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Abstract: The Chinese citrus fly, Bactrocera minax, is a devastating pest of citrus, which enters the
obligatory diapause in overwintering pupae to resist harsh environmental conditions. However,
little is known about the molecular mechanisms underlying pupal diapause. The previous
transcriptomic analysis revealed that a large number of genes were regulated throughout the
pupal stage. Of these genes, 12 and six ones that are remarkably up- and downregulated, respectively,
specifically in intense diapause were manually screened out in present study. To validate the
expression of these genes throughout the pupal stage, the quantitative real-time PCR (qRT-PCR) was
conducted, and the genes displaying different expression patterns with those of previous study were
excluded. Then, the expressions of remaining genes were compared between diapause-destined
and non-diapause-destined pupae to reveal their association with diapause using qRT-PCR and
semiquantitative PCR. Finally, five genes, TTLL3B, Cyp6a9, MSTA, Fru, and UC2, and two genes, KSPI
and LYZ1, were demonstrated to be positively and negatively associated with diapause, respectively.
These findings provide a solid foundation for the further investigation of molecular mechanisms
underlying B. minax pupal diapause.
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1. Introduction

The Chinese citrus fly, Bactrocera minax (Enderlein) (Diptera: Tephritidae), an oligophagous pest
of citrus fruits, has been considered as a devastating pest of citrus plants in the temperate areas of
Asia [1,2]. Usually, the female adults lay eggs into the citrus fruit where the larvae hatch and feed,
causing the fruits to ripen prematurely and drop down. Subsequently, the mature larvae drill out of
the fallen fruits and burrow into soil for pupation [2]. Recently, the outbreaks of B. minax in several
provinces of China have caused serious economic losses to the citrus industry [2,3]. Therefore, this pest
has aroused great concerns in citrus-growing regions in China and the research on this pest has been
widely conducted [4–11].

Diapause is a genetically programmed developmental arrest, accompanied by suppressed
metabolism and enhanced stress tolerance [12,13], in response to environmental stimuli or internal
cues to resist adverse environmental conditions in unfavorable season [14]. Many univoltine insects
enter obligatory diapause at a specific developmental stage in each generation but require no token
stimuli for diapause induction and preparation [12]. Likewise, the univoltine B. minax also enters the
pupal diapause to overwinter. The overwintering pupal stage lasts for 160–170 d, synchronizing the
adult emergence with citrus fruit bearing [15]. Therefore, understanding the molecular mechanisms
of pupal diapause of B. minax will contribute to elucidating the inherent mechanisms underlying
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pupal development and adaptation to harsh environment. In the past decade, several relevant
studies on pupal diapause of B. minax had been carried out in China. For example, the previous
studies have demonstrated that the chilling in diapause is critical for pupal survival and adult
emergence [10], and the 20E application was able to terminate pupal diapause and significantly
accelerate adult emergence [7,16]. Moreover, the respiratory rate throughout the pupal stages was
measured, and the fitted respiratory rate trajectory indicated that B. minax gradually entered intense
diapause approximately 40 d after pupation, and the intense diapause lasted for two months (40–100 d
after pupation) [17]. Although substantial progress has been made, the understanding of mechanisms
underlying pupal diapause of B. minax is still limited.

Mining the diapause-associated genes could be an effective way in an effort to reveal the
mechanisms underlying diapause. A number of studies have been conducted in this endeavor and
many diapause-associated genes have been discovered in insects [18–21]. Recently, the next-generation
sequencing technology has widely been used to study the mechanisms underlying a lot of biological
processes in organisms by revealing the gene expression profiles in high-throughput and large-scale
manners [22–24]. Given the importance of insect diapause, the underlying mechanisms have been
studied using next-generation sequencing technology in many insects [25–27]. In our previous
study, the transcriptome of B. minax was obtained using next-generation sequencing technology,
based on which the gene expression profiles throughout pupal stage were compared, and a large
number of genes were found to be regulated specifically in diapause [17]. In order to reveal the
physiological variation in diapause, genes regulated most remarkably during diapause were manually
screened out in this study, according to the reads per kb of exon model per million mapped reads
(RPKM) values obtained previously [17]. Then, the quantitative real-time PCR (qRT-PCR) was
conducted to verify the expression patterns of these genes throughout the pupal stage. Those genes
which displayed inconsistent expression patterns between qRT-PCR and transcriptomic analysis
were excluded. To further verify the association of remaining genes with diapause, the qRT-PCR and
semiquantitative PCR were performed to compare the gene expression levels between diapause-destined
and non-diapause-destined pupae. The findings of this study laid basis for further investigations on
the mechanisms underlying B. minax diapause.

