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Abstract: The lone star (Amblyomma americanum), black-legged (Ixodes scapularis) and American dog
ticks (Dermacentor variabilis) are species of great public health importance as they are competent
vectors of several notable pathogens. While the regional distributions of these species are well
characterized, more localized distribution estimates are sparse. We used records of field collected ticks
and an ensemble modeling approach to predict habitat suitability for each of these species in Florida.
Environmental variables capturing climatic extremes were common contributors to habitat suitability.
Most frequently, annual precipitation (Bio12), mean temperature of the driest quarter (Bio9), minimum
temperature of the coldest month (Bio6), and mean Normalized Difference Vegetation Index (NDVI)
were included in the final models for each species. Agreement between the modeling algorithms
used in this study was high and indicated the distribution of suitable habitat for all three species was
reduced at lower latitudes. These findings are important for raising awareness of the potential for
tick-borne pathogens in Florida.

Keywords: Ixodid ticks; distribution; geography; modeling; ensemble; niche; Lone star; Black-legged;
American dog

1. Introduction

In Florida, cases of locally acquired tick-borne illnesses are reported yearly [1]. Officially
recognized, locally acquired cases are sporadic, which may reflect variation in the types of human
activities that influence exposure or transmission risk and/or variation in the distribution of vector
species. Distribution estimates are often restricted to county level averages when detailed spatial
information is unavailable or when the focus is on large geographic extents. While this approach can
often leverage available data, it can mask important nuances in the distribution of exposure risk. In this
paper, we address the latter aspect of vector-borne disease risk and this necessitates examining vector
distributions at resolutions fine enough to associate human behaviors with the local environments.
This requires discerning patterns at a spatial resolution representing the sub-county scales.

One of the major methodological challenges in characterizing tick vector distributions is that there
are many statistical and pattern matching approaches to estimate the distribution of the vector [2].
All these approaches rely on identifying suitable habitat for a species based on associations between
observed presence/abundance and environmental characteristics of those locations [3]. However, each
modeling approach uses method-specific parameters and assumptions that may entrain unrecognized
predictive biases unrelated to the biology of the species being modeled [4]. One solution to reduce
the unrecognized biases is to use ensembles of different modeling algorithms with the presumption
that their overall patterns will reduce the potential predictive bias produced by any single model [5,6].
Ensemble outputs highlight areas of agreement across predictions and are believed to indicate greater
confidence in the suitability of those locations for the target (tick) species [5].
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Many previous efforts of ensemble models for tick species’ distributions have been done at regional
scales and relied on limited sets of environmental (primarily climatic) data [7–11]. Here, we use an
ensemble prediction from five common modeling algorithms to estimate the geographic distributions
of suitable habitat for the lone star (Amblyomma americanum), black-legged (Ixodes scapularis), and
American dog ticks (Dermacentor variabilis), three species of public health importance in Florida.
These models are developed at a resolution of one hectare, to provide a more detailed scale for case
investigation, or intervention.

Nationally, the incidence of tick-borne diseases is increasing and represents an overwhelming
majority of vector-borne infections in the U.S. each year [12]. Reports of these diseases have outpaced
other vector-borne illness by a factor of 9:1 between 2004 to 2013 [12]. Lone star, American dog,
and black-legged ticks are known to transmit several of the most frequently reported pathogens
causing disease in humans. The black-legged tick is the primary vector for Lyme disease pathogens
(Borrelia spp.) in the Eastern United States, as well as a vector for Anaplasma phagocytophilum, Ehrlichiosis
causing agents, and the parasite Babesia microti [13–17]. Cases of Lyme disease account for nearly
70% of all nationally notifiable vector-borne diseases in the U.S. [12]. High abundance, voracious and
nonspecific biting habits, and known or suspected competence for transmission of Ehrlichia chaffeensis
and E. ewingii, Francisella tularensis, and the agent of southern tick-associated rash illness (STARI)
make the lone star tick a species of significant public health concern [18–27]. The American dog
tick is an important vector of both human and animal pathogens. This species is known to transmit
Rickettsia rickettsii (Rocky Mountain spotted fever—RMSF), Francisella tularensis, and other notable
pathogens [28,29].

In this study we used five modeling algorithms: Generalized linear models (logistic regression),
boosted regression trees, random forests, multivariate adaptive regression splines, and maximum
entropy to estimate the distribution of lone star, black-legged, and American dog ticks. The five
modeling algorithms used in this study have been used in various ecological applications to estimate
the geographic distributions of numerous vagile and non-vagile species, including ticks [11,30,31].
Common species distribution modeling (SDM) algorithms generally fall into one of two categories:
Statistical approaches, which rely on underlying assumptions about the distributions of data values or
models; and machine learning approaches, which instead group the data into distinct, homogeneous
groupings (classification) without assuming an a priori distribution [32].

