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Abstract: The management of the olive fruit fly (Bactrocera oleae) is traditionally based upon the use of
organophosphate insecticides, mainly dimethoate. In this evolutionary arms race between man and
pest, the flies have adapted a pesticide resistance, implying two point-mutations of the Ace gene -I214V
and G488S- and a 9bp deletion -∆3Q. We revisited 11 Iberian locations to evaluate this adaptation
of organophosphate (OP)-resistant alleles through amplicon sequencing. Screening for populations
where the wild type is prevalent allows an identification of hotspots for targeted mitigation measures;
we have hence refined the scale to the region with the lowest OP-resistant alleles frequency 71 locations
were sampled and individuals checked using a fast and low-cost allele-specific-primer polymerase
chain reaction (ASP-PCR) method]. An increase in Ace gene point-mutations was observed, and the
∆3Q mutation remains undetected. The lowest frequencies of the OP-resistant alleles remain in the
west, underlining the hypothesis of an introduction of resistance from eastern Mediterranean areas.
A field test was performed by sampling the fly population before and after in-practice dimethoate
application. A clear reduction in olive fruit fly numbers was observed, with no relevant changes in
the genotypic frequencies of the resistance alleles. The findings are discussed in frame of the type and
intensity of the selection pressure that has led to the adaptation to resistance and its consequences
from the producer perspective.

Keywords: dimethoate; Bactrocera oleae; resistance; organophosphate; acetylcholinesterase; in-practice
field test

1. Introduction

In the evolutionary arms race [1] against agricultural pests, the intensive use of organophosphates
(OPs) in the last 50 years has led to an evolution (or adaptation) of resistance. Insensitivity to these
insecticides by mutations of the Ace gene, which codes for acetylcholinesterase, the target enzyme of
OPs, has been demonstrated in several insects, including mosquito species, in Drosophila melanogaster
(common fruit fly), Musca domestica (common housefly), Ceratitis capitata (Mediterranean fruit fly),
Aphis gossypii (the aphid) and Bactrocera oleae [2–6]. In most insects, two types of Ace genes (ace1
and ace2) have been identified [7,8]. However, in some Diptera including tephritids (such as the
Bactrocera species), the ace1 gene is absent, likely due to gene loss, and only a single ace2 gene has been
identified [9].

Pesticide use applies an exceptionally specific selective pressure, and this strong selection pressure
may lead to the evolution of resistance. Resistance can evolve through selection from standing variation
or through ‘de novo’ mutations.
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Particularly in the cases where a specific pesticide-binding site is involved, selection can be
target-specific, acting upon a single molecular target, and sometimes even in a specific binding residue.
In this situation, ‘de novo’ mutations might be more prone to occur, even though limited by the
constraints imposed by target protein functionality. Evidence supporting these initial assumptions
comes, for example, from studies on mosquitoes on target-site resistance to pyrethroids, and to
organophosphates (OPs) and carbamates (CMs) [10,11]. Such a targeted selection pressure can result
in parallel ‘de novo’ mutations, which repeatability depends upon the functional constraints affecting
each target site and other possible resistance mechanisms [12].

In the particular case of Bactrocera oleae (Rossi, 1790), resistance to OPs likely evolved by ‘de novo’
mutations at the Ace gene. Over the last decades, the management of the olive fruit fly has been
based on the use of OPs, mainly dimethoate. The first record of B. oleae resistance to dimethoate dates
back to the 1970s [13,14], but it was only 30 years later that the mechanism started to be studied and
understood [6,15]. Two point-mutations were first identified in the Ace gene as the underlying cause of
OP resistance in the olive fruit fly: I214V (nucleotide mutation at the position 214 from the reference
AF452052 replaces an isoleucine by a valine) and G488S (nucleotide mutation at the position 488 from
the reference AF452052 replaces a glycine by a serine). These changes affect amino-acids close to the
active site of the enzyme, possibly causing topological changes that decrease the effectiveness of the
action of the pesticide [6].

The presence of OP-resistant olive fruit flies in Europe has increased and has become
widespread [16–19]. Supporting the hypothesis of parallel ‘de novo’ resistance-associated mutations,
identical mutations were found in the oriental fruit fly, Bactrocera dorsalis [20] and I214V is the
homolog to the I199V mutation found earlier in Drosophila melanogaster [21]. The general assumption
for ‘de novo’ resistance evolution is that mutation continues at the background rate, and it is the
highly specific selective pressure imposed by the pesticide that leads to an increase in the frequency
of the mutations conferring resistance, balanced by any associated fitness costs [12]. Skouras and
co-workers [22] accessed the resistance of olive fruit fly populations in Greece and Cyprus through the
topical application of dimethoate, and showed the presence of both point mutations in homozygocity
in the least resistant individuals; this supports the importance of these mutations at a minimum level
of resistance, but also suggests a low fitness cost.

