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Abstract: The quarantine insect pest Phenacoccus solenopsis (Hemiptera: Pseudococcidae) has a broad
host range and is distributed worldwide. Each year, P. solenopsis causes significant crop losses. The
detoxification of various xenobiotic compounds involves the cytochrome P450 monooxygenase (CYP)
superfamily of enzymes. However, the functions of CYPs in P. solenopsis are poorly understood.
In the present study, P. solenopsis was reared from the egg to the adult stage on three host plants:
Tomato, cotton, and hibiscus. Thirty-seven P. solenopsis CYP genes were identified and their
phylogenetic relationships were analyzed. Eleven CYP genes (PsCYP4NT1, PsCYP4G219, PsCYP6PZ1,
PsCYP6PZ5, PsCYP301B1, PsCYP302A1, PsCYP305A22, PsCYP315A1, PsCYP353F1, PsCYP3634A1,
and PsCYP3635A2) were selected for quantitative real-time PCR analysis. The results demonstrated
marked differences in CYP expression levels in P. solenopsis grown on different host plants. The
results will aid the molecular characterization of CYPs and will increase our understanding of CYP
expression patterns in P. solenopsis during development and growth on different hosts.

Keywords: expression pattern; developmental stage; host plant; P. solenopsis; P450; quantitative
real-time PCR

1. Introduction

Generalist herbivores feed on a variety of plants and are therefore exposed to varied plant
nutritional qualities and different secondary metabolites [1]. Plants produce certain defensive secondary
substances, which are induced by insects feeding. These plant defensive secondary substances have
certain advantages in plant defense against insects, because they can reduce the material and energetic
costs of plant defense [2,3]. In the long-term process of evolution, generalist insects have developed
mechanisms to cope with plant defenses, including behavioral avoidance against disease-resistant
plants, the metabolising of toxic compounds, and even inhibition of induced defense by releasing
inhibitors during feeding [4–7]. Host plants produce secondary metabolites that can induce the
expression of related stress proteins, such as detoxifying enzymes, protective enzymes, digestive
enzymes, and kinases, allowing the insects to adapt to the host plants to some extent [8].

Insects have evolved detoxification systems as a result of insect-plant interactions, which can
accommodate plant secondary compounds via commonly found enzymes such as cytochrome P450
monooxygenases [9]. Cytochrome P450 enzymes can regulate the adaptability of several insect
herbivores to host plants [10,11]. Cytochrome P450s can easily metabolize certain molecules that are
harmful to the survival and reproduction of herbivores through their monooxygenase activity. P450
detoxification enzyme genes are one of the largest gene families in insects and are distributed in four CYP
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clans (CYP2, the mitochondrial clan, CYP3, and CYP4). Among them, CYP3 family members usually
participate in the adaptability of herbivores to infect host plants [12]. The number of P450 genes in
insects is highly variable; however, in general, the number of P450 genes in general omnivorous insects
is much larger than that in oligophagous insects, possibly in response to different and unpredictable
host challenges [13]. The induction of plant secondary substances upon the expression of cytochrome
P450 genes in insects has also been widely reported [14–17]. Some plant secondary substances, such as
benzoic acid and salicylic acid, which can inhibit the growth and development of insects, prolong the
development period of insects, while others can also reduce insect reproduction [18]. The diversity of
P450 species and the wide range of substrate specificities of P450 in organisms, mean that cytochrome
P450s exert a variety of functions during the life cycle of insects. They are involved in the metabolism
of pesticides and plant secondary substances, as well as the synthesis of ecdytin, juvenile hormone,
and sex pheromones, which are closely related to insect growth, development, and defense [19].

Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is an economic pest, whose hosts are
widespread around the world [20,21]. Since 2005, P. solenopsis has been recognized as posing a threat to
ornamental plants, cotton, and vegetables. P. solenopsis affects in excess of 24 countries in Africa, Asia,
Europe, and the Americas [22–24]. P. solenopsis secretes honeydew, which inhibits photosynthesis and
produces sooty mold [25]. P. solenopsis can also be used as a vehicle to transmit plant diseases, such as hairy
virus, cocoa bud virus, cotton leaf curl virus, and cocoa spotted leaf virus [26]. There have been many
studies on the biology and ecology of P. solenopsis in its native and introduced ranges; however, no studies
have been conducted on P. solenopsis’s cytochrome P450 gene expression after feeding on different hosts.