Traditional statistical approaches stem from regression methods and include generalized linear
models (GLMs), and their extensions, such as generalized additive models (GAMs) and multivariate
adaptive regression splines (MARS). Logistic regression (GLM with a logit link function) is a common
statistical method to model binary responses such as presence/absence data. The method is well
established and easily interpretable. The response variable from logistic regression is a probability that
the outcome is the value of interest that is conditional on the weighted linear combination of predictor
variables [33]. MARS can be thought of as piecewise regression in which the data are fit using a defined
number of linear splines. This method is particularly useful if a species’ response to the environment is
presumed to be non-monotonic [34].

Machine learning (ML) approaches, including classification methods, are ‘data-driven’. Unlike
statistical approaches, which assume an initial data model (e.g., linear or logistic response), and specific
distribution functions, ML attempts to learn the relationship by finding dominant patterns in the
data [35]. Classification methods use a series of branching decisions regarding the predictor variables
to partition the response variable into homogeneous groups (terminal nodes or leaves). These decision
trees can then be used as a stand-alone classifier or in conjunction with other methods to build more
robust predictions. One such approach to develop more robust classifiers is a method called random
forests [35]. This approach uses a collection of classification trees, each trained on a random subset of
the data. Each tree uses the predictor variables from a given data point to ‘vote’ for the most popular
class for that input [35].
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Boosted regression trees (BRTs) bridge the traditional statistical techniques such as GLMs and
ML. Instead of relying on a ‘popular vote’ to determine the output class (as in RF), regression trees
fit a mean response for observations within each leaf. For the logistic regression trees, the response
is modeled via a logit function [36]. BRT combines the regression tree models with a method called
boosting, which builds a collection of the individual trees in linear combination. As with RF and other
classification, regression, or decision tree models, BRTs attempt to produce homogeneous subsets of
the response variable by partitioning the multivariate predictor space [36].

Maximum entropy (MaxEnt) modeling also began as a general-purpose ML tool to make predictions
from incomplete information [37]. This method attempts to estimate a target probability distribution
of occurrence conditional on environmental variables by finding the distribution of maximum entropy
subject to constraints defined by the target sample [37]. These constraints consist of five feature types
that reflect the relationship between the probability distribution and environmental variables: linear,
quadratic, product, threshold, and binary. It has since been shown to be mathematically equivalent to
logistic regression under certain circumstances [10,37,38].

Application of these methods to species occurrence data and raster-based predictors allows
us to generate high resolution estimations of geographic distributions based on environmental
suitability for these species. These predictions can help increase understanding of vector distributions
and target areas at risk of vector-borne pathogens. However, we have relatively little basis for
understanding the differences in predicted vector distributions (and hence our projections of the human
populations at risk) caused by using different modeling approaches and determining if one approach
may heuristically outperform the others. In this study, we use an ensemble modeling approach to
compare the performance of various models using a common set of environmental predictor data and
geographically identical survey data sets of tick species occurrences. An examination of the geographic
extents of suitable area conserved across models provides a starting point for evaluating the utility of
these different modeling approaches.

2. Materials and Methods

2.1. Tick Distribution Data

We used georeferenced records from three years of tick collections performed from late 2015
through 2018 containing observations of adult Amblyomma americanum, Dermacentor variabilis, or Ixodes
scapularis [39,40]. The initial dataset included 1956 surveys of presence or absence for each of the three
species. Spatially, the dataset contained multiple transects spread across 41 sites in mainland Florida.
Within each site, pairs of transects were run in the primary local biotopes (2–10 transects, depending
on the size and heterogeneity of land cover at each site). In aggregate, sampling of the major biotopes
was performed proportional to the state-wide land class coverages. Temporally, these transects were
repeated regularly throughout the study period (repeated surveys of each transect). Collection efforts
occurred year-round to ensure all sites were sampled with the same intensity regardless of when
individual species’ peak seasonal activity occurred [39,40]. The methods for collection are described in
further detail elsewhere [39,40]. The repeated sampling of multiple biotopes within sites produced a
total of 1956 presence or absence records for the dataset.