A third mutation was detected, lying outside the active site gorge of AChE: A 9bp (GCAACAACA)
deletion corresponding to the nucleotides 1926–1934 of the reference AF452052, and that results in a
deletion of three glutamine residues at positions 642–644 inclusive (referred as a ∆3Q mutation) [23].
This mutation appears associated with higher OP doses resistance, and always in combination with the
two point mutations, suggesting an auxiliary and/or multiplicative role of this mutation, in addition to
its inability to alone provide a basal level of resistance [17]. Found originally in Greek populations, this
mutation shows currently the highest frequencies in Greece and Italy and a gradual decrease of ∆3Q
frequency is observed towards the western Mediterranean [17]. Whereas I214V and G488S mutations
were detected in Portugal, at the Western end of the Mediterranean basin [18], ∆3Q was never found in
this region [17,18]. The data thus suggest a spreading of the variants of the resistance gene from East
within the Iberian Peninsula, where the frequency of the Ace OP-resistant alleles was reported to vary
between 0.20 and 0.90 [18]. We revisited those locations to assess the evolution of Ace OP-resistant
alleles. The region with the lowest frequency of resistance alleles reported corresponded to the Alentejo
region in Portugal. Therefore, we have refined the sampling scale in this region, and screened the
populations for Ace OP-resistant alleles, following the hypothesis that there has been an increase of the
mutated alleles in the population, as the establishment of olive orchards under intensive and super
intensive regimes has been observed in the region. To understand the practical consequences of the
resistance, from the producer perspective, we have put together a test where the B. oleae population
was screened before and after a dimethoate application done in the field, in a classic production system,
and according to the common field practices.
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2. Materials and Methods

2.1. Olive Fly Samples

The sample collection for monitoring insect resistance was structured in a two-step process. First,
olive fruit flies were collected revisiting the localities sampled in [18], of which nine were in Portugal
and four in Andalusia, Spain (Figure 1a—Sampling set I). Secondly, a comprehensive sampling effort
took place in the region of Alentejo, Portugal, as it corresponded to the sampling location with lower
frequency of the resistance allele according to the same study. In this case, a stratified random sampling
was designed to cover the region: A grid of 30× 30 km in a total of 18 squares comprised the stratification
of the sampling, and inside each square up to four olive areas were randomly selected (depending
upon availability), where fruits with signs of oviposition by B. oleae were collected whenever available.
It was possible to obtain biological material from 71 locations (Figure 1b—Sampling set II), being
a square grid represented on average by 20 genotypes. In all cases, these sampled trees were not in
olive groves of intense production, and were taken in abandoned olive groves, confirmed organic
olive groves, or in decorative specimens, as a way to guarantee that no dimethoate had been applied
directly in recent years. Olives were collected and stored in plastic boxes, with emerging larvae, pupae
and adults being gathered periodically. From the olives collected in Malaga (Spain) and Paradela
(Portugal), no flies emerged.
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Figure 1. Sample collection points. (a) Sampling set I (October/November 2016), revisiting the
localities sampled in [18]; (b) Sampling set II (October/November 2017), comprehensive sampling in
the region Alentejo (dots), where the lowest frequency of the resistance allele was found; in-practice
field test locations (stars) (October/November 2017).

Individuals were stored at −20 ◦C in 70% ethanol until DNA extraction. From sampling set I,
we target to analyze 10 individuals per sampling location (from Baeza, only five flies emerged) as
done in [18], and for comparison purposes. From sampling set II, aimed to evaluate the olive fruit
fly resistance region, we targeted for 20 individuals per grid square (five individuals per location;
but 6 points had four, 4 with three, and 3 with one individuals). Individual flies were allowed to dry
on filter paper prior to DNA extraction. DNA from the whole body tissue was extracted following
extraction protocols using CTAB extraction buffer [24] after being grinded with a plastic pestle. Proteins
were removed with 24:1 isoamyl alcohol:chloroform, and DNA precipitated with isopropanol. DNA
extracts were eluted in 50 µL of sterile water. All extraction products were stored at −20 ◦C, and were
later used directly in the PCR.
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2.2. Resistance Alleles Identification