2. Materials and Methods

2.1. Insect Rearing and Sample Collection

Fallen oranges infested with maggots were taken back to the lab from an orchard in Wulong
County, Chongqing Municipality, China. Third-instar larvae were collected from oranges and placed
over sand in plastic dishes to pupate. All pupae were reared at 18 ± 2 ◦C, 70 ± 10% relative humidity,
and photoperiod of 14 L:10 D. Twenty pupae were collected and stored in liquid nitrogen every 10 days
until adult emergence for subsequent gene expression analysis.

2.2. Acquisition of Non-Diapause-Destined Pupae and Sample Collection

Non-diapause-destined pupae were acquired by injecting 20E into newly-formed pupae.
The 20E (Sigma, St. Louis, MO, USA) was dissolved in 10% ethanol to concentration of 1 µg/µL.
Each newly-formed pupa with the same size (≈9 mm) was injected with 1 µL 20E solution. Then all
pupae were reared in plastic dishes under the same condition described above. Twenty pupae were
collected and stored in liquid nitrogen every 10 days for subsequent gene expression analysis.

2.3. RNA Isolation and First-Strand cDNA Synthesis

Total RNA was isolated from whole body of pupa using TRIzol Reagent (Life Technologies,
Carlsbad, CA, USA) according to manufacturer’s protocols. The integrity of RNA was detected by 1%
agarose gel electrophoresis. Reverse transcription of 500 ng total RNA into the first-strand cDNA was
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performed using a PrimeScriptTM RT Master Mix (Perfect Real Time) Kit (Takara, Shiga, Japan). Three
biological replicates were set for each time point.

2.4. Selection of Putative Diapause-Associated Genes

The previous transcriptomic study discovered significantly differentially expressed genes (DEGs)
throughout pupal stage according to the RPKM values. The cluster analysis indicated that 1434
and 848 DEGs were up- and downregulated, respectively, specifically in diapause (40–100 d after
pupation) [17]. In this study, the top hit DEGs with stable expression among biological replicates
were manually selected as putative highly diapause-associated genes. These genes were annotated by
alignment to NCBI Nr database using BLASTx (http://www.ncbi.nlm.nih.gov/) (Table 1).

Table 1. Information of selected putative diapause-associated genes.

Gene ID Accession No. Annotation

Arrdc3 BmUnigene27028.co GBEY01019016.1 Arrestin domain-containing protein 3
Cyp6a9 BmUnigene26209.co GBEY01017833.1 Cytochrome P450 6a9
Fru BmUnigene22870.co GBEY01013664.1 Sex determination fruitless protein type C
GEF BmUnigene27885.c5 GBEY01020590.1 Ras guanine nucleotide exchange factor P
grk BmUnigene18469.co GBEY01008416.1 Protein gurken

MEGF10 BmUnigene26874.co GBEY01018777.1 Multiple epidermal growth factor-like
domains protein 10

MSTA BmUnigene27964.co GBEY01020759.1 Protein msta
MYBLI BmUnigene27469.co GBEY01019748.1 Myb-like protein I
Pcd BmUnigene23179.co GBEY01014042.1 Pterin-4-alpha-carbinolamine dehydratase
setmar BmUnigene15667.co GBEY01005630.1 Histone-lysine N-methyltransferase SETMAR
TTLL3B BmUnigene14579.co GBEY01004593.1 Tubulin glycylase 3B
UC1 BmUnigene24070.co GBEY01015150.1 Uncharacterized protein
UC2 BmUnigene30159.co GBEY01022960.1 Uncharacterized protein
ECE-2 BmUnigene27012.co GBEY01018994.1 Endothelin-converting enzyme 2
KSPI BmUnigene25112.co GBEY01016431.1 Kunitz-type serine protease inhibitor
LYZ1 BmUnigene21628.co GBEY01012185.1 Lysozyme 1
twk-7 BmUnigene25271.co GBEY01016631.1 TWiK family of potassium channels protein 7
wbl BmUnigene21615.co GBEY01012168.1 Protein windbeutel