In the present study, the transcriptomes of P. solenopsis grown on three host plants: Tomato, cotton,
and hibiscus were determined. In the transcriptome data, 37 CYP genes were identified and their
phylogenetic relationships were analyzed. We selected 11 CYP genes (PsCYP4NT1, PsCYP4G219,
PsCYP6PZ1, PsCYP6PZ5, PsCYP301B1, PsCYP302A1, PsCYP305A22, PsCYP315A1, PsCYP353F1,
PsCYP3634A1, and PsCYP3635A2) for quantitative real-time PCR analysis. The results showed that
when P. solenopsis was grown on different host plants, significant differences in CYP gene expression
could be observed. The results provided a theoretical basis for future research on P. solenopsis.

2. Materials and Methods

2.1. Host Plants and Insects

Samples of P. solenopsis were collected from cotton in Guangdong Province in May 2003. The
experimental tomato population was grown at 26 ◦C and 75% relative humidity with 14 h of light and
10 h of dark in an artificial climate chamber.

P. solenopsis were raised for many generations on three host plants: Tomato (Shanghai 906), hibiscus,
and cotton (China’s Hebei cotton 169). Cotton and tomato were grown artificially in greenhouses, and
hibiscus was grown hydroponically.

2.2. Extraction of RNA and Preparation of RNA-Seq Libraries

The Trizol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from P. solenopsis
at different developmental stages, according to the manufacturer’s procedure. A Bioanalyzer 2100 and
RNA 6000 Nano LabChip Kit (Agilent, Santa, Clara, CA, USA) were used to assess the amount and
purity of the total RNA, with an RNA integrity value (RIN) value > 7.0 being considered acceptable.
RNAs with poly(A) sequences were isolated from about 10 µg of total RNA representing different
developmental stages and hosts using poly-T oligomerized magnetic beads (Invitrogen). After
purification, high temperature and polyvalent cations were used to segment the poly(A)− or poly(A)+
RNA into small pieces. Reverse transcription of the RNA fragments was used to generate the final
cDNA library using Illumina technology (San Diego, CA, USA) based on the RNA-Seq sample. The
paired-end library had an average insertion fragment size of 300 bp (±50 bp). The paired-end cDNA
library was sequenced using an Illumina Hiseq 4000 sequencer (LC-bio, Hangzhou, China) according
to the supplier’s protocol.
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2.3. De Novo Assembly of Unigenes Annotation, and Functional Classification

First, internally developed Perl scripts and Cutadapt [27] were used to remove reads containing
linker contamination, undetermined bases, and low-quality bases. FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was then used to validate the sequence quality, including the Q20
and Q30 values, and the GC content of the clean data. All downstream analysis was based on the
high-quality clean data. Trinity 2.4.0 [28] was used for de novo assembly of the transcriptomes, in
which shared sequence content was used to group transcripts into clusters. These clusters of transcripts
were referred to as “genes.” In each cluster, the longest transcript was chosen as the representative
“gene” sequence, and termed a unigene.

DIAMOND [29] was used to align all the assembled unigenes with the non-redundant (Nr) protein
databases (http://www.ncbi.nlm.nih.gov/), SwissProt (http://www.expasy.ch/sprot/), Gene ontology
(GO) (http://www.geneontology.org), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (http:
//www.genome.jp/kegg/), and eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous
Groups; http://eggnogdb.embl.de/) databases, using a threshold E-value of less than 0.00001.

2.4. Bioinformatics Analyses

We predicted signal peptides, the isoelectric point, and conserved domains using SignalP
(http://www.cbs.dtu.dk/services/SignalP/), Compute pI (https://web.expasy.org/compute_pi/), and
SMART (http://smart.embl-heidelberg.de/), respectively. The MEGA 7.0 software (Tempe, AZ, USA) [30]
was used to construct a phylogenetic tree, utilizing the neighbor-joining method with 1000 bootstrap
replications. Finally, we submitted each P. solenopsis CYP gene sequence to the cytochrome P450
nomenclature committee (D. Nelson, University of Tennessee, Memphis, TN, USA).