As many of the environmental data layers were in raster format, a one-hectare vector grid matching
the extent and resolution of the environmental predictors was generated. The geographic coordinates
for the midpoints of the 1956 survey records was overlain on the vector grid. All surveys within
individual cells were merged to a single record and if adult ticks were found during any of those
surveys, that species was considered ‘present’ in that cell, otherwise it was declared absent. Thus,
‘absence’ cells never yielded adult ticks for an individual species throughout the entire study, while
grid cells containing one or more occurrence records were considered ‘presence’ locations. In some
cases, the same transect was linked to multiple grid cells during different surveys, primarily due to
slight modifications in the position of the transect as a result of changes in the local environment such
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as prolonged flooding, burning, and other factors impacting accessibility of a transect location. In these
cases, records were aggregated in the grid cell within which they occurred, rather than to the grid cell
containing previous records of the same transect. The coordinates for the geometric centers of presence
or absence cells was extracted and used to delineate the location of each record, resulting in a dataset
of 560 points for subsequent modeling (Table 1).

Table 1. Number of presence/absence observations used for modeling each species. The total number
(n = 560) and geographic location of observations is conserved for each species, with only observed
occurrence (presence) varying.

Species Total Presence Absence

Amblyomma americanum 560 98 462
Ixodes scapularis 560 65 495

Dermacentor variabilis 560 30 530

2.2. Selection of Environmental Predictors

Environmental predictors used in our species distribution models consisted of 36 characteristics
describing the climatic and habitat conditions in the study area. Habitat variables included three
descriptions of Normalized Difference Vegetation Index (NDVI; minimum, mean, and maximum),
land cover, elevation, soil and geomorphologic characteristics, and distance from water features.
The climatic characteristics considered were 19 measures of temperature and precipitation variability.

Variables describing NDVI, elevation, soil, and geomorphologic characteristics were derived
from MODIS NDVI 16-day composites, ASTER Global DEM, STATSGO soils database and national
hydrography datasets, respectively [41–44]. The land cover classification was derived from the Florida
Cooperative Land Cover database, which includes statewide classifications of all major land cover types
at a native resolution of 10 m [45]. The database represents a hierarchical classification. The primary
state-level land cover types were aggregated using a majority rule to the coarsest level as one of five
primary types: Forest, which included pine and hardwoods; shrub, which encompassed shrub and
brush lands; grasslands; wetlands; and a final, general category including all other land types such as
water bodies, urban areas, and seasonal agriculture. All environmental predictors were resampled
using bilinear interpolation for continuous variables and majority rule for categorical variables and
cropped to the same extent and 1 ha resolution.

The climatic variables consisted of 19 bioclimatic variables calculated from gridded daily temperature
and precipitation estimates from Daymet [46]. The climatic variables follow the same naming conventions
and are calculated following the methodology of Hijmans et al. (2005) as implemented in the ‘biovars’
function in the dismo R package [47,48]. The bioclimatic variables were calculated at the native 1 km2

resolution of the gridded daily estimates.

2.3. Distribution Models

Initial variable screening was performed before construction and selection of our distribution
models to reduce the potential for collinearity. Reduction of the potential variable set was guided by
the procedures outlined in Springer et al. (2015). First, Pearson, Spearman, and Kendall correlation
coefficients were calculated amongst all environmental predictors. Univariate GAMs were constructed
to assess initial significant relationships between each predictor and the dependent variable. Predictors
were ranked by the deviance explained of the dependent variable. Deviance explained is a GAM
parameter analogous to R-squared used GLMs and represents the amount of variation in the dependent
variable that is explained by the given predictor [11]. To produce the final set of variables for
consideration in the distribution models, the variable with the highest deviance explained from the
univariate GAM was selected for inclusion. All additional variables were selected in descending order
by deviance explained and whether all pairwise correlations with previously selected variables was
below a ±0.7 threshold [49].
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We used five different modeling algorithms: (1) general linear models (logistic regression—LR) [33],
(2) boosted regression trees (BRTs) [36], (3) random forests (RF) [35], (4) multivariate adaptive regression
splines (MARS) [34], and (5) maximum entropy (MaxEnt) [37], to estimate the distribution of each
species. Each of these methods are generally considered to perform well using presence/absence or
presence/background data [4,11]. It should be noted that MaxEnt is generally run as a ‘presence-only’
model, with background data drawn randomly from the study area, although it can be supplied with
spatially biased pseudo-absences [50,51]. Here, MaxEnt was supplied with the same (‘true’) absence
data as the other algorithms in place of the random background draw.