Targeting the two resistance-associated BoAce mutations previously identified in the region-
I214V and G488S-, we followed the procedure described in [16] to identify the resistance allele
in the first sample set (Portugal and Andalusia, sampling set I). The primer pair BoAce_518F:
TACTCAATTTCACTTTCAGCACTC and BoAce_1040R: CAACTCACCGACAATAGCG was used
to amplify the 521 bp fragment in exon III, where the SNP known to be responsible for the I214V
mutation is found; and the primer pair BoAce_1424F: CAGCTGGGTTGGTAATCC and BoAce_1519R:
TAGTGCACGGAAGCTCC was used to amplify the 94 bp fragment in exon VI, which includes the
SNP leading to G488S mutation. PCR reactions were conducted using 1 µL of the extracted DNA
in a standard 25 µL reaction, with 0.5 pmol/µL of each primer, 1.5 mM MgCl2, 0.5 mM dNTPs and
0.05 U/mL Taq DNA polymerase. The cycle protocol involved initial denaturation at 94 ◦C for 2 min,
followed by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for 1 min, and an extension cycle of
72 ◦C for 7 min; the PCR product was purified using the NZYGelpure kit (from NZYTech, Lda, Lisboa,
Portugal), and sequencing was done commercially (Macrogen Inc. Seoul, South Korea) on both strands.
Analogous to the procedure in other works checking for codominant single nucleotide polymorphisms
(SNPs), we looked for double peaks with a similar height in the sequence chromatograms [25].
Haplotype determinations in PCR products with heterozygosity at the targeted positions were made
by an amplification with allele-specific primers designed as follows:

(a) For I214V, the allele-specific forward primer was designed so that its 3’ terminal
nucleotide corresponds to the target SNP, and a single nucleotide artificial mismatch was
introduced at the third nucleotide from the 3’ end of the primer to improve the specificity
of allele-specific amplification (IV214_A 5′-CCGGCACTGCCACACTGGCTA-3′ and IV214_G
5′-CCGGCACTGCCACACTGGCTG-3′); the reversed primer used was non-allele specific (IV214_CP
5′-CCTCCTCGTAGCCCGGCA-3′).

(b) For G488S, and due to close by SNPs (within ten nucleotides 5’ to the target point
mutation), the approach was having an allele-specific reverse primer, designed using the same
principles described above (G488S_RG 5′-GGCAGGTGAAGAARTGATCTCC-3′ and G488S_RA
5′-GGCAGGTGAAGAARTGATCTCT-3′); this primer was paired with the non-allele specific
BoAce_1424F.

The allele-specific primer PCR (ASP-PCR) method was initially developed for an allele analysis
of clinically significant mutations [26] based on the principle that ASPs preferentially trigger an
amplification of the specific allele and the presence of the SNP can thus be detected as positive PCR
amplification after electrophoresis. Amplification followed a touch-down cycling protocol (TD-PCR):
95 ◦C for 3 min; a phase one of 10 cycles of 95 ◦C for 30 s, Ta for 30 s and 72 ◦C for 30 s; and 72 ◦C for 1
min, in which Ta was set to 65 ◦C, decreasing 1 ◦C per successive cycle until reaching the Ta of 55 ◦C;
followed a phase two of 25 cycles using the final annealing temperature reached in the touchdown
phase (Ta of 55 ◦C). After the amplification, electrophoresis was performed at 70 V for 45 min in
1×tris-acetate-EDTA buffer on 1.5% agarose gel stained with GreenSafe Premium (NzyTech) according
to the protocol provided by the supplier. The amplified PCR products were visualized under a UV
light, being a positive amplification indicative of the presence of the specific nucleotide tested at a
given position (Figure S1).

To test the capacity of the above-described allele-specific approach (ASP-PCR) in identifying the
nucleotide(s) present at the targeted SNPs, we selected a sub-sample of the sampling set II comprising
5 individuals per grid (total of 85 specimens). This sub-sample was analyzed simultaneously by
fragment sequencing and by ASP-PCR. Because the results that were obtained from the developed
AS-PCR method were all consistent with the genotype data obtained using a direct DNA sequencing
technique in 100% of the cases for the I214V and 98% for the G488S (being the failures due to failure of
amplification, and hence no data result), we proceed to analyze the full sampling set II in this way.

