pest. This information will also reinforce the development of policies for
biocontrol-based pest management.

Abstract: Entomopathogenic fungi are naturally existing microbes, that can serve as a key regulator of insect
pests in integrated pest management strategies. Besides having no hazardous effects on the environment,
these entomopathogens are alternatives to synthetic insecticides that can control notorious insect-like
Plutella xylostella, a destructive pest of cruciferous crops. Three different species of entomopathogenic
fungi were evaluated before the selection (high larval mortality and least LC50) of Metarhizum anisopliae.
The study was designed to investigate the mortality, development, and immune responses of P. xylostella
when challenged with M. anisopliae, a naturally existing soil-borne entomopathogenic fungus. M. anisopliae
resulted in high pest mortality by killing 93% of larvae. However, no statistically significant effect on
hemocyte concentration was observed. The activity of enzymes (Phenoloxidase and Superoxide dismutase)
and immune genes (Defensin, Spaetzle, Cecropin, Lysozyme, and Hemolin) did vary at different time
points (24, 48, 72 and 96 h) after exposure to M. anisopliae. Disturbance in the biological cycles of
P. xylostella was also detected, significantly shorter adult life span (8.11:6.87, M:F) and reduced fecundity
(101 eggs/female) were observed along with disturbed larval and pupal duration. Results suggest that
M. anisopliae can efficiently hinder the P. xylostella defense and developmental system, resulting in mortality
and disturbed demography.

Keywords: entomopathogenic fungi; genes; mortality; pathogenicity; demography

Insects 2020, 11, 0694; doi:10.3390/insects11100694 www.mdpi.com/journal/insects

http://www.mdpi.com/journal/insects
http://www.mdpi.com
https://orcid.org/0000-0002-0664-7943
http://www.mdpi.com/2075-4450/11/10/0694?type=check_update&version=1
http://dx.doi.org/10.3390/insects11100694
http://www.mdpi.com/journal/insects


Insects 2020, 11, 0694 2 of 15

1. Introduction

Entomopathogenic fungi are naturally existing microbial control agents that effectively regulate
the insect pest populations [1,2]. Several entomopathogenic fungi have been used to control insect
pests from different orders such as Diptera [3,4], Hemiptera [5], Coleoptera [6], Homoptera [7],
and Lepidoptera [8]. The excessive and injudicious use of synthetic insecticides has resulted in pest
resurgence, environment degradation, resistance development while also causing harmful effects to
human health [9–11]. Such detrimental effects of chemical insecticides stressed the need to develop
alternative control strategies. Furthermore, the resistance to insecticide curbed the control strategies,
whereas insect pests are unable to develop resistance against entomopathogenic fungi making them an
effective weapon against resilient pests [12–16].

Plutella xylostella, one of the most destructive lepidopteran pests of cruciferous crops, has caused
severe economic damages (quantitative and qualitative), with an annual cost estimated to be USD
4–5 billion [17–20]. Over the years the pest has developed resistance against many control agents
including dichloro-diphenyl-trichloroethane (DTT) and Bacillus thuringiensis (Bt) [21–23] making it
difficult to control while also emphasizing the need to develop alternative control strategies. Among all
the current strategies, biological control represents an eco-friendly approach with no hazardous effects
on human health. Entomopathogenic fungi are biological control agents which are cosmopolitan
in nature [1,24–28]. Metarhizium anisopliae, a soil-borne entomopathogenic fungus, represents an
ecologically safe alternative to chemical pesticides [29]. The entomopathogen has proven to be effective
against lepidopteran pests such as Helicoverpa armigera [30] and Spodoptera exigua [31]. M. anisopliae
produces secondary toxins such as Destruxin A and E to repress the host immune responses while
also deploying evasion protein such as Mcl1 protein (Metarhizium collagen-like protein) to avoid
detection [32,33]. In response to the invasion of microbes, an array of recognition molecules detects
the pathogen, resulting in the initiation of Toll and immune deficiency (Imd) pathways, that regulate
anti-fungal and antibacterial defenses respectively [34,35]. Spaetzle, a gene encoding toll activating
protease, initiates the immune pathway. Defensins are antimicrobial peptides responding to pathogenic
challenges or injury. Similarly, cecropins constitute a major part of the insect innate immune system.
Antioxidant enzymes such as superoxide dismutase (SOD), a key factor in host defense system,
function in melanization and phagocytosis [36,37]. Likewise, Phenoloxidase (PO) is a key enzyme in
the melanization cascade that also participates in cuticle sclerotization and wound healing [38,39].
In this study, we investigated the efficacy of M. anisopliae against P. xylostella. The present study aims
to explore the interaction of entomopathogenic fungi with its insect host and elaborate the immune
and developmental changes after the infection.