Each model algorithm was run through an iterative procedure to select the best model from the
set of environmental predictors and was optimized using performance metrics specific to each method.
The optimized GLM was selected by performing an exhaustive search of first order interactions in
the model space. Competing models were compared using the small sample size corrected Akaike’s
Information Criterion (AICc) and the final model was selected by minimizing this value [52,53].
The BRT model was optimized by varying tree complexity, learning rate, and ‘bag fraction’ to select a
model minimizing mean deviance with at least 1000 trees according to Elith et al. (2008). The random
forest model was optimized by varying the number of considered variables, node size, and sample size
to minimize out-of-bag (OOB) error [36]. The MARS model selection procedure utilized an internal
10-fold cross validation procedure to select the appropriate variables and number of knots [34,54].
As with the GLM model, we only considered first-order interactions in the MARS model. The optimized
model was selected to maximize the GRSq, which is a cross validated estimate of the predictive power
of the model [54]. The MaxEnt model was selected by varying the betamultiplier with a contribution
threshold of five percent and maximum correlation threshold between variables of 0.9. Optimization
of these parameters allows for a certain amount of uncertainty to be introduced into the model and
limits the inclusion of extraneous variables (low contribution) and collinearity. The optimal model was
selected to maximize the Area Under the Curve (AUC) of internally withheld test data [55].

Validation of the final models was performed using 10-fold cross validation to assess the agreement
between observed and predicted values. The dataset used to select the optimized model was divided
into 10 folds. Each model was trained by withholding one fold of the data and running the model
with the remaining folds. The withheld fold was used to test the predictive accuracy of each run.
This procedure was repeated ten times so that each fold was withheld and used for testing. All models
were validated using the same folds for consistency across methods.

2.4. Spatial Predictions

Estimated habitat suitability for each species was determined by applying the optimized algorithms
to a set of raster variables. The output is a probability surface for the entire mainland portion of
the state, representing the probability that the conditions in a given raster cell are suitable for each
species. These probability surfaces were reclassified as suitable or unsuitable based on a specified
threshold criterion for prediction accuracy (sensitivity = specificity). This threshold criterion was
selected as a tradeoff between predicting true positives and true negatives. The ensemble prediction
of the distribution of suitable habitat for each species is the agreement between models and was
assessed by summing the binary suitability estimates for each method. Thus, suitability was based on
a consensus score ranging from 0–5 ranking how many of the algorithms indicated a given location
was suitable or not. We also retained the continuous probability estimates for each optimized model to
visualize single model variation from the ensemble prediction.

3. Results

3.1. Predictor Variables

The correlation matrices and the GAM variable screening procedure reduced the set of 36 potential
environmental covariates to 17 variables for A. americanum, 17 for I. scapularis, and 18 for D. variabilis.
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Several variables were important in models for all species, although there was some variation in the
deviance they explained and their rank (Table 2). Variables capturing the extremes in climate patterns
were frequently included for consideration, as were one or more measures of vegetation health or
greenness. Average temperatures during the driest quarter, total precipitation, and precipitation during
the wettest and driest months were considered for all three species. Mean NDVI was also considered
for all species. Elevation, distance to water bodies and curvature, a geomorphological characteristic
describing low-lying areas where water may pool transiently, were also considered for all species.
Consideration of these variables are consistent with previous studies of tick distributions, which have
selected variables either a priori or through similar selection procedures [7–11].

Table 2. Deviance explained by considered variables and rank via univariate generalized additive
models (GAM) for each species. NDVI is the Normalized Difference Vegetation Index, a proxy for
vegetation health.

Variable

Amblyomma
americanum Ixodes scapularis Dermacentor

variabilis

Rank Deviance
Explained Rank Deviance

Explained Rank Deviance
Explained

Mean Diurnal Range (Bio2) ---- ---- ---- ---- 1 0.137
Isothermality (Bio3) 19 0.078 ---- ---- 23 0.006

Tmax of Warmest Month (Bio5) ---- ---- ---- ---- ---- ----
Tmin of Coldest Month (Bio6) ---- ---- 3 0.16 ---- ----

Tmean of Wettest Quarter (Bio8) ---- ---- 1 0.201 14 0.025
Tmean of Driest Quarter (Bio9) 8 0.169 11 0.102 6 0.096

Tmean of Coldest Quarter (Bio11) 1 0.253 ---- ---- ---- ----
Annual Precipitation (Bio12) 6 0.226 2 0.163 8 0.067

Precipitation of Wettest Month (Bio13) 5 0.232 9 0.106 10 0.047
Precipitation of Driest Month (Bio14) 13 0.151 21 0.026 22 0.007

Precipitation Seasonality (Bio15) 14 0.15 ---- ---- 9 0.054
Precipitation of Driest Quarter (Bio17) ---- ---- 10 0.103 ---- ----

Curvature (curv) 23 0.027 25 0.004 26 0.0004
Depth to Water (detwt) ---- ---- 23 0.011 16 0.013

Distance to Water (distwater) 24 0.026 24 0.007 11 0.039
Elevation (DEM) 26 0.012 26 0.003 21 0.01

Maximum NDVI (NDVImax) ---- ---- ---- ---- 15 0.02
Mean NDVI (NDVImean) 10 0.167 16 0.059 20 0.01

Minimum NDVI (NDVImin) ---- ---- 18 0.044 24 0.005

Tmax = Maximum Temperature in Celsius; Tmean = Mean Temperature in Celsius; Tmin = Minimum Temperature
in Celsius; NDVI = Normalized Difference Vegetation Index.