Searching for the ∆3Q variant was restricted to a sub-set of specimens in the revisited locations
(sampling set I) using the allele-specific PCR protocol described in [17].
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The frequency of the presence of resistance alleles from Pereira-Castro and co-workers [18] and
the present study was compared by means of a Wilcoxon Signed-Ranks Test (α = 0.05). Also for
data set II, the frequencies of the resistance alleles were calculated (20 genotypes per grid square) and
an Empirical Bayesian Kriging (EKB) interpolation method, implemented in ArcGIS 10.1 Geostatistical
Analyst, was used for data visualization [27].

2.3. In-Practice Field Test

To address, from the producer perspective, the impact of the Ace organophosphate (OP)-resistant
alleles in the olive fly population, we designed a field test at three different traditional production
orchards in the Alentejo region. We have sampled olives with signs of oviposition holes before and after
the standard pesticide application procedure. The locations were chosen based on the frequency of the
resistance allele found in the non-managed olive groves areas as described above (sampling set II).
Per location, three boxes were assembled, each with 250 randomly collected, affected olives. The boxes
were closed at all sides but two, where an insect net was glued to the sides; the mesh was small
enough not to allow insects to get in or out, but big enough to allow ample air circulation. The boxes,
left at room condition, were checked daily for larvae eclosion until no further insects emerged.
The exact same procedure was repeated a week after the application of dimethoate at the standard
allowed concentrations and procedures (1.2 L/ha of a product with 400 g/L of active substance). Because
of no-independence of data sets, and the limitation of the trial to three locations, non-parametrical data
dispersion measures of the number of larvae ecloding before and after the commercial application of
dimethoate were plotted, highlighting the differences.

From each field, 10 randomly selected larvae were sequenced at the two fragments that include
the resistance-associated BoAce mutations (procedure as above). The sequences were assembled, edited
and the fragments were aligned using the software Unipro UGENE 1.32 [28] to look for variants and
their frequencies, as well as the presence of other non-synonym mutations.

3. Results

The presence of Ace OP-resistant alleles in the Western and Southern Iberian Peninsula had in
general increased or stabilized, particularly in the cases where the frequency was already high (Table 1)
and significant positive differences were found when comparing the previous sampling [18] and the
one here reported (the Wilcoxon Signed-Ranks Test indicated that the median ranks in the present study
-Mdn = 0.60- were significantly higher than the median ranks from the previous study -Mdn = 0.58;
Z = 2.00, p < 0.05). The Alentejo region (where before the frequencies of Ace OP-resistant alleles
were still relatively low), now faces frequencies equivalent to what was found in the rest of the Iberian
Peninsula (Table 1), even when our sampling was done in abandoned and/or organic olive groves (and
thus not subjected to the direct application of the pesticide). In none of the 105 Iberian flies screened
did we detect the presence of the ∆3Q mutation.

The developed AS-PCR method provides a fast screening of great number of samples, with an
acceptable margin of error (the genotyping failures were due to an absence of amplification, and hence
no data result), but it provides no further information on other regions of the gene of potential interest.
However, for the aim of the work, this low-cost method allowed the screening of 333 samples, giving
an overview of the frequency of the resistance allele (Figure 2a). The minimum frequency of the
resistance alleles found was of 0.30, and the median value observed was of 0.70 (interquartile range
(IQR) = 0.60–0.80); only 14 locations (corresponding to 20% of the sampled locations) had values below
or equal to 0.50 (Table S1). The prediction of the frequencies of Ace OP-resistant alleles in the Alentejo
region, done via EKB, suggests no clear hotspots where the wild type allele might still be prevalent in
the population (Figure 2b), even though OP-resistance alleles still seem to be less widespread in the
West of the Iberian Peninsula.
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Table 1. Distributions of the I214V and G488S Bactrocera oleae Ace gene substitutions at sampling set I
locations. S: Organophosphate (OP)-sensitive alleles (coding for 214I and 488G); R: OP-resistant alleles
(coding for 214V and 488S). All samples were screened for ∆3Q.