2. Materials and Methods

2.1. Insect and Fungi Culture

The population of P. xylostella was taken from the Institute of Plant Protection, Guangdong Academy
of Agricultural Sciences, China by the Engineering Research Centre of Biological Control Ministry
of Education, South China Agricultural University, Guangzhou, Guangdong Province, P. R. China.
The colony was maintained in a pathogen-free environment. Larvae were kept at 25 ± 1 ◦C with a
light: dark cycle of 16:8 h and 60–70% relative humidity [34]. Three different entomopathogenic fungi
were obtained from the Laboratory of Insect Microbiology and Biotechnology, Bahauddin Zakariya
University, Multan, Pakistan (Table 1), and screened against P. xylostella. To prevent aging, isolates were
passage through the host [40]. Monoconidial culture (14 days) grown on potato dextrose agar (PDA) was
harvested with a disinfected spatula in 0.05% Tween-80 (Sigma-P1754) solution [10,41]. The calculation
of spores was done by using a hemocytometer [42,43]. Stock solutions were kept at 4 ◦C and used in
serial dilution for making the desired concentration of entomopathogenic fungi.
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Table 1. Isolates of entomopathogenic fungi from Pakistan.

Fungi Source Location (Pakistan) Coordinates

Metarhizium anisopliae Soil Multan, Punjab 30◦05′11.65” N 71◦39′15.65” E
Beauveria bassiana Soil Multan, Punjab 30◦05′11.65” N 71◦39′15.65” E
Isaria fumosorosea Soil Multan, Punjab, 30◦05′11.65” N 71◦39′15.65” E

2.2. Screening of Entomopathogenic Fungi

Three different entomopathogenic fungi were screened out against P. xylostella. Five concentrations
(4× 108, 4× 107, 4× 106, 4× 105, 4× 104 spores/mL) were prepared (hit and trial method) while aqueous
0.05% Tween-80 (Sigma-P1754) was taken as control [41]. The application of entomopathogenic fungi
was done by dipping the larvae in desired concentrations. After dipping, larvae were placed on filter
paper for drying and then placed in disinfected plastic dishes (5 cm diameter) [34]. Fifteen larvae
(3rd instar neonates) were exposed to each concentration. The experiment was repeated four times.
A sufficient amount of diet was provided throughout the experimentation. Larval mortality was
recorded every 24 h for seven days. Larvae without movements were considered dead.

2.3. Isolate Selection

Lethal and sublethal doses were calculated from the pre experimentation data. Isolate having the
least LC50 with maximum mortality was selected for the downstream application.

2.4. Experimental Validation of Lethal (LC50) and Sublethal (LC20) Concentrations

Calculated lethal and sub-lethal concentrations were validated. Experimentation was carried out
by following similar methodology described above. Each treatment included 15 larvae (3rd instar
neonates) of P. xylostella. The experiment was replicated four times.

2.5. Entomopathogenic Fungi Effect on Hemocyte Concentration of P. xylostella

The hemocyte concentration in P. xylostella larvae was calculated on lethal (LC50) concentration of
M. anisopliae at different time points (24, 48, 72, and 96 h). Larvae were surface sterilized with ethanol
(70%) and rinsed with double distilled water. Hemolymph was collected by dissection through proleg
(30 larvae) using a sterilized blade and collected via glass capillary. Hemolymph was mixed with an
equal amount of anticoagulant (98 mM NaOH, 186 mM NaCl, 17 mM Na2 EDTA, and 41 mM citric
acid, pH 4.5). Hemocyte concentrations were quantified using a hemocytometer with 10 µL under a
microscope [44]. The experiment was replicated four times.

2.6. PO and SOD Activity in P. xylostella Larvae

Hemolymph was collected from 30 treated larvae. The collection was done after 24, 48, 72, and 96 h
post-infection. Collected hemolymph was diluted ten times and studied under a microplate reader
(BIO-RAD). PO activity was checked using L-dihydroxyphenylalanine (L-DOPA) as the substrate on
the initial linear increase in absorbance at 490 nm [23]. SOD activities were observed using respective
kits following the manufacturer’s instructions (Suzhou Comin Biotech Co., Ltd., Suzhou, China).
SOD activity was checked at a wavelength of 560 nm via a light reduction of nitro blue tetrazolium
(NBT). NBT reduction (50%) is the quantity of enzyme for each unit of SOD. Units/mg protein was
used for both enzyme activities.