2.5. Quantitative Real-Time PCR

We selected 11 CYP genes that seemed to be involved in detoxification (Table 1) and used Primer
Premier 5 to design primers for quantitative real-time PCR (qPCR). The housekeeping gene, P. solenopsis
α-tubulin (GenBank accession no. KJ909508), was used as the endogenous control.

Table 1. QPCR Primers for Phenacoccus solenopsis CYP genes.

Gene Name Primers (5′–3′) Product Size (bp) GenBank Accession Number

CYP315A1 F: ACCGTTCATTGCTCGCTATT
R: CCCATACGGCAAAGTAGCAT 211 MK862557

CYP302A1 F: TGGCAGCGGATATGTTATTG
R: TCCTCGGTTATCGTGGATTC 151 MK862558

CYP6PZ1 F: TGCATAGCTGAACGATTTGC
R: AGCCAAATGCCATTACGAAC 153 MK862559

CYP301B1 F: AGAAAAACCACATCCGTTCG
R: GGCTGGACGCTATATTCGAG 162 MK862560

CYP4G219 F: TCGCCAGAATACAGGCTCTT
R: TGCACGTCGAATTCTCTGTC 203 MK862561

CYP4NT1 F: CAGGACAAAAATGGCATTCA
R: TGGGAATGAAGCTGGTATCC 217 MK862562

CYP305A22 F: GAAGCGTTGCTCCTTGAATC
R: TTGCTGGTCGTAGTGAATCG 153 MK862563

CYP3635A2 F: CTCCCAGATGGTTTTGTCGT
R: CTCCGAAAGGCAGAAAACAG 166 MK862564

CYP3634A1 F: ATTGTTTACTGGTCCAATGC
R: TCGTTCCAATCTAATTCCAC 237 MK862565

CYP353F1 F: CCCGGTCAAAGTTTTGTCAT
R: TCATCAACAACGGCGATAAG 199 MK862566

CYP6PZ5 F: CCGGAACATTTTACCGAAGA
R: AGTTCGCATTTCAGCCAGAT 242 MK862567

α-Tubulin F: CTGGTAAACACGTTCCCCGAG
R: TGTAATGACCGCGAGCGTAG 152 KJ909508

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.ncbi.nlm.nih.gov/
http://www.expasy.ch/sprot/
http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://eggnogdb.embl.de/
http://www.cbs.dtu.dk/services/SignalP/
https://web.expasy.org/compute_pi/
http://smart.embl-heidelberg.de/
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A 2× Plus SYBR real-time PCR mixture (BioTake, Beijing, China) was used to perform the qPCR
reactions. The reactions comprised 10 µL of 2× Plus SYBR real-time PCR mixture, 1 µL (10 ng) of cDNA
template, 0.5 µL of sense primer, 0.5 µL of anti-sense primer (0.2 µM), and 8.0 µL diethyl pyrocarbonate
(DEPC)-ddH2O. The reactions were run on a Bio-Rad CFX96 system (Bio-Rad, Hercules, CA, USA)
using an amplification protocol as follows: 94 ◦C for 60 s, followed by 39 cycles of 94 ◦C for 15 s and
60 ◦C for 30 s. Each experiment was run in three biological replicates, and relative expression levels of
P450 genes across various samples were determined the 2−∆∆Ct method. The DPSv7.5 [31] software
was to analyze the qPCR results of P. solenopsis in different hosts and at different ages. A p-value < 0.05
was regarded as indicating statistical significance.

3. Results

3.1. Assembly and Annotation of Unigenes

Sequencing of the P. solenopsis transcriptome produced 47,635,589 clean reads. Assembly of the
clean reads resulted in 35,352 unigenes with an accumulated length of 30,633,522 bp. The longest gene
was 13,825 bp and the N50 value was 1680 bp (Table S1). To compare the obtained unigene sequences
with the protein sequences in public databases (SwissProt, NR, KEGG, KOG, and Pfam), BLASTX
searching (threshold E ≤ 0.00001) was performed. The results of the searches annotated 10,271 genes in
the Pfam database, (29.05% of the total number of unigenes); 9977 in the GO database (28.22%); 11,886
in the eggNOG database (33.62%), and 6883 in the KEGG database (19.47%). Among the unigenes,
12,373 (53.57%) sequences matched sequences from other species (Table S2). The highest number of
matches was between P. solenopsis unigenes and sequences from Bemisia tabaci (13.6%) (Figure 1).
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3.2. GO, KEGG, and eggNOG Classification

