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Abstract: Citrus sinensis (L.) Osbeck is an important economic product in South China, but the
presence of quarantine pests in this product proposes the potential threat to international trade
security. To find a proper phytosanitary cold treatment for Bactrocera dorsalis (Hendel) (Diptera:
Tephritidae), commonly called oriental fruit fly, one of the most serious quarantine insects in navel
orange, eggs in petri dish and larvae in navel orange fruits were exposed to a 1.7 ◦C cold chamber
for 0–11 days to compare the tolerance to cold treatment. The 2nd instar larva (4 days) is the most
tolerant stage, and the estimated time for 99.9968% mortality at the 95% confidence level is 11.3 (9.5,
14.6) days. Then 15 days was selected as the target time for the confirmatory tests, resulting in no
survivors from 37,792 treated larvae with the efficacy of 99.9921% mortality at the 95% confidence
level. The quality assessments were conducted to compare the effect on the navel orange fruit between
cold treatment and the conventional cold storage. Results indicated that the cold treatment did not
negatively affect the fruit quality. Therefore, this cold treatment showed potential as a commercial
quarantine treatment for navel orange in international trade.
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1. Introduction

The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the world’s most damaging pests and
causes trade restrictions on fresh fruits [1–3]. This pest has previously been recorded to have a wide
range of hosts with more than 400 plant species in a list published by the United States Department of
Agriculture–Animal and Plant Health Inspection Service (USDA-APHIS) [4]. B. dorsalis is a highly
invasive species and is an important quarantine pest in Asia and Pacific Plant Protection Commission
(APPPC), European Plant Protection Organization (EPPO), Caribbean Plant Protection Commission
(CPPC), Comité de Sanidad Vegetal del Cono Sur (COSAV), Inter-African Phytosanitary Council
(IAPSC), and Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA). As of now, the fruit
fly has been reported in at least 65 countries, including most of Asia, much of sub-Saharan Africa,
parts of America, Oceania, and Europe [5–8]. The navel orange (“Gannan” variety), Citrus sinensis (L.)
Osbeck, is famous worldwide for its high quality. In 2018, the navel orange industry achieved a total
output value of nearly 2 billion dollars in China and outside markets, employed 1 million rural labor
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workers on 104,000 ha that produced 1,170,000 tons [9]. Unfortunately, B. dorsalis is a potential pest in
the navel orange, threatening the safety of the navel orange export [5].

The risk of introducing exotic pests into new areas is rising in the wake of the increasing agricultural
trade, and the development of postharvest treatment to control insects in commodities can improve
the quarantine security and expedite new trade in agricultural products. The main pest management
approaches for eliminating exotic insects from a commodity are applied broadly as chemical and
physical treatments. These include fumigants, temperature treatments (heat and cold), irradiation,
controlled atmospheres, and combinations of these [10]. Methyl bromide fumigation is the most
common approach for controlling exotic pests but is expected to be replaced by physical treatments
because of methyl bromide depleting the ozone layer [10]. Physical treatments are typically applied to
fresh fruits because these commodities are infested by internally feeding pests, such as tephritid fruit
flies, and cold treatment is an effective measure in cold-tolerant commodities [11,12]. The pupa and
adult stages of tephritid fruit flies may hardly be found in infested fruit, and phytosanitary treatments
target the egg and larval stages for disinfestation [13].

Research studies have demonstrated that cold disinfestation is an effective approach in controlling
Bactrocera zonata (Saunders) in orange [14,15]; Bactrocera invadens (Drew, Tsuruta, and White) (synonym
of B. dorsalis) in orange, and “Hass” avocado [15–17]; Zeugodacus cucurbitae (Coquillett) (former
Bactrocera cucurtitae (Coquillett)) in navel orange [13]; Bactrocera tryoni (Froggatt) in lemon, orange,
mandarin, and blueberry [18–20]; Ceratitis capitata (Wiedemann) in kiwifruit, litchi, lemon, orange,
mandarin, grape, pepper, “Hass” avocado, and navel orange [13,20–26]; Ceratitis rosa (Karsch) in
“Hass” avocado [26]; Ceratitis cosyra (Walker) in “Hass” avocado [26]; Phthorimaea operculella (Zeller)
in potato [27]; and Pseudococcus affinis (Maskell) on Royal Gala Apple [28]. The effective lethal time
value for cold disinfestation was dependent on the type of insect and fruit [29]. Furthermore, earlier
researches have compared the difference of the tolerance to cold treatment between fruit flies [13,30,31].
Until now, many cold treatment standards have been widely used internationally [32,33].

Traditionally, a treatment protocol should provide quarantine security for a pest with minimal
impact on commodity quality [10,34]. An integrated quarantine treatment first with exposure to 1.5 ◦C
for 3 days and second with exposure to a controlled atmosphere at 25 ◦C could complete insect mortality
with no negative effects on the quality of “Clemenules” mandarins [35]. Hofman et al. reported that an
integrated treatment with hot water of 41 ◦C for 25–30 min, or 42 ◦C for 25 min following 16 days at
1 ◦C, could improve the external and internal fruit quality of avocado and control fruit flies [36]. Other
data showed that 6 ◦C for 3 days, followed by 1 ◦C for 16 days, improves ripe “Hass” avocado fruit
quality, with no negative effects, while also providing B. tryoni disinfestation efficacy [37]. Among the
treatments accepted for quarantine measures, cold disinfestation is an effective approach in controlling
pests that are present in fresh fruits [32,33]. However, the treatment also needs to meet the requirements
for minimal impact on commodity quality.

The objective of this study was to compare the cold tolerance of the different life stages of B. dorsalis
that infest navel orange and determine the minimum number of days of cold treatment that provides
quarantine security with no negative effects on navel orange quality.

2. Materials and Methods

2.1. Test Insects

The original population of B. dorsalis that was used in this experiment was collected from wax
apple in Chongzuo, China, in 2017 and 2018. This species is maintained at the Chinese Academy of
Inspection and Quarantine in Beijing, China, and reared on a standard diet modified from Liu et al. [38].
This fruit fly colony has been maintained for nearly 1 year with the occasional inclusion of wild flies.
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2.2. Fruit Infestation

The navel oranges, (“Gannan” variety) originating from the Gannan area, were sourced from
Jinyuanbao Binhai agricultural product transaction market in Tianjin, China, and were stored at 4.0 ◦C.
The fruits did not receive direct pesticide applications and were free from pesticide residues. To reduce
contamination with microorganisms, the fruits (mean weight = 0.22 ± 0.03 kg) were washed with
dishwashing liquid, rinsed with water, and then allowed to air dry at ambient temperature.

The navel orange is an attractive host for B. dorsalis, and larvae were obtained by puncturing fruits
with pins and exposing them to adults in screen cages (120 by 60 by 60 cm) for oviposition. The age
and number of the adult flies in each cage could influence the number of eggs in each fruit. On each of
the infestation, 63 fruits were placed in a cage which contains about 8000 adults (rate of male/female is
nearly 1:1). The infestation was conducted 15–30 days after adult emergence and infested 3–5 times in
one batch of the colony. To obtain an infestation rate of >50 larvae per fruit, each fruit was punctured
approximately 50 times to a depth of 1–2 cm and was exposed to fruit flies in the cages for 2–4 h.
Eggs in fruits were incubated at 26 ± 0.5 ◦C for 2, 4, and 6 days to obtain the 1st, 2nd, and 3rd instars,
respectively. In the egg trial, eggs were collected from egging bottles, then pipetted onto pieces of black
cotton cloth and placed in a 0.1 m petri dish with moderate distilled water and 3 drops of sugar water
for hatching in the experiments. Each petri dish contained 200 eggs.

2.3. Development of B. dorsalis in the Navel Orange

Navel oranges infested with fruit fly were stored to 26 ± 0.5 ◦C and 65% ± 5% RH for various
periods. In this study, we controlled development time to affect their capacity to develop into the
different larval stages. To obtain enough larvae, fruits were exposed to fruit flies in the cages for
approximately 2 h. Fruits in ventilated plastic cages were placed in a climate chamber (KBF 720, BINDER
Inc, Tuttlingen