2.7. Effect of M. anisopliae on the Expression of Immune-Related Genes in P. xylostella

After infection of M. anisopliae, quantitative real-time PCR (qRT-PCR) was used to investigate
the expression of immune-related genes (Cecropin, Defensin, Attacin, and Spaetzle). Total RNA was
extracted from hemolymph and reverse-transcribed in a 25-uL reaction according to the manufacturer
guideline (TaKaRa, Beijing, China). After reverse transcription, qRT-PCR was done by using (Bio-Rad
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iQ2 optical system (BioRad) with SsoFast Eva Green Supermix (Bio-Rad, Hercules, CA, USA).
The working program was set as 95 ◦C for 2 min, and 40 cycles of 95 ◦C for 5 s, and 60 ◦C for
10 s, melting curve from 65 to 95 ◦C [45]. The expression of β-actin was selected to normalize
the expression of the immune-related genes according to the 2−∆∆Ct method by Pfaffl, 2001 [46].
Three replicates were used in all experiments. Gene-specific primers were designed using Primer
Premier 5. The gene sequences were subjected to Primer BLAST (www.ncbi.com) to check them for
specificity The primers used are given in Table S1 [47].

2.8. Effects of Lethal Concentration of M. anisopliae on Biological Parameters of P. xylostella

The effects of lethal concentration of M. anisopliae was evaluated against P. xylostella.
Each replication consists of 30 larvae of 3rd instar. For the treatment of fungi, the dip method
was used. Petri dishes (diameter 5 cm) cleaned (70% ethanol) and air-dried for treating the larvae.
Newly emerged cabbage leaves which were gently washed with double distilled water and air-dried
served as larval diet. On emergence, the adults were paired (1 pair/cage) in plastic cages (cleaned
with 70% ethanol and air-dried) for egg-laying. Sugar solution (10%) was provided as an adult diet.
Whatman filter tape was used as an egg-laying pad. Eggs were counted under a microscope and were
placed in plastic boxes (15 cm × 10 cm × 5 cm) for hatching. Data were collected every 12 h until the
end of the experiment. Immobile larvae were considered dead and placed in a humid chamber for
conidial growth observation [48].

2.9. Statistical Analysis

Mortality data were analyzed by using Probit analysis [49]. Abbott formula was used for the
correction of mortality [50,51]. Lethal and sublethal concentrations for all entomopathogenic fungi were
calculated by using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) and Polo Pc (Petaluma, CA, Canada) [52].
One-way ANOVA was used for mortality data, means were separated by Tukey’s HSD test with a
5% level of significance (p < 0.05) [53]. Demographic data were analyzed by using Statistics 8.01 [53].

The hemocytes concentration and enzymatic activities (SOD and PO) after the treatment of
M. anisopliae were analyzed by t-test. The relative expression of the selected immune genes was also
analyzed via a t-test with a significance level set as p < 0.05.

3. Results

3.1. Screening of Entomopathogenic Fungi

The results were highly concentration-dependent (Figure 1). M. anisopliae showed the highest
mortality (93.13%) at 4 × 108 (spores/mL) followed by B. bassiana (81.51%) while the least mortality
(77.52%) was observed in I. fumosorosea (F = 89, DF = 4, p = 0.001). Mortality in control and tween
control was insignificant. For confirmation of fungal pathogenicity, the carcasses were placed in a
humid chamber for the growth of conidia (Figure 2).

www.ncbi.com
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Figure 1. Larvicidal activity of entomopathogenic fungi. Mortality was recorded until seven days after 
every 24 h. Green, red, and blue bars represent the larval mortality of Plutella xylostella, after exposure 
to different concentrations of Metarhizium anisopliae (Met), Beauveria bassiana (Bb), and Isaria 
fumosorosea (If) respectively. While T. Control is tween control (0.05% aqueous diluted) and in Control, 
distilled water was used. Error bars show 95% confidence intervals (CI). Letters indicate significant 
differences at p < 0.05. 

3.2. Selection of Entomopathogenic Fungi 

Based on pre experimentation data lethal (LC50) and sublethal (LC20) doses were calculated with 
(95% CL). M. anisopliae was selected on the basis of designed criteria (Table 2) as it showed the highest 
percent mortality and least LC50. 
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Figure 1. Larvicidal activity of entomopathogenic fungi. Mortality was recorded until seven days after
every 24 h. Green, red, and blue bars represent the larval mortality of Plutella xylostella, after exposure to
different concentrations of Metarhizium anisopliae (Met), Beauveria bassiana (Bb), and Isaria fumosorosea (If)
respectively. While T. Control is tween control (0.05% aqueous diluted) and in Control, distilled water was
used. Error bars show 95% confidence intervals (CI). Letters indicate significant differences at p < 0.05.
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Figure 2. Conidial growth of Metarhizium anisopliae on larvae of Plutella xylostella. Larvae were placed in a 
humid chamber for confirmation of death due to fungi. (A) Conidial growth over the full body of the 
dead larvae. (B) Zoomed in the image of the conidia growing on the head of the dead larvae. (C) 
Conidial growth around the head and thorax of larvae. (D) Zoomed in the image of conidial growth 
adjacent to the head. 