To better classify the functions of P. solenopsis unigenes, GO analysis was carried out (Figure 2).
The results showed that 9977 of the 35,352 unigenes (28.22%) corresponded to at least one GO term.
Various GO terms from the three domains (“biological process,” “cellular component,” and “molecular
function”) could be assigned to the P. solenopsis transcripts. Among the 50 GO categories, “nucleus”
(1481 unigenes), “cytoplasm” (1372 unigenes), and “integral component of membrane” (957 unigenes)
were the most dominant molecular functions.

The results of the eggNOG analysis showed that among the 35,352 tested P. solenopsis unigenes,
11,886 (33.62%) could be classified using eggNOG (Figure 3). In eggNOG, matches to the cluster
“function unknown” represented the largest group, followed by the “posttranslational modification,
protein turnover, chaperones” and “intracellular trafficking, secretion, and vesicular transport”.
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KEGG pathways were matched by 6883 unigenes. The largest number of contigs could be
annotated as environmental information processing of “signal transduction” (1019 unigenes), followed
by “transport and catabolism” (806 unigenes) in cellular processes, “translation” (741 unigenes) and
“folding, sorting and degradation” (599 unigenes) in genetic information processing (Figure 4).
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3.3. Identification of Cytochrome P450 Monooxygenases Genes in P. solenopsis

In P. solenopsis, a total of 37 CYP genes were identified among the unigenes (Table 2). Among
them, 28 had full open reading frames (ORFs), and ninr genes were incomplete, with truncated 5′

and/or 3′ coding regions. The intact ORFs of the CYPs ranged from 435 to 577 amino acids. Using the
accepted CYP nomenclature, the 37 CYP sequences were divided into 17 families and 20 subfamilies,
of which CYP6 was the largest family, with 17 genes. The next largest family was CYP4 with seven
members. BLASTX searching using the deduced protein sequences indicated that the amino acid
identities between these CYPs and their hemipteran orthologs ranged from 33% to 79% (Table S3).

Table 2. Characteristics of 37 CYP genes in P. solenopsis.

NO. Clan/Gene Name Protein Size (aa) Gene Length (bp) GenBank Accession Number

CYP2 clan (3)
1 PsCYP18A1 532 2343 MK875641
2 PsCYP303A1 500 1944 MK875642
3 PsΥCYP305A22 * 516 1948 MK862563

CYP3 clan (14)
4 PsCYP6PU1 521 1834 MK875659
5 PsCYP6PV1 * 481 1608 MK875647
6 PsCYP6PW1 * 510 1613 MK875662
7 PsCYP6PX1 513 1756 MK875659
8 PsCYP6PY1 523 1699 MK875653
9 PsCYP6PZ1 478 1901 MK862559
10 PsCYP6PZ2 * 529 1748 MK875651
11 PsCYP6PZ3 * 536 1804 MK875658
12 PsCYP6PZ4 * 525 1643 MK875646
13 PsCYP6PZ5 526 3247 MK862567
14 PsCYP6PZ6 * 512 1814 MK875664
15 PsCYP6QA1 496 1718 MK875656
16 PsCYP6QB1 515 1868 MK875661
17 PsCYP6QD1 * 343 1044 MK875657
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Table 2. Cont.

NO. Clan/Gene Name Protein Size (aa) Gene Length (bp) GenBank Accession Number

CYP4 clan (7)
18 PsCYP4G219 576 2425 MK862561
19 PsCYP4NT1 514 1747 MK862562
20 PsCYP4NU1 487 2550 MK875655
21 PsCYP4NV1 497 1759 MK875652
22 PsCYP4NV2* 470 1506 MK875645
23 PsCYP380C41 514 1763 MK875643
24 PsCYP380H1 531 1664 MK875665

Mito. Clan (5)
25 PsCYP301A1 436 1569 MK875648
26 PsCYP301B1 529 2167 MK862560
27 PsCYP302A1 490 1596 MK862558
28 PsCYP315A1 470 2242 MK862557
29 PsCYP353F1 457 1593 MK86256

New Clan (8)
30 PsCYP3633A1 500 1944 MK875654
31 PsCYP3633A2 * 500 1620 MK875663
32 PsCYP3634A1 520 2021 MK862565
33 PsCYP3635A2 496 1636 MK862564
34 PsCYP3636A1 504 3678 MK875644
35 PsCYP3638A1 502 1824 MK875649
36 PsCYP3638A2 514 1925 MK875650
37 PsCYP3638B1 478 1647 MK875640

Notes. * These CYP sequences are incomplete. In bold type are the 11 genes studied in this study.