Collection Site
(Nearest Locality) Code Geographic

Coordinates

Genotype R Allele Frequency

SS/SS SR/SR RR/RR Present
Study

Pereira-Castro
et al. [18] Variation

Guimarães GUI 41.46N; 8.31W 2 6 2 0.50 0.45 0.05
Penamacor PEN 40.16N; 7.10W 1 2 7 0.80 0.75 0.05

Tremês TRE 39.36N; 8.75W 0 3 7 0.85 0.55 0.30
Elvas ELV 38.86N; 7.27W 1 6 3 0.60 0.55 0.05

N.S. de Machede NSM 38.58N; 7.78W 3 4 3 0.50 0.40 0.10
Valverde VAL 38.53N; 8.02W 2 7 1 0.45 0.20 0.25

Cabeça Gorda CGD 37.91N; 7.82W 2 5 3 0.55 0.40 0.15
Lagos LAG 37.13N; 8.68W 1 6 3 0.60 0.65 −0.05
Seville SEV 37.27N; 5.50W 0 3 7 0.85 0.60 0.25
Baeza BAE 38.05N; 3.37W 0 2 8 0.90 0.90 0.00

Almeria ALM 36.89N; 2.44W 0 2 3 0.80 0.90 −0.10
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Figure 2. Schematic representation of OP resistance-associated alleles in the olive fruit fly based on
333 samples spread through 71 locations (see Figure 1b for details). (a) Observed frequencies by
grid square; (b) Kriging estimated Alentejo region surface. The darker the gray, the greater is the
proportion of OP resistance-associated alleles. White corresponds to the area with no data.

The frequency of B. oleae eclosion from olive fruits with signs of oviposition (Figure 3) shows a clear
decrease on eclosion rates after dimethoate application. In terms of the resistance genotypes detected
from our in-practice field tests, both I214V and G488S were found at high levels in the population,
before and after the application of dimethoate (Figure 3; Table S2). Indeed, the selected groves for
the field tests showed generalized high frequencies of the resistance-alleles prior to application and
not relating to the gradient found when analyzing the populations from the abandoned olive groves
(Figure 2).
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4. Discussion

Our results support the previous observation of complete concordance between the zygosities of
I214V and G488S in Iberian samples [18], strengthening the suggestion that, in this region, the resistance
alleles result of a migration event of flies with a chromosome already carrying both substitutions,
and are not a result of a local and independent ‘de novo’ origin. Insecticide resistance can spread
through insect migration, and the speed of the process depends on migration rates. Crops provide a
temporal and spatial concentration of resources, and olive groves cover wide areas of territory in the
Iberian Peninsula, leading to elevated effective sizes of populations.

We show an increase in the Ace OP-resistant allele’s frequencies in the studied region, likely
following the conversion and establishment of olive groves under intensive and super intensive
management regimes. The inclusion of dimethoate in the Priority List of Hazardous Substances
(http://www.atsdr.cdc.gov/cercla), and the intention of discontinuing its use from the EU due to health
risks, seem not yet to have practical results. Most of the olive groves areas are managed traditionally;
dimethoate is authorized in most of the Mediterranean countries, including Spain, Italy, Greece and
Portugal (http://ec.europa.eu/food/plant/pesticides/), and its use remains a common practice, although
at least in Portugal, recently, only one application per year is permitted. In line with dimethoate use
reduction, this active ingredient was already banned in French olive groves (in 2016). However, in such
a general scenario, it seems that keeping a high population frequency of the OP-resistance alleles
is still selected for.

No data at the European level was found on the use of OPs specifically in olive groves, and as
a surrogate we have looked for changes in olive crops fully converted or under conversion to organic
farming. Eurostat data (https://ec.europa.eu/eurostat) is available for the time frame of 2012 to
2017, showing an increase of olive production under the organic farming regime (with the exception of
Greece), with areas increase of 30% on average (albeit still low, in the total crop area). This tendency,
to be kept and increased, should convert into a lower use of dimethoate, releasing the selection pressure
on the olive flies’ populations. In such a scenario, it is hypothesized that the wild type alleles will
increase in the population, being the rate depending on the fitness costs of these two point-mutations
(and time for measurable shifts in the allele frequencies to be detected).

As to the ∆3Q mutation, it remains undetected in the Iberian Peninsula. Whether there are
indications that short insertions and deletions are frequent events, occurring in some genomes at a
frequency that is comparable to the one of point mutations [29,30], in others the frequency seems
to be lower [31,32]. This mutation was first found in Greek populations [23], and later its presence
was confirmed widespread following the use of OP insecticides across the Mediterranean basin [17].
The most likely scenario is of a single origin of this mutation, and its spread results of the strong selective
pressure imposed by the intensity of organophosphate use. However, at regular dose rates of OP,
the progression of the ∆3Q mutation might be hindered by a higher fitness penalty. Because the
level of resistance conferred by each variant, relative to the selecting dose of the pesticide, is also
responsible for the variant selection [12], under a low OP pressure the mutations I214V and G488S
are preferentially selected, increase in frequency and rapidly spread. Likely, the ∆3Q mutation
will be selected for only whether the dose rate is high; in that situation the point-mutations alone
(smaller-effect alleles) offer little selective advantage, as the pesticide will still be lethal to individuals
carrying them.