Table 2. Lethal and sublethal concentrations of fungi against Plutella xylostella. 
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Isaria fumosorosea 7.9 × 106 4.6 × 104 0.42 ± 0.046 1.8 0.002 4 

3.3. Experimental Validation of Lethal (LC50) and Sublethal (LC20) Concentrations of M. anisopliae 

Lethal and sublethal concentrations of M. anisopliae were validated, showing 51.74% and 32.11% 
larval mortality respectively (Supplementary Figure S1). 

3.4. Effects of M. anisopliae on Hemocyte Concentration of P. xylostella 

After infecting the larvae with lethal (LC50) concentration of M. anisopliae, results for hemocyte 
count are shown (Figure 3). Non-significant (0.071) results were observed regarding the hemocytes 
count on all time points. 

3.5. Effects of M. anisopliae (LC50) on the Activity of PO and SOD in Larvae of P. xylostella 

Figure 2. Conidial growth of Metarhizium anisopliae on larvae of Plutella xylostella. Larvae were placed
in a humid chamber for confirmation of death due to fungi. (A) Conidial growth over the full body
of the dead larvae. (B) Zoomed in the image of the conidia growing on the head of the dead larvae.
(C) Conidial growth around the head and thorax of larvae. (D) Zoomed in the image of conidial growth
adjacent to the head.
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3.2. Selection of Entomopathogenic Fungi

Based on pre experimentation data lethal (LC50) and sublethal (LC20) doses were calculated with
(95% CL). M. anisopliae was selected on the basis of designed criteria (Table 2) as it showed the highest
percent mortality and least LC50.

Table 2. Lethal and sublethal concentrations of fungi against Plutella xylostella.

Fungi LC50 LC20 Slop ± SE χ2 p-Value df

Metarhizium anisopliae 6.2 × 104 2.3 × 102 0.29 ± 0.044 2.1 0.001 4
Beauveria bassiana 9.3 × 105 3.1 × 103 0.38 ± 0.044 1.1 0.003 4
Isaria fumosorosea 7.9 × 106 4.6 × 104 0.42 ± 0.046 1.8 0.002 4

3.3. Experimental Validation of Lethal (LC50) and Sublethal (LC20) Concentrations of M. anisopliae

Lethal and sublethal concentrations of M. anisopliae were validated, showing 51.74% and
32.11% larval mortality respectively (Supplementary Figure S1).

3.4. Effects of M. anisopliae on Hemocyte Concentration of P. xylostella

After infecting the larvae with lethal (LC50) concentration of M. anisopliae, results for hemocyte
count are shown (Figure 3). Non-significant (0.071) results were observed regarding the hemocytes
count on all time points.
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Figure 3. Hemocytes count in Plutella xylostella larvae after treatment with lethal (LC50) concentration
of Metarhizium anisopliae. Green bars represent the hemocytes count of larvae under the pressure of
LC50 while red bars show tween control (0.05% aqueous diluted) hemocytes count. Results were
statistically non-significant p < 0. 071. Error bars show 95% confidence intervals (CI).

3.5. Effects of M. anisopliae (LC50) on the Activity of PO and SOD in Larvae of P. xylostella

The activities of immune enzymes PO and SOD against LC50 of M. anisopliae are shown in
Figure 4. PO activity peaked at 24 h, equaling control at 48 h while decreasing later on 48 and 72 h.
SOD activity amplified around 72 h post-treatment. Figure 4A–D shows the activity of enzymes at 24,
48, 72, and 96 h respectively.
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Figure 4. Activity of phenoloxidase (PO) and superoxide dismutase (SOD) activity in Plutella xylostella
against LC50 of Metarhizium anisopliae. Time-dependent activity is shown in the figure, the green
color bar shows the activity of enzymes whereas the red bar represents the control. (A–D) shows the
activities of enzymes after 24, 48, 72, and 96 h respectively. Error bars show 95% confidence intervals
(CI). Letters indicate significant differences at p < 0.005. (ns = non-significant).