3.4. P. solenopsis P450s Sequence Analysis

Sequence analysis of the encoded proteins of 11 CYP genes (PsCYP4NT1, PsCYP4G219, PsCYP6PZ1,
PsCYP6PZ5, PsCYP301B1, PsCYP302A1, PsCYP305A22, PsCYP315A1, PsCYP353F1, PsCYP3634A1, and
PsCYP3635A2) showed that none were predicted to have signal peptides or transmembrane domains.
The isoelectric points of the eleven CYPs were predicted and are shown in Table 3.

Table 3. Sequence information for 11 P. solenopsis CYP genes.

Gene Name cDNA Full Length (bp) Length of 5′ UTR (bp) Length of 3′ UTR (bp) Isoelectric Point

PsCYP4NT1 1747 30 175 8.54
PsCYP4G219 2425 270 427 7.64
PsCYP6PZ1 1901 176 291 8.88
PsCYP6PZ5 3247 69 1600 8.87
PsCYP301B1 2167 154 416 9.21
PsCYP302A1 1596 36 90 9.24

PsCYP305A22 1948 0 400 8.74
PsCYP315A1 2242 381 451 8.99
PsCYP353F1 1593 177 45 9.29

PsCYP3634A1 2021 97 364 8.41
PsCYP3635A2 1636 51 97 8.42

UTR: Untranslated Region.

All 11 P450 amino acid sequences from P. solenopsis contain a characteristic cysteine heme-iron
ligand domain, and the PsCYP302A1 amino acid sequence contains a hemopexin domain signature
(Figure S1).

3.5. Phylogenetic Analysis of P450s from P. solenopsis

A phylogenetic tree was constructed using the neighbor-joining method to analyze the relationships
among the 37 CYP proteins from P. solenopsis and those from other species of insect (Figure 5).
The phylogenetic tree showed that insect CYPs could be classified into four categories (clans):



Insects 2019, 10, 264 8 of 14

Mitochondrial, CYP2, CYP3, and CYP4. Among them, CYP3 and CYP4 clans accounted for the
majority of genes, while the mitochondrial and CYP2 contained only nine proteins. Clan CYP2
includes three families; namely, CYP18A1, CYP303A1, and CYP305A22. Certain P. solenopsis CYPs
were found to be homologous to members of the mitochondrial family, including PsCYP301A1,
PsCYP301B1, PsCYP302A1, PsCYP315A1, and PsCYP353F1. Gene amplification was observed to
have occurred in the CYP4 and CYP3 clans. For example, the largest cluster in the CYP3 clan was
CYP6, whereas CYP4 genes (plus one CYP380 cluster) formed the largest cluster in the CYP4 clan.
In addition, we found five new families of P450s: PsCYP3633A1 and PsCYP3633A2; PsCYP3634A1;
PsCYP3635A2; PsCYP3636A1; and PsCYP3638A1, PsCYP3638A2, and PsCYP3638B1. Interestingly,
PsCYP3634A1, PsCYP368A1, PsCYP3638A2, PsCYP3638B1, and the CYP4 clan clustered together;
whereas, PsCYP3633A1, PsCYP33A2, PsCYP3636A1, PsCYP3635A2, and CYP6 clan clustered together.
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Figure 5. A phylogenetic tree of P. solenopsis CYPs with CYPs from other species constructed using the
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3.6. Expression of P450s after P. solenopsis Feeding on Three Host Plants