In the quest to find populations where the wild type is still prevalent, we made a fine screening
around the region with the lowest frequency of OP-resistance alleles [18]. However, at those previously
reported locations in the west of the Iberian Peninsula, if a change is to be recorded, it is the increase of
OP-resistance associated Ace alleles. This underlines the hypothesis of an introduction of the resistance
alleles from the more eastern Mediterranean areas into the Iberian Peninsula and its spreading to
the west, where we could still find locations with frequencies below 0.4 (Table S1, Figure 2). These
hotspots of “wild-type” Ace alleles are certainly of relevance once the selective pressure is released,
and the non-mutated alleles might be able to recover their frequencies on the populations depending

http://www.atsdr.cdc.gov/cercla
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on the fitness penalty of the mutations that confer resistance. This has practical implications if effective
measures for managing or containing resistance are to be put into place.

As dimethoate keeps on being used to control populations of B. oleae, the resistance alleles
will be fixated. In such a scenario the assumption was that no pest population suppression would
be achieved at admissible doses of the active ingredient. However, the results of our field trial
unexpectedly plea against the claimed dimethoate inefficiency on resistant populations. We have, at
the moment, no explanation for the results observed, and only more questions were added. Is the
dimethoate concentration allowed in Portugal higher than the level of resistance conferred by the two
mutations observed in the active site gorge of B. oleae? Kakani and co-workers [33] suggested that
these mutations may be the best combination possible—lowest fitness cost and highest resistance—to
the organophosphates commonly used against olive fruit fly natural populations. But if it so, why is
∆3Q not yet detected? Is it just a question of time, or are the fitness costs in this context too high?

The nature of our field test needs further consideration. Whereas in laboratory trials, tightly
controlled research manipulating the particular factor under study is performed to determine the
consequences of such manipulation, in field trials there is a complexity of uncontrolled variables.
Particularly, the in-practice field test here performed was fully in a real-life context, as no variables
were controlled: The dimethoate was applied in a production context, by three different operators
(company workers) at the concentrations allowed. Other variables, not even reported, might be aiding
the observed decrease in population numbers (e.g., high temperatures [34] or copper application [35]).
The impact of operational control procedures, failures and their rates cannot be determined. In practice,
the agronomists and respective production companies observe a marked decrease in population levels
of olive fly as aimed, which will impair the needed decrease in dimethoate applications.

5. Conclusions

Olive fruit fly is arguably the most important olive tree pest with reported production losses up to
80% of oil value and 100% of some table cultivars [36]. Since the first record of olive fruit fly’s resistance
to dimethoate in the Iberian Peninsula, we observed an increase in Ace gene point-mutations but the
∆3Q mutation remains undetected. Likely, the resistance alleles result of a migration event of flies with
a chromosome already carrying both substitutions, and are not a result of a local and independent
‘de novo’ origin. The absence of ∆3Q mutation, in face of what is known on the dimethoate usage
in traditional olive groves in the region, raises the question if the mutation fitness costs are too high
in the present context or if it just a question of time. Hotspots where the wild type allele is still
prevalent in the population are scarce but relevant once the selective pressure is released. Given
the generalization of resistance, the side-effects on auxiliary-fauna, and the considerable economic
impact of this insect, development of non-insecticidal pest management methods are highly desired,
as the combination of non-chemical methods that may be individually less efficient than pesticides can
generate valuable synergies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/10/8/232/s1,
Figure S1: Positive amplification is indicative of the presence of the specific nucleotide tested at a given position.
See section ‘Methodology’ in the main text for details., Table S1: Distributions of the I214V and G488S Bactrocera oleae
Ace gene substitutions at sampling set II. S: OP-sensitive alleles (coding for 214I and 488G); R: OP-resistant alleles
(coding for 214V and 488S). Geographic coordinates in the system ETRS89/Portugal TM06, Table S2: Ecloded
Bactrocera oleae larvae from 250 olive fruits with oviposition signs per olive grove replicate, and the presence of
I214V and G488S Bactrocera oleae Ace gene substitutions before and after dimethoate application. S: OP-sensitive
alleles (coding for 214I and 488G); R: OP-resistant alleles (coding for 214V and 488S). All samples were screened
negative for ∆3Q.
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