2.5. Identification of Highly Diapause-Associated Genes

The expression profiles of 18 selected genes throughout pupal stage were analyzed by
qRT-PCR. The genes displaying different expression patterns between qRT-PCR analysis and previous
transcriptomic study were excluded. Then, the expression levels of remaining genes were compared
between diapause-destined and non-diapause-destined pupae, using qRT-PCR and semiquantitative
PCR, to determine the highly diapause-associated genes. The specific primers for 18 putative genes
were designed (Table S1), and UBQ was used as the reference gene [28]. The qRT-PCR was performed
with a CFX96TM Real-Time PCR Detection System thermal cycler (BIO-RAD, Hercules, CA, USA) in a
reaction volume of 10 µL, including 4 µL SYBR® Premix Ex Taq II (Takara), 1 µL cDNA (50 ng/µL),
and 0.5 µL forward and reverse primers (10 µM). Relative expression level was calculated according to
the 2−∆∆Ct method. Three technique replicates were set for each sample. For semiquantitative PCR,
the reaction volume was 25 µL, including 2 µL 10× PCR reaction buffer, 2.5 µL dNTP Mix (10 mM),
2.5 µL MgCl2 (25 mM), 0.25 µL Taq polymerase (2.5 U), 1 µL forward primer (10 µM) and reverse primer
(10 µM), 1 µL cDNA template, and 14.8 µL ddH2O. The PCR reaction was carried out under conditions:
94 ◦C for 5 min, 28–32 cycles of 94 ◦C for 30 s followed by 55–60 ◦C 30 s, 72 ◦C 30 s, 72 ◦C 5 min (Table S1).
To confirm the identity of highly diapause-associated genes, phylogenetic analysis was performed
by Molecular Evolutionary Genetics Analysis version 5 (MEGA 5, https://www.megasoftware.net/)
with the neighbor-joining method on the basis of the amino acid sequences available in GenBank
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(http://www.ncbi.nlm.nih.gov/). The reliability of the branching was tested using bootstrap method
(1000 replications).

2.6. Statistical Analysis

The relative expression level of each gene throughout pupal stages was compared using one-way
analysis of variance (ANOVA) with Tukey’s test after verification of normality and homogeneity of
variances. The relative expression level of each gene was compared between diapause-destined and
non-diapause-destined pupae using independent t-test. All data analyses were performed with SPSS
22.0 software (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Expression Profiles of Selected Genes throughout Pupal Stage

A total of 12 upregulated and six downregulated genes during diapause were manually selected as
putative diapause-associated genes according to the RPKM values (Figure 1). All eighteen genes were
significantly regulated throughout the pupal stage. However, only 13 genes, Arrdc3 (F13,41 = 12.931,
p < 0.05), Cyp6a9 (F13,41 = 37.071, p < 0.05), Fru (F13,41 = 19.433, p < 0.05), GEF (F13,41 = 14.4, p < 0.05),
KSPI (F13,41 = 28.247, p < 0.05), LYZ1 (F13,41 = 524.051, p < 0.05), MSTA (F13,41 = 205.801, p < 0.05),
MYBLI (F13,41 = 18.417, p < 0.05), setmar (F13,41 = 11.244, p < 0.05), TTLL3B (F13,41 = 25.601, p < 0.05),
twk-7 (F13,41 = 66.57, p < 0.05), UC1 (F13,41 = 19.150, p < 0.05), and UC2 (F13,41 = 23.198, p < 0.05), showed
similar expression patterns with those of previous transcriptomic study. The remaining five genes,
ECE-2L (F13,41 = 251.969, p < 0.05), grk (F13,41 = 24.785, p < 0.05), MEGF10 (F13,41 = 7.35, p < 0.05), Pcd
(F13,41 = 2.672, p < 0.05), and wbl (F13,41 = 17.428, p < 0.05), were excluded. The expression levels of
Arrdc3, Cyp6a9, Fru, GEF, MSTA, MYBLI, setmar, TTLL3B, UC1, and UC2 were upregulated along with
intensification of diapause and downregulated after diapause termination, although the differences
were not significant at certain time points. The expression levels of KSPI, LYZ1, and twk-7 were
remarkably suppressed 10 days after pupation and upregulated after diapause termination (Figure 2).
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Figure 1. Heat map of expression levels of 18 putative diapause-associated genes throughout the pupal
stage of B. minax according to the reads per kb of exon model per million mapped reads (RPKM)
values. Red and green color gradients indicate the high and low expression levels, respectively. PreD,
pre-diapause, 1 d after pupation; ED, early-diapause, 57 d after pupation; MD, middle-diapause, 75 d
after pupation; LD, late-diapause, 95 d after pupation. PD, post-diapause, 135 d after pupation.
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pupae (1 d after pupation) according to the 2−∆∆Ct method. Different letters indicate significant
differences (p < 0.05).
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3.2. Comparison of Gene Expression Levels between Diapause-Destined and Non-Diapause-Destined Pupae