Next, we assessed the relative mRNA levels of the eleven P. solenopsis CYP genes at different
stages of development when fed on three host plants. The 11 CYP genes showed differential expression
at different developmental stages of P. solenopsis (Figure 6a–c) and the expression levels at the same
developmental stage were also different in different hosts (Figure 7a–d). After feeding on tomato, the
expression of PsCYP301B1 was the lowest in the first instar nymph and PsCYP6PZ5 was the highest by
a factor of 7.0 (p < 0.05, Figure 6a) compared with that of PsCYP301B1. In the second instar nymph,
PsCYP302A1 had the highest expression level, which was 4.9 times (p < 0.05, Figure 6a) higher than
that of PsCYP3634A1, which showed the lowest expression level. The expression level of PsCYP3634A1
was the lowest in the third instar nymph, while the expression level of PsCYP301B1 was the highest,
showing 7.9 times (p < 0.05, Figure 6a) higher expression than that of PsCYP3634A1. In the female
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adult, PsCYP3634A1 had the highest expression level, which was 7.6 times (p < 0.05, Figure 6a) higher
than the lowest level of PsCYP4G219 expression.Insects 2019, 10, x 10 of 15 
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Figure 7. Relative CYP gene expression in P. solenopsis on different hosts. (a) The first instar nymph.
(b) The second instar nymph. (c) The third instar nymph. (d) The female adult. Data show the mean ±
standard error (n = 3). Different lowercase letters indicate significant differences in CYP expression
among different hosts of P. solenopsis at the same developmental stage.

The expression of PsCYP301B1 in first instar nymphs was significantly higher than that of
other genes when fed on cotton, being was 10.0 times (p < 0.05, Figure 6b) the lowest expression of
PsCYP3634A1. The expression level of PsCYP353F1 was the lowest in the second instar nymphs, while
the highest expression level of PsCYP301B1 was 6.3 times higher (p < 0.05, Figure 6b) than that of
PsCYP353F1. PsCYP3635A2 showed its highest expression level in the third instar nymphs, at 4.6 times
(p < 0.05, Figure 6b) the expression of CYP6PZ5, which showed the lowest expression level. In the
female adult, PsCYP4NT1 had the highest expression level, which was 5.7 times (p < 0.05, Figure 6b)
higher than that of PsCYP305A22, which showed the lowest level of expression.
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When the insects were fed on hibiscus, PsCYP6PZ1 had the highest expression level in the first
instar nymph, the second instar nymph, and the third instar nymph. In the first instar nymph, the
expression level of PsCYP6PZ1 was 5.3 times (p < 0.05, Figure 6c) higher than that of PsCYP302A1. In
the second instar nymph, the expression level of PsCYP6PZ1 was 5.2 times (p < 0.05, Figure 6c) higher
than that of PsCYP315A1. The expression level of PsCYP6PZ1 was 3.5 times (p < 0.05, Figure 6c) higher
than that of PsCYP4G219 in the third instar nymph. The expression level of PsCYP3635A2 was the
lowest in the third instar nymph, while the highest expression level of PsCYP302A1 was 3.5 times
(p < 0.05, Figure 6c) higher than that of PsCYP3635A2.

Figure 7a–d shows the expression levels of the 11 P. solenopsis CYP genes at the same developmental
stage after feeding on three host plants. In first instar nymph feeding on cotton, PsCYP301B1 and
PsCYP302A1 expression levels were significantly higher compared with those of other CYP genes,
while the expression levels of PsCYP302A1 were the lowest after the insects were fed on hibiscus
(p < 0.05, Figure 7a). Among the second instar nymphs, PsCYP302A1 showed its highest expression
when fed on tomatoes, which was 9.6 times (p < 0.05, Figure 7b) higher than that of PsCYP4NT1, which
showed the lowest expression on cotton. The expression of PsCYP301B1 was the highest in the third
instar nymph. However, in the third instar nymphs, the expression of PsCYP3634A1 was significantly
lower after tomato feeding compared with that of the other CYP genes, and the expression of CYP301B1
was 7.9 times (p < 0.05, Figure 7c) higher than that of PsCYP3634A1. In the female adult stage, we
observed no significant difference in the expression levels of PsCYP4G219, PsCYP6PZ1, PsCYP6PZ5,
PsCYP305A22, and PsCYP3635A2 after feeding on the three hosts. However, the expression levels of
PsCYP3634A1 after feeding on tomatoes were the highest by 8.0 times (p < 0.05, Figure 7d) compared
with that of PsCYP6PZ1.