3.6. Effect of Lethal Concentration of M. anisopliae on Immune Genes of P. xylostella

The expression of all immune genes was predominantly time-dependent (Figure 5), with a
significance level of 0.001. Defensin showed a substantial increase in expression after 24 h of
treatment compared to control followed by a decrease at 72 h ultimately approaching non-significant
expression at 96 h. Spaetzle showed the highest expression at 24 h post-treatment among all the genes,
gradually decreasing after 48 h and keep on decreasing until 96 h. Cecropin expression level increased
significantly until 72 h while decreasing later at 96 h. Hemolin and lysozyme, both genes showed
similar trends at 24 and 48, but both showed non-significant activity after 72- and 96-h post-treatment.
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was observed compared to control (2.4 days) (p > 0.05). A similar trend was followed by 4th instar. A 
considerable decrease in percent pupation was also reported in the infected population with only 
64.21% larvae arriving at the pupal stage compared to 93.51% in control. Prolonged pupal duration 
(5.22 days) was followed by reduced adult emergence (61.47%) with a ratio of 1:2 sex ratio (M: F). The 
pre-oviposition period (APOP) in adult females increased to 1.92 days compared to 1.01 days in 
control. Fecundity was also significantly affected in treated females where the mean number of eggs 
laid was reduced to 101.55 eggs/female in comparison to 192.55 eggs/female control. A noteworthy 
effect was also seen on egg hatching (first filial generation). The daily egg production rate is shown 
in Figure 6, where the number of eggs in control is significantly higher than the treated group. 

Table 3. Biological parameters of Plutella xylostella after treatment of Metarhizium anisopliae. 

Parameters 
M. anisopliae (LC50) Control 

Means ± SE Means ± SE 
Mortality (%) 51.34 ± 1.25 a 5.4 ± 0.10 b 

L3 (days) 1.10 ± 0.21 b 2.14 ± 0.17 a 
L4 (days) 1.72 ± 0.11 b 2.59 ± 0.12 a 
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Figure 5. Immune genes expression in Plutella xylostella against LC50 of Metarhizium anisopliae.
Time-dependent activity is shown in the figure, the green color bar shows the activity of gene at LC50

of M. anisopliae while the red bar shows the control. (A–D) shows the activities of enzymes after 24,
48, 72, and 96 h respectively. Error bars show 95% confidence intervals (CI). Letters indicate significant
differences at p < 0.001. (ns = non-significant).

3.7. The Lethal Concentration of M. anisopliae Affects the Biological Parameters of P. xylostella

M. anisopliae (LC50) disturbs the biological parameters of P. xylostella (Table 3). After the application
of lethal concentration on 3rd instar, a significant reduction in larval duration (1.10 days) was observed
compared to control (2.4 days) (p > 0.05). A similar trend was followed by 4th instar. A considerable
decrease in percent pupation was also reported in the infected population with only 64.21% larvae
arriving at the pupal stage compared to 93.51% in control. Prolonged pupal duration (5.22 days) was
followed by reduced adult emergence (61.47%) with a ratio of 1:2 sex ratio (M: F). The pre-oviposition
period (APOP) in adult females increased to 1.92 days compared to 1.01 days in control. Fecundity was
also significantly affected in treated females where the mean number of eggs laid was reduced to
101.55 eggs/female in comparison to 192.55 eggs/female control. A noteworthy effect was also seen on
egg hatching (first filial generation). The daily egg production rate is shown in Figure 6, where the
number of eggs in control is significantly higher than the treated group.
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Table 3. Biological parameters of Plutella xylostella after treatment of Metarhizium anisopliae.

Parameters
M. anisopliae (LC50) Control

Means ± SE Means ± SE

Mortality (%) 51.34 ± 1.25 a 5.4 ± 0.10 b

L3 (days) 1.10 ± 0.21 b 2.14 ± 0.17 a

L4 (days) 1.72 ± 0.11 b 2.59 ± 0.12 a

Percent pupation 64.21 ± 2.46 b 93.51 ± 3.11 a

Pupal duration (days) 5.22 ± 0.71 a 3.80 ± 0.27 b

Adult emergence (%) 61.47 ± 3.41 b 92.11 ± 3.57 a

Female longevity (days) 6.87 ± 0.98 b 10.11 ± 1.98 a

Male longevity (days) 8.11 ± 1.27 b 12.38 ± 2.8 a

Sex ratio (M:F) 1:2 ns 1:2 ns

APOP 1.92 ± 0.04 ns 1.01 ± 0.07 ns

Fecundity (eggs/female) 101.55 ± 2.54 b 192.55 ± 3.21 a

Egg hatching (%) 60.2 ± 3.44 b 94.22 ± 2.98 a

L3 = 3rd instar larval duration; L4 = 4th instar larval duration; APOP = adult pre-oviposition period of female adult;
means in the same row followed by the same letter are not significantly different (p > 0.05).
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4. Discussion