The newly-formed pupae were injected with 20E to acquire non-diapause-destined pupae.
To validate the association of 13 genes mentioned above with diapause, their expression levels were
compared between diapause-destined and non-diapause-destined pupae using qRT-PCR. Nine genes,
Arrdc3, Cyp6a9, Fru, KSPI, LYZ1, MSTA, setmar, TTLL3B, and UC2, were found to be putatively
diapause-associated. The expression of Arrdc3, Cyp6a9, Fru, MSTA, setmar, TTLL3B, and UC2 were
suppressed, while that of KSPI and LYZ1 were activated in non-diapause-destined pupae (Figure 3).
In addition, the MYBLI, twk-7, UC1, and GEF were not regulated as expected (Figure 3).
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Insects 2019, 10, 169 7 of 12

Subsequently, the semiquantitative PCR was conducted to further validate the association of
these nine genes with diapause. The expression levels of 7 genes, Cyp6a9, Fru, KSPI, LYZ1, MSTA,
TTLL3B, and UC2 were consistent with the qRT-PCR data, displaying significant differences between
diapause-destined and non-diapause-destined pupae. Nevertheless, Arrdc3 and setmar only exhibited
slight differences between diapause-destined and non-diapause-destined pupae (Figure 4). Taken
together, Cyp6a9, Fru, MSTA, TTLL3B, and UC2 are highly positively associated with diapause,
while KSPI and LYZ1 are highly negatively associated with diapause. The identities of these
diapause-associated genes, except UC2, were confirmed by phylogenetic analyses (Figures S1–S6).
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4. Discussion

According to our previous transcriptomic study, over 4000 genes were regulated throughout
the pupal stage of B. minax, and several physiological pathways were deployed in diapause
programming [17]. Despite the high sensitivity and accuracy in revealing the gene expression
profile, the transcriptomic analysis still has errors. Therefore, the subsequent qRT-PCR validation is
usually adopted [17,25,26]. In this study, 18 DEGs of top hits and displaying stable expression among
biological replicates were manually selected as putative diapause-associated genes. The expression
patterns of these 18 genes throughout the pupal stage were evaluated by qRT-PCR analysis, and 13 of
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them were consistent with that of previous transcriptomic study. Then, the newly-formed pupae
were injected with 20E and solvent to acquire non-diapause-destined and diapause-destined pupae,
respectively. Along with pupal development, the expression levels of positively diapause-associated
genes ought to be increased with intensification of diapause in diapause-destined pupae, but not in
non-diapause-destined pupae. In contrast, the negatively diapause-associated genes were expected to
be activated in non-diapause-destined pupae but suppressed in diapause-destined pupae. Therefore,
the qRT-PCR and semiquantitative PCR were performed to assess the differences in expression levels
of remaining 13 genes between diapause-destined and non-diapause-destined pupae. The findings
of these two methods were not exactly consistent with each other as Arrdc3 and setmar displayed a
significant difference in qRT-PCR analysis, but not in semiquantitative PCR analysis, probably due to
the relatively higher sensitivity of qRT-PCR. Only seven genes which showed a significant difference
in both analyses were deemed to be highly diapause-associated genes.

TTLL3B, a member of tubulin-tyrosine ligase (TTLL) family, catalyzes the polyglycylation of
proteins, especially tubulin [29]. Polyglycylation is the long-chain glycines modification at a single or
multiple glutamate sites on the C-terminal tail of protein, and the long-chain glycine is linked to the
γ-carboxyl group of the glutamic acid residue via isopeptide bond. This modification consists of two
steps, initiation and extend [30–33]. To date, glycylation has been found solely in axonemes of cilia
and flagella [30–35], playing roles in stability of cell cilia and male sterility. However, little is known
about its function in insects. To our knowledge, this is the first time that glycylation has been found
associated with diapause, while its functions necessitate further investigation.

P450s are involved in the metabolism of exogenous substances such as insecticides and plant
secondary metabolites, and also endogenous compounds like juvenile hormones, 20-hydroxyecdysone,
ecdysteroids, and pheromones [36]. The CYP6a9 identified in this study belongs to P450 CYP6 family
which is specific to insect [37]. Likewise, some members in P450 CYP6 family were also found to be
associated with diapause of other insects, such as Drosophila montana [26]. It has been established that
P450 genes are related with insecticide resistance, stress resistance, and immunity in organisms [38–40].
However, the roles CYP6a9 plays in B. minax diapause remains unknown.