The final variables included in each model are listed in Table 3. Selection of final models for
each species indicated that several variables were conserved across algorithms. Most frequently,
annual precipitation (Bio12), mean temperature of the driest quarter (Bio9), minimum temperature
of the coldest month (Bio6), and mean NDVI were included in the final models for each species.
The conservation of these variables across algorithms and species is indicative of the similar ecological
niches occupied by these ticks.

All the modeling algorithms performed comparably well for a given species. The cut off threshold
for delineating presence from absence ranged from 0.06–0.3 which is on par with the thresholds for
delineating presence used by James et al. (2015) and Kessler et al. (2018). The cross-validated AUC
scores for A. americanum were all between 0.89 and 0.92. The AUC scores for I. scapularis and D. variabilis
were slightly lower, with ranges of 0.83–0.90 and 0.76–0.83, respectively (Table 4). We found that all the
algorithms displayed reduced performance when the imbalance between response classes (presence
vs. absence) increased, which is likely a result of the smaller ‘presence’ sample sizes for I. scapularis
and D. variabilis. For each of the species BRT, RF, and Logistic performed slightly better than MARS
or MaxEnt.
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Table 3. Variables included in final models for each species. The machine learning algorithms consider
all variables initially, and unimportant variables are pruned back. As a result, all considered variables
are listed for these models, though the contribution of some variables is quite small.

Species Final Model Variables

Amblyomma
americanum

LR Bio13 + Bio12 + Bio9 + NDVImean + Bio3 + curv + distwater + dem + shrub

BRT Bio12 + NDVImean + Bio13 + Bio9 + Bio14 + Bio15 + distwater + Bio3 + curv + dem +
NDVImin + Bio11 + detwt + forest + wetlands + shrub + grass

RF Bio11 + Bio13 + Bio12 + Bio9 + NDVImean + Bio14 + Bio15 + dtwt + Bio3 + curv + distwater +
NDVImin + DEM + forest + grass + shrub + wetlands

MARS Bio12 + NDVImean + Bio14 + Bio13 + distwater + DEM + Bio3 + NDVImin

MaxEnt Bio12 + Bio9 + NDVImean + distwater

Ixodes scapularis

LR Bio12 + Bio6 + distwater + curv + shrub + wetlands

BRT Bio12 + Bio13 + Bio17 + Bio8 + NDVImean + Bio9 + NDVImin + distwater + Curv + Bio14 +
DEM + Bio6 + detwt + wetlands + shrub + forest + grass

RF Bio8 + Bio12 + Bio6 + Bio13 + Bio17 + Bio9 + NDVImean + NDVImin + Bio14 + detwt +
distwater + curv + DEM + forest + grass + shrub + wetlands

MARS Bio12 + Bio6 + Bio8 + Bio13 + curv

MaxEnt Bio12 + Shrub + Bio6 + distwater + Bio13

Dermacentor
variabilis

LR Bio2 + Bio9 + Bio15 + Bio13 + NDVImax + DEM + Bio14 + curv

BRT Bio12 + Bio15 + Bio9 + NDVImax + Bio3 + Bio13 + Bio2 + distwater + NDVImin + Bio14 +
DEM + curv + Bio8 + forest + detwt + shrub + grass + wetlands

RF Bio2 + Bio9 + Bio12 + Bio15 + Bio13 + distwater + Bio8 + NDVImax + detwt + DEM + Bio14 +
Bio3 + NDVImin + curv + forest + grass + shrub + wetlands

MARS Bio2 + Bio13 + Bio15 + Bio3 + Bio15 + Bio3 + detwt + NDVImax + curv + NDVImin

MaxEnt Bio12 + NDVImax + forest + grass

LR = Logistic Regression; BRT = Boosted Regression Trees; RF = Random Forests; MARS = Multivariate Adaptive
Regression Splines; MaxEnt = Maximum Entropy.