P. xylostella is a notorious pest of cruciferous crops [20]. IPM strategies employed to control
this pest has been focused primarily on the use of chemical insecticides [8]. Compared to synthetic
insecticides, pathogenic fungi are promising biocontrol agents for various insect pests and exhibit
efficient capabilities for insecticide-resistant pests with fewer environmental hazards [2,16]. The study
presented here evaluated three different types of entomopathogenic fungi for larval mortality in
P. xylostella. Our results found that M. anisopliae could efficiently infect P. xylostella, and cause significant
mortality compared to the rest, suggesting the potential of this entomopathogenic fungus for the
pest control [3]. The difference in pathogenicity could be due to the fact that some fungal species
germinate and penetrate more rapidly compared to others. Besides, an increase in the production
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of secondary metabolites to resist antifungal compounds is also the primary adaptive behavior of a
potent entomopathogenic fungus [54–56]. Conversely, insect cuticle, a hydrophobic surface, acts as the
first line of defense against invading fungi [33,57]. Entomopathogenic fungi encounter this barrier by
producing hydrophobin proteins that synergies with enzymes, leading to infection and causing the
death of the insect [33,57]. The mortality caused by M. anisopliae was highly concentration-dependent
as previously described in other insect pests [10,43,58]. Insects possess an innate immune system,
a dynamic and instantaneous mechanism against pathogenic infections [59]. The suppression of
immune responses is one of the major mechanisms which govern the outcome of an interaction between
pathogen and host [60,61].

Hemocytes, upon invasion, play a vital role to defuse the pathogen activities by employing
different biological processes such as phagocytosis and encapsulation [62,63]. Arthropods can produce
various types of hemocytes depending upon the type of infection they face [64]. Studies have revealed
that the number and types of hemocytes varied when infected with different strains and strengths of
Metarhizium spp. [65].The ability of a pathogenic fungi to overcome host hemolymph also represents
its virulence to the host [66]. The study presented here showed a change in hemocyte numbers under
pressure from the lethal concentration of M. anisopliae, which could be due to evasion and overcoming
hemolymph defense systems by entomopathogenic fungus. However, this change was not statistically
significant, supported by similar findings in previous studies [67].

The enzymatic responses are a key constituent of the insect immune system under various
stressful environments, reflecting physiological changes in the host. Enzymes such as PO play a crucial
role in wound deposition, encapsulation of pathogens, and most importantly activation of immune
pathways [68]. The increased PO activity strengthens the ability of the immune system to counter
xenobiotics [69,70], while its inhibition suggests pathogenic fungi may overcome the immunity of PO.
The current study depicted a time-based trend in PO activity rising to a maximum between 24 and 48 h
while gradually decreasing at 72 and 96 h, indicating that M. anisopliae steadily get the better of the
host defense system [69]. Similarly, SOD an antioxidant defense enzyme, also reported varying trends
demonstrating that the physiological activities of P. xylostella larvae were distressed following the
infection by fungi [71,72]. Insect immune responses are governed by various immune genes expressed
at different time points. Scientists have been able to identify 1000 immune-related genes in P. xylostella
when targeted by entomopathogenic fungi [34]. Likewise, our study found out key genes (spaetzle,
defensin, cecropin) involved in immune responses against entomopathogenic fungi were exceedingly
time-dependent, showing varying expression levels.

M. anisopliae produces secondary metabolite destruxin, a compound capable of evading insect
cellular and humoral immune responses, troubling the demographic parameters of the pest before its
eventual death [73–76]. Disturbances in biological parameters of various insect pests have been reported
when infected with entomopathogenic fungi [10,11,26,61,62], which strengthens our findings where a
distress in biological cycles are reported. During the invasion of pathogens (M. anisopliae) the body
temperature of insects rises to encounter the infection but this, in turn, affects the larval stadium [77]
supporting the current findings where reduced larval duration was observed. M. anisopliae absorbs
hemolymph sugar content from tracheoles, reducing nutrients and leading toward early pupation,
prolonged pupal duration [35,78], reduced percent pupation, and percent emergence in different
insect pests [2,79,80] supporting the findings reported in a study presented here. Besides intrusion in
immature stages, the adults are also affected in the form of shorter life span, an observation supported
by previous findings where reduced adult age and fecundity were reported [43,57,80,81].