4. Discussion

The present study revealed the expression patterns of P. solenopsis CYP genes after feeding on
three different hosts. Generalist herbivores usually feed on a variety of plants; therefore, they need to
adapt to different host qualities and defenses. In the course of these long-term interactions, omnivorous
insects have evolved mechanisms to overcome plant defenses.

Thirty-seven P. solenopsis CYP genes were identified, which is a relatively small number compared
with the number of CYP genes in other insects. For example, genome analyses of D. melanogaster,
An. gambiae, and T. castaneum identified 85, 106, and 143 CYP genes, respectively [32,33]. Sequence
analysis of the 11 CYP (PsCYP4NT1, PsCYP4G219, PsCYP6PZ1, PsCYP6PZ5, PsCYP301B1, PsCYP302A1,
PsCYP305A22, PsCYP315A1, PsCYP353F1, PsCYP3634A1, and PsCYP3635A2) genes showed that none
of their encoded proteins were predicted to have signal peptides or transmembrane domains. The
isoelectric points of the 11 CYPs were between 7.64 and 9.29, and all contained a cytochrome P450
cysteine heme-iron ligand signature sequence.

Next generation high-throughput sequencing technology generates a large amount of data, at
high speed, with low cost and high efficiency, and has been widely used in research into insect
molecular markers [34]. In this study, the transcriptome of P. solenopsis was sequenced and analyzed
using Illumina sequencing technology. The antennal transcriptome of P. solenopsis produced a total of
47,635,589 clean reads, with an N50 value of 1297 bp. It is generally believed that the larger the N50
value, more long fragments could be obtained, while an N50 value smaller than 800 bp indicates better
sequence integrity of the assembly. The base Q30 value was 92.03%, and the Q30 was above 80% [35].
These results indicated that the basic requirements of transcriptome analysis were met in terms of
assembly quality and length of sequencing data, laying the foundation for further exploration of
important functional genes. This study used the Nr, Nt, Pfam, SwissProt, and GO databases to perform
BLASTX alignment analysis on the obtained unigenes. Through homologous sequence comparison
within the Nr database, Bemisia tabaci came up more often than other species because it is the most
closely related one to P. solenopsis. Sequencing analyses of most insect transcriptomes have shown
that the annotated unigenes are most similar to similar and closely related species. For example, the
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percentage of genes annotated from the Tenebrio molitor antenna transcriptome in Tribolium castaneum
was 90.81% [36]. The Grapholita molesta antenna transcriptome annotated the most sequences in Danaus
plexippus, 52.2% [37]. In the GO analysis, (Figure 2), although the main categories were nucleus,
cytoplasm, and integral components of membranes, we also identified annotations in iron ion binding,
electron carrier activity, heme binding, and oxidation-reduction process. In the eggNOG classification,
33% of the genes were included (Figure 3). The existence of unannotated unigenes is related to
the short length of the spliced fragments, the lack of genomic information, and the lack of genetic
information [38,39]. In addition, the results of GO, KEGG, and eggNOG classification demonstrated
that the CYP genes in the P. solenopsis transcriptome are involved in “metabolism of terpenoids and
polyketides” and “secondary metabolites’ biosynthesis, transport and catabolism,” and these genes
might have multiple functions.

Phylogenetic analysis revealed that the P. solenopsis CYPs could be mainly classified into the
mitochondrial, CYP2, CYP3, and CYP4 families (Figure 5). Many proteins are involved in the
ecdysteroids metabolic pathway in the CYP2 and mitochondrial families, including CYP302A1,
CYP301A1, and CYP314A1 from the mitochondrial clan, and CYP306A1, CYP18A1, and CYP307A1
from the CYP2 clan [12]. Contrastingly, proteins in the CYP3 and CYP4 clans are more involved
in the detoxification of a variety of pesticides and plant allelopathic substances, as are the CYP6
family proteins [35]. Additionally, we found five new families of P450 genes: PsCYP3633A1 and
PsCYP3633A2; PsCYP3634A1; PsCYP3635A2; PsCYP3636A1; and PsCYP3638A1, PsCYP3638A2, and
PsCYP3638B1. Interestingly, the PsCYP3634A1, PsCYP368A1, PsCYP3638A2, PsCYP3638B1, and
PsCYP4 clans clustered together, and the PsCYP3633A1, PsCYP33A2, PsCYP3635A1, PsCYP3635A2,
and CYP6 clans clustered together. We suspect that the genes of these new families may have evolved
from the CYP4 and CYP6 clans respectively. This classification of CYP genes from P. solenopsis into
different clans suggests marked functional diversity among them. This diversity may lead to better
niche adaptation by the insects [40].