MSTA is a member of SET (suppressor of variegation, enhancer of zeste, trithorax) and MYND
(myeloid-Nervy-DEAF1) domain-containing proteins family (SMYD) which are special protein lysine
methyltransferases involved in methylation of histones and nonhistone targets [41–43]. The SET domain
is an evolutionarily conserved catalytic unit for lysine methylation [44,45], and the MYND domain
is a conserved zinc-binding domain primarily involved in protein–protein interaction [46]. SMYD
family consists of six groups, SMYD1–5 in mammal [47], and arthropod-specific SMYDA [48]. SMYD
proteins are related to epigenetic control, development, and cell proliferation through posttranslational
modifications in histones and nonhistones. In insects, the studies on SMYD proteins are still limited and
mainly focused on fruit flies. Knockdown of Drosophila Smyd4 leads to abnormal eclosion, suggesting
the vital role for Smyd4 in development [49]. That may also be the case in diapausing B. minax.

Fru gene encodes a sex-specifically spliced transcription factor containing the zinc finger and BTB
(Broad-complex, Tramtrack, and Bric-à-brac) domain [50–52]. It plays a crucial role in the courtship
behavior and neuronal sex differentiation of male fruit flies [51,53]. For example, the female fruit flies
expressing male-specific Fru in the nervous system showed the courtship behavior to other females,
while the male flies expressing female-specific Fru developed into sterile males, lost the intrinsic
properties of males, and exhibited female characteristics [54,55]. Knockdown of Fru gene in Schistocerca
gregaria interfered mating and also affected fertility and fecundity of males [56]. Therefore, the Fru
gene has been considered as a switch gene for courtship and thus contributing to the survival and
reproduction of insects. However, the role Fru plays in insect diapause has not yet been studied. It is
likely that certain unknown downstream genes other than courtship-related ones were activated by
Fru in diapausing B. minax.

KSPI identified in this study is a serine protease inhibitor which modulates the bioactivity of
target proteins through proteolytic cleavage. KSPI belongs to Kunitz-type protease inhibitor family,
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also known as bovine pancreatic trypsin inhibitor (BPTI)-like proteases [57]. As a classic representation
of this family, BPTI has a broad inhibitory activity and mainly inhibits trypsin, chymotrypsin,
and elastase-like serine protease [58]. The structures of all known Kunitz-type protease inhibitors of
invertebrates are all similar to BPTI [59]. Serine protease inhibitors play important roles in the innate
immunity of insects. It has been demonstrated that Kunitz-type protease inhibitors can be deployed to
defense against microorganism invasion in insects [60,61]. Therefore, the downregulation of KSPI may
suppress the immune response in diapausing B. minax, which is consistent with the findings that the
immunity was attenuated in diapausing Samia cynthia pryeri pupae [62].

Lysozyme is a vital bacteriolytic enzyme in insect innate immune system, catalyzing the hydrolysis
of 1,4-beta-linkages between N-acetylmuramic acid and N-acetylglucosamine (NAG) residues in the
peptidoglycan of the bacterial cell wall [63]. The lysozymes fall into six different classes: c-type,
g-type, i-type, bacterial, T4 phage-type, and plant lysozymes based on the source and mechanism [64].
The LYZ1 found in this study belongs to c-type. Insect lysozymes are produced in fat body and released
into hemolymph. The activity of lysozyme in hemolymph increases dramatically when insects are
infected with pathogens [65,66]. Like KSPI, the LYZ1 was downregulated during B. minax diapause as
well, supporting the speculation that the pupal immunity was suppressed during diapause.

5. Conclusions

The univoltine B. minax enters obligatory diapause in pupal stage, during which a large number
of genes are regulated. In this study, 5 genes, TTLL3B, Cyp6a9, MSTA, Fru, and UC2, and 2 genes, KSPI
and LYZ1, were demonstrated to be positively and negatively associated with diapause, respectively.
Nevertheless, there could be other genes that are involved in the B. minax diapause programming were
not analyzed in the present study. Therefore, more effort can be exerted to explore the relevant genes.
To elucidate the mechanisms underlying B. minax diapause, the functions of these diapause-associated
genes ought to be further investigated in the future.
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