5. Conclusions

The study conducted demonstrates the interaction of fungal pathogen M. anisopliae with immune
responses of P. xylostella and potentially overcoming it by causing the disturbance in its demography
eventually killing the host. Hence, M. anisopliae can become a potent prospect for the control of
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this pest. The study will provide a basic hence important information for further field and semi
field experimentation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/10/0694/s1,
Figure S1: Experimental validation of lethal (LC50) and sublethal (LC20) concentrations of Metarhizium anisopliae.
Error bars show 95% confidence intervals (CI), Table S1: Primers used in this study.

Author Contributions: Conceptualization, J.Z.; data curation, J.Z. and R.F.S.; formal analysis, J.Z.;
funding acquisition, X.X. and F.J.; investigation J.Z. and Y.Z.; methodology, J.Z.; project administration, S.F.
and F.J.; resources, X.X. and F.J.; supervision, F.J.; writing—original draft, J.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by grants from the Key-Area Research and Development Program of
Guangdong Province (2018B020205003), Natural Science Foundation of Guangdong, China (2018A030313402,
2019A1515011221) and State Key Laboratory of Biocontrol (Sun Yat-sen University) (2019SKLBC-KF02).

Acknowledgments: We are very grateful to Laboratory of Bio-Pesticide Creation and Application of Guangdong
Province, Guangzhou, China for support. We also thank editors and anonymous referees for their invaluable
comments and suggestion.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Freed, S.; Feng Liang, J.; Shun Xiang, R. Intraspecific Variability among the Isolates of Metarhizium anisopliae
var. anisopliae by RAPD Markers. Int. J. Agric. Biol. 2014, 16, 899–904.

2. Shoukat, R.F.; Hassan, B.; Shakeel, M.; Zafar, J.; Li, S.; Freed, S.; Xu, X.; Jin, F. Pathogenicity and
Transgenerational Effects of Metarhizium anisopliae on the Demographic Parameters of Aedes albopictus
(Culicidae: Diptera). J. Med. Entomol. 2020, 57, 677–685. [PubMed]

3. Shoukat, R.F.; Freed, S.; Ahmad, K.W. Evaluation of binary mixtures of entomogenous fungi and botanicals
on biological parameters of Culex pipiens (Diptera: Culicidae) under laboratory and field conditions. Int. J.
Mosq. Res. 2016, 3, 17–24.

4. Shoukat, R.F.; Freed, S.; Ahmad, K.W.; Rehman, A.-U. Assessment of Binary Mixtures of Entomopathogenic
Fungi and Chemical Insecticides on Biological Parameters of Culex pipiens (Diptera: Culicidae) under
Laboratory and Field Conditions. Pak. J. Zool. 2018, 50, 299–309. [CrossRef]

5. Zafar, J.; Freed, S.; Khan, B.A.; Farooq, M. Effectiveness of Beauveria bassiana Against Cotton Whitefly,
Bemisia tabaci (Gennadius) (Aleyrodidae: Homoptera) on Different Host Plants. Pak. J. Zool. 2016, 48, 91–99.

6. Khan, B.A.; Freed, S.; Zafar, J.; Farooq, M.; Shoukat, R.F.; Ahmad, K.W.; Li, S.; Zhang, Y.; Hua, Y.; Shoukat, R.F.
Efficacy of different entomopathogenic fungi on biological parameters of pulse beetle Callosobruchus chinensis L.
(Coleoptera: Bruchidae). J. Entomol. Zool. Stud. 2018, 6, 1972–1976.

7. Khan, B.A.; Freed, S.; Zafar, J.; Farooq, M. Evaluation of three different insect pathogenic fungi for the control
of Dysdercus koenigii and Oxycarenus hyalinipennis. Pak. J. Zool 2014, 46, 1759–1766.

8. Duarte, R.; Gonçalves, K.; Espinosa, D.; Moreira, L.; De Bortoli, S.; Humber, R.; Polanczyk, R. Potential of
entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and
compatibility with chemical insecticides. J. Econ. Entomol. 2016, 109, 594–601.

9. Rizvi, S.A.H.; Xie, F.; Ling, S.; Zeng, X. Development and evaluation of emulsifiable concentrate formulation
containing Sophora alopecuroides L. extract for the novel management of Asian citrus psyllid. Environ. Sci.
Pollut. Res. 2019, 21, 21871–21881. [CrossRef]

10. Shoukat, R.F.; Zafar, J.; Shakeel, M.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Assessment of Lethal,
Sublethal, and Transgenerational Effects of Beauveria Bassiana on the Demography of Aedes Albopictus
(Culicidae: Diptera). Insects 2020, 11, 178. [CrossRef]

11. Shoukat, R.F.; Shakeel, M.; Rizvi, S.A.H.; Zafar, J.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Larvicidal, Ovicidal,
Synergistic, and Repellent Activities of Sophora alopecuroides and Its Dominant Constituents Against Aedes
albopictus. Insects 2020, 11, 246.

12. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review.
Food Chem. Toxicol. 2008, 46, 446–475. [CrossRef] [PubMed]

13. Relyea, R.; Hoverman, J. Assessing the ecology in ecotoxicology: A review and synthesis in freshwater
systems. Ecol. Lett. 2006, 9, 1157–1171. [PubMed]

http://www.mdpi.com/2075-4450/11/10/0694/s1
http://www.ncbi.nlm.nih.gov/pubmed/31819965
http://dx.doi.org/10.17582/journal.pjz/2018.50.1.299.309
http://dx.doi.org/10.1007/s11356-019-05418-1
http://dx.doi.org/10.3390/insects11030178
http://dx.doi.org/10.1016/j.fct.2007.09.106
http://www.ncbi.nlm.nih.gov/pubmed/17996351
http://www.ncbi.nlm.nih.gov/pubmed/16972879


Insects 2020, 11, 0694 12 of 15

14. Sukumar, K.; Perich, M.J.; Boobar, L.R. Botanical derivatives in mosquito control: A review. J. Am. Mosq.
Control Assoc. 1991, 7, 210–237. [PubMed]

15. Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 2007, 5, 377. [PubMed]
16. Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria

brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [CrossRef]
17. Ahmed, S.M.; Saeed, M.; Nawaz, A.; Usman, M.; Shoukat, R.F.; Li, S.; Zhang, Y.; Zeng, L.; Zafar, J.; Akash, A.

Monitoring of quantitative and qualitative losses by lepidopteran, and homopteran pests in different crop
production systems of Brassica oleracea L. J. Entomol. Zool. Stud. 2018, 6, 6–12.

18. Malik, S.U.; Zia, K.; Ajmal, M.; Shoukat, R.F.; Li, S.; Saeed, M.; Zafar, J.; Shoukat, R.F. Comparative efficacy
of different insecticides and estimation of yield losses on BT and non-BT cotton for thrips, red cotton bug,
and dusky cotton bug. J. Entomol. Zool. Stud. 2018, 6, 505–512.

19. Saeed, M.; Shoukat, R.F.; Zafar, J. Population dynamics of natural enemies and insect pest in different Brassica
oleracea (cabbage) growing seasons with different production systems. J. Entomol. Zool. Stud. 2017, 5, 1669–1674.

20. Sarfraz, M.; Keddie, A.B.; Dosdall, L.M. Biological control of the diamondback moth, Plutella xylostella:
A review. Biocontrol Sci. Technol. 2005, 15, 763–789.

21. Zhang, S.; Zhang, X.; Shen, J.; Li, D.; Wan, H.; You, H.; Li, J. Cross-resistance and biochemical mechanisms of
resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pestic. Biochem. Physiol. 2017, 140,
85–89. [PubMed]

22. Ashfaq, M.; Sonoda, S.; Tsumuki, H. Expression of two methionine-rich storage protein genes of Plutella
xylostella (L.) in response to development, juvenile hormone-analog and pyrethroid. Comp. Biochem. Physiol.
Part B Biochem. Mol. Biol. 2007, 148, 84–92. [CrossRef] [PubMed]

23. Liu, S.; Niu, H.; Xiao, T.; Xue, C.; Liu, Z.; Luo, W. Does phenoloxidase contributed to the resistance?
Selection with butane-fipronil enhanced its activities from diamondback moths. Open Biochem. J. 2009, 3, 9.
[CrossRef] [PubMed]

24. Ahmad, K.W.; Freed, S.; Shoukat, R.F. Efficacy of entomopathogenic fungi and botanicals on development of
Musca domestica. J. Entomol. Zool. Stud. 2017, 5, 593–599.

25. Farooq, M.; Freed, S. Mortality, Biological, and Biochemical Response of Musca domestica (Diptera: Muscidae)
to Selected Insecticides 1. J. Entomol. Sci. 2018, 53, 27–45. [CrossRef]

26. Farooq, M.; Freed, S. Insecticidal activity of toxic crude proteins secreted by entomopathogenic fungi against
musca domestica l. (Diptera: Muscidae). Kuwait J. Sci. 2018, 45, 64–74.

27. Farooq, M.; Steenberg, T.; Castberg, D.; Freed, S.; Kristensen, M. Impact of sequential exposure of Beauveria
bassiana and imidacloprid against susceptible and resistant strains of Musca domestica. BioControl 2018, 63,
703–718. [CrossRef]

28. Freed, S.; Farooq, M. Entomopatojen fungus ve sentetik insektisit karışımlarının Musca domestica L.’nın
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