There are differences in the expression levels of cytochrome P450 genes in different developmental
stages, tissues, and organs of insects, suggesting their different functions [41]. Studies have shown
that CYP4D1 gene expression of Mayetiola destructor increases with advancing age, and its expression
in the sixth instar larvae is the highest. After developing into pupa, CYP4D1 expression decreases
rapidly and then increases slightly in the adult stage [42]. Similarly, the expression of the CYP4H34
gene in Culex quinquefasciatus increased gradually from the egg stage to the late larva stage, before
decreasing sharply in the pupal stage and remaining low in the adult stage [43]. The qPCR results of
the 11 P450 genes in P. solenopsis at different developmental stages indicated that most of the genes
reached their highest expression level in the nymph stage, and their expression level in the adult
stage was relatively low (Figure 6a–c). We speculated that P. solenopsis needs to constantly adapt to
the changing environment, including host selection pressure, during the growth and development of
nymphs to adults. The high expression of the cytochrome P450 genes at this stage reflects the fact that
the worm needs to upregulate the expression of cytochrome P450s to meet its vigorous physiological
and metabolic needs. Therefore, expression of the 11 P450 genes might be necessary at each stage of
development of P. solenopsis, and could be involved in the physiological metabolism of cells and organs
during the growth and development of the insect on P. solenopsis.

To resist the feeding of polyphagous herbivorous insects, host plants have evolved a defense
mechanism involving various methods, such as morphology, biochemistry, and molecular regulation.
Among them, plant secondary metabolites play an important role in the plant defense against insects.
Plants exert adverse and even toxic effects on the feeding, growth, and the reproduction of herbivorous
insects via secondary metabolites, thereby exerting direct and indirect defense effects. For example,
the allelochemicals furan coumarin, flavonoids, alkaloids, chlorogenic acid, gossypol, and hydrazine
can be used as insect biotoxins and insect repellents [44,45]. The main cotton secondary metabolites,
gossypol and hemialdehyde, have insecticidal activity [46]. Cytochrome P450s play an important
role in the interaction between insects and their hosts. The insects’ detoxification-metabolic system
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can metabolize those plant secondary metabolites. Therefore, when the insects feed on host plants
containing the secondary metabolites, the changes in insect detoxification metabolic enzymes and
related metabolic abilities can allow the insects adapt to host plant defense. In the midgut of Helicoverpa
armigera, gossypol could induce the overexpression of cytochrome P450 genes CYP9A12, CYP321A1,
CYP6AE11, CYP9A14, and CYP6B7. However, only the CYP6B6 gene was overexpressed in response
to quercetin, tannic acid, and other plant secondary metabolites [47,48]. For the same insect, the
cytochrome P450 genes induced by different plant sub-metabolites are also different. The results
showed that majority of the 11 CYP genes were expressed at their highest levels on tomato or cotton
(Figure 7a–d). We speculated that feeding on plant secondary metabolites could cause changes in
insect detoxification enzymes and related detoxification mechanisms, thereby enhancing the ability of
insects to metabolize plant secondary metabolites, and allowing insects to adapt to host plant defense
mechanisms. Therefore, some secondary metabolites present on tomatoes and cotton might induce the
P. solenopsis CYPs to detoxify the plant sub-metabolites, providing the insect with resistance to these
substances and allowing them to better adapt to tomato and cotton. This may also be one of the reasons
for the wide host range of P. solenopsis. Further research is needed to determine how P. solenopsis CYPs
adapt to specific hosts.

5. Conclusions

In conclusion, the sequence characteristics, signal peptides, isoelectric points, and expression
profiles of 11 CYP genes of P. solenopsis were analyzed. We found that some CYP genes showed marked
differences in their expression levels after feeding on three hosts, suggesting that those genes encode
proteins that might be involved in detoxification of allelochemicals produced by different host plants.
To determine the functions of these genes, further research is required.
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