3.2. Spatial Predictions

The distributions of suitable habitat produced from the ensemble predictions for each species
showed similar corridors of high model agreement through the center of the Florida peninsula
(Figures 1–3). Each ensemble map identified a contiguous area of suitability in North Central Florida,
with generally reduced suitability in the southern portions of the state. In the South Central region of
the state, the Lake Whales Ridge is identifiable in ensemble predictions for Amblyomma americanum and
Ixodes scapularis as either unsuitable or suitable, respectively. The southwestern coast, however, from
Naples south into Everglades National Park shows an area of predicted suitability that is conserved
across models and species. The panhandle of the state is similarly less suitable for each of the species
except for a disjunct region in the heavily forested northwestern corner of the state. The ensemble
predictions for A. americanum and I. scapularis show high consensus across algorithms with more
area deemed suitable by three or more algorithms. The prediction for D. variabilis showed greater
discordance, with a greater area having only one or two algorithms agreeing on suitability; lower
agreement for this species may be a result of the small sample size used for building the models. For all
species, the MARS algorithms predicted the least amount of area as suitable habitat, and with the
highest mean suitability scores. This could be a sign of overfitting in the model.
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Table 4. Performance metrics associated with each of the five modeling algorithms for each species. AUC ranges correspond to the upper and lower bounds of a 95%
CI calculated from across the 10-fold cross validation.

Threshold 1 AUC 2 (95% C.I.) s.e. 3 Accuracy 4 (95% C.I.) Kappa 5 Sensitivity 6 Specificity 7
Positive

Predictive
Value 8

Negative
Predictive

Value 9

Amblyomma
americanum

Logistic 0.18 0.90 (0.87–0.93) 0.0152 0.828 (0.794–0.859) 0.525 0.827 0.829 0.506 0.957
BRT 0.26 0.92 (0.89–0.95) 0.0143 0.934 (0.91–0.953) 0.792 0.939 0.933 0.748 0.986
RF 0.23 0.92 (0.89–0.95) 0.0151 0.916 (0.89–0.938) 0.749 0.959 0.907 0.686 0.991

MARS 0.3 0.92 (0.89–0.94) 0.0132 0.889 (0.86–0.914) 0.660 0.847 0.898 0.638 0.965
MaxEnt 0.13 0.89 (0.85–0.92) 0.0168 0.617 (0.575–0.658) 0.276 0.959 0.544 0.309 0.984

Ixodes
scapularis
Logistic 0.14 0.83 (0.78–0.88) 0.0254 0.923 (0.898–0.944) 0.693 0.923 0.923 0.612 0.989

BRT 0.16 0.88 (0.83–0.92) 0.0227 0.794 (0.758–0.827) 0.367 0.785 0.796 0.336 0.966
RF 0.09 0.90 (0.86–0.93) 0.0188 0.878 (0.848–0.904) 0.593 1.000 0.862 0.489 1.000

MARS 0.15 0.84 (0.78–0.89) 0.0279 0.875 (0.844–0.901) 0.524 0.785 0.887 0.477 0.969
MaxEnt 0.24 0.85 (0.80–0.90) 0.0241 0.556 (0.514–0.598) 0.166 0.923 0.508 0.198 0.980

Dermacentor
variabilis
Logistic 0.06 0.82 (0.77–0.87) 0.0246 0.809 (0.773–0.84) 0.244 0.800 0.809 0.192 0.986

BRT 0.1 0.82 (0.76–0.88) 0.0301 0.952 (0.931–0.968) 0.659 0.967 0.951 0.527 0.998
RF 0.04 0.83 (0.78–0.88) 0.0265 0.86 (0.829–0.888) 0.383 1.000 0.853 0.278 1.000

MARS 0.14 0.77 (0.69–0.86) 0.0424 0.916 (0.89–0.938) 0.443 0.733 0.926 0.361 0.984
MaxEnt 0.14 0.76 (0.69–0.83) 0.0355 0.358 (0.318–0.399) 0.044 0.967 0.323 0.075 0.994
1 Continuous probability score used to delineate presence from absence for consensus predictions (sensitivity = specificity); 2 area under the Receiver Operating Characteristics (ROC)
curve; 3 standard error of AUC; 4 ratio of sum of correctly predicted positives and negatives to the sample size; 5 Kohen’s Kappa, a measure of agreement that accounts for agreement due
to chance; 6 true positive rate; 7 true negative rate; 8 proportion of positives that are true positives; 9 proportion of negatives that are true negatives.
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Figure 1. (A) Ensemble prediction of suitable habitat for A. americanum. Hotter colors indicate higher 
agreement in the number of models predicting suitability of an area. (B–F) Continuous suitability 
scores for the five modeling algorithms: LR, BRT, RF, MARS, MaxEnt, respectively. A core region in 
the north-central region of the state shows consensus across all five algorithms. Suitable areas in the 
southern part of the state are sparser, with lower model agreement. 

Figure 1. (A) Ensemble prediction of suitable habitat for A. americanum. Hotter colors indicate higher
agreement in the number of models predicting suitability of an area. (B–F) Continuous suitability
scores for the five modeling algorithms: LR, BRT, RF, MARS, MaxEnt, respectively. A core region in
the north-central region of the state shows consensus across all five algorithms. Suitable areas in the
southern part of the state are sparser, with lower model agreement.
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Figure 2. (A) Ensemble prediction of suitable habitat for I. scapularis. Hotter colors indicate higher 
agreement on habitat suitability across models for a given area. (B–F) Continuous suitability scores 
for the five modeling algorithms: LR, BRT, RF, MARS, MaxEnt, respectively. Much of the northeastern 
part of the state is deemed suitable by the majority of the models. Southern areas of predicted 
suitability show lower consensus. 

Figure 2. (A) Ensemble prediction of suitable habitat for I. scapularis. Hotter colors indicate higher
agreement on habitat suitability across models for a given area. (B–F) Continuous suitability scores for
the five modeling algorithms: LR, BRT, RF, MARS, MaxEnt, respectively. Much of the northeastern part
of the state is deemed suitable by the majority of the models. Southern areas of predicted suitability
show lower consensus.
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4. Discussion

The estimated distributions for the medically important tick species presented in this study show
strikingly similar patterns. Much of northern Florida is considered suitable by the majority of—or
all of—the modeling algorithms used, while suitability decreases at lower latitudes. The deviance
explained, which is a measure of how well the model explains the relationship between dependent
and independent variables, by any single predictor was very low for all species, with the greatest
deviance explained being mean temperature of the coldest quarter (0.253), mean temperature of the
wettest quarter (0.20), and mean diurnal range (0.137) for A. americanum, I. scapularis, and D. variabilis,
respectively. This is indicative that a plethora of conditions influence suitability for these species and
distributions are not driven by a predominant single factor. We found that while consensus among
algorithms was high (as indicated by large regions of suitable habitat receiving a score of ≥3 in the
consensus projections), each algorithm produced some variation in predicted suitable area. The use of
an ensemble approach provides a degree of certainty that the estimated distribution reflects that of the
species and is not simply a result of the choice of modeling algorithm.

However, it is important to remember that the consensus score of ensemble predictions are
simple sums, so they could be disproportionately influenced by conservative SDM algorithms [5].
For example, in a study of invasive fish species in the United States, Marmion et al. (2009) found
that MaxEnt produced estimated distributions with the smallest geographic area that did not extend
much beyond existing presence records (although the model’s training AUC values were the highest
of all models in their ensembles). As a result, the ensemble maps largely reflected the distributional
estimates from their MaxEnt models. In our study, AUC values for each of the three species were quite
close, indicating that the predictive performance of each algorithm was similar. However, MaxEnt
consistently produced the lowest AUC values while producing the predictions of suitable area with
the largest geographic extents for each species. This produces much of the low model agreement
areas (green) in our predictions. Conversely, the MARS algorithm produced higher AUC values but
was most conservative in its estimations of suitable area, which highlights one of the main criticisms
of ensemble approaches; while MARS and other algorithms predict suitable conditions in the same
areas, the extent of the MARS predictions limits the areas where highest model agreement is possible.
Ultimately, the accuracy of the various models for these tick distributions in Florida will need to be
determined by validation surveys in previously unsampled regions of the state. These studies are
currently underway and will be completed following the annual activity periods of the adult ticks for
each species.

In this study we limited our observations to occurrence records of adult specimens collected
via flagging, which resembles casual human exposure more than other sampling techniques such as
chemical attractants/traps or collections from sentinel species. Collections from free-ranging wildlife
may be a more sensitive representation of tick burden on the landscape but make high resolution
spatial and temporal predictions difficult because hosts may range widely through multiple habitat
types, and ticks may be attached to hosts for multiple days [56]. Additionally, some tick species that
have preferences for wildlife species rarely attach to humans. A primary utility of these records,
however, involved validating (or refuting) the SDMs. Previous publications using other survey
methods, including collections from wildlife, indicated the occurrence of lone star, black-legged, and
American dog ticks across northern Florida, which supports the distributional estimates presented
here [57–59]. However, records in the literature also note the presence of these species from regions in
south Florida, although these historic records are sparse [57,60]. Although we rarely found questing
ticks in southern Florida, several of the SDMs indicated suitable conditions broadly throughout the
region. These regions might represent some of the best evaluations of alternative SDMs within the
ensemble suite as they provide the clearest distinction in predictions. Sites where the five models either
all predicted occurrence or absence provide little discriminating power concerning which modeling
approach might be “best”. It is unclear if the north–south trend in suitability represents a true lack of
suitable habitat in this region [61,62]. The meridional trend in A. americanum abundance [57] closely
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corresponds to the three primary ecoregions in Florida, implicating variable ecological conditions in
the observed distributional patterns. Conversely, the predicted occurrences of tick species further south
for some of the models, especially the general agreement among models in the furthest southwestern
regions of the state, suggest there may be local foci of infestations that deserve further evaluation.

Previous studies modeling the distributions of these species across the United States and North
America have captured similar general trends, although the resolution for these studies is spatially
and temporally coarser (resolved to the county level for all available times). Our observed patterns in
distribution for A. americanum are supported by the county-level analysis of the contiguous United
States generated by Springer et al. [61], which observed reduced agreement for the suitability of
southern (and southeastern especially) Florida. Hahn et al. (2016) observed reduced model agreement
for south Florida in predictions for I. scapularis suitability. Similarly, the predicted distribution of
suitable habitat for D. variabilis was supported by previous studies showing much of the state as
suitable for the species, although the southeastern regions are less so [9,10]. The distribution estimate
by James et al. (2015) additionally captured the area of higher suitability along the gulf coast of the
panhandle for D. variabilis.

A practical application of high resolution ensemble models involves case investigations in regions
where tick-borne pathogens are or might be emerging. Reported cases of locally acquired tick-borne
infections in Florida are relatively rare compared to numbers in the Northeast and Upper mid-western
United States. Additionally, they tend to be geographically scattered, making investigations challenging
and expensive. The disparate occurrence of cases may reflect variation in the types of human activities
that influence risk and/or variation in the distribution of vector species or pathogen. The ensemble
models, if validated, could allow local and state health officials to target surveillance and other
intervention strategies while minimizing marginal costs of staff, equipment and supplies.

Historic under-sampling of ticks in many counties in Florida likely produces poorly characterized
distributions and estimates of human risk of exposure. The spatial predictions of questing Ixodid ticks
in Florida produced by this research contributes to a better understanding of exposure risk to ticks
and their pathogens by providing an initial indication of risky landscapes and may inform control
measures by county, state, and federal agencies. Understanding the distributions for pathogen vectors,
at high spatial resolutions, can be an important first step to identifying and targeting areas at risk for
vector-borne diseases. If the maps are determined to be spatially accurate and temporally stable, they
could also help diagnostically by ruling out certain species-associated pathogens based on geographic
activity of the patient. This is evident in the consistently high negative predictive values for ruling
out species distributions. The heterogeneous distributions of the three tick species covered by this
study should help guide future work on evaluating human exposure risk to these vectors and their
pathogens in Florida. We found numerous temperature and precipitation variables were important in
predicting the distribution of adult lone star, black-legged, and American dog ticks in the state and the
variables were conserved across model algorithms and species. Additional models informed by tick
densities, pathogen prevalence, or disease incidence may better improve estimates of exposure risk to
tick-borne diseases, as these approaches address important aspects of transmission not addressed by
habitat suitability alone [63,64].

5. Conclusions

Broad patterns of environmental suitability for the three species modeled are similar. This finding
speaks to the similarity in niches occupied by these species. The ecology of all three species is largely
driven by similar responses to climatic conditions such as temperature and moisture availability.
The northern and north central regions of the state consist of a large contiguous tract of suitable area
that diminishes at southern latitudes.

The fine-grained distributions of suitable habitat for medically-important tick species in Florida
are more heterogeneous than previous studies would suggest. Individually, each modeling algorithm
produced estimates with closely similar accuracies and geographic distributions of suitability. By using
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an ensemble of multiple algorithms, we developed consensus predictions which highlighted suitable
areas conserved across models. The high degree of consensus among algorithm predictions suggests
that although each approach produces some noise, no single algorithm vastly outperformed the others.
Each algorithm’s prediction should be considered individually, however, as high accuracy measures
could be due to overfitting and produce low generalizability. As a result, reliance on any single
algorithm carries a degree of uncertainty in its prediction. Validation surveys are required to test these
predictions. When used in conjunction with additional behavioral or exposure factors to estimate risk
of exposure to ticks or tick-borne pathogens, fine resolution habitat suitability models may be a useful
tool for identifying areas of tick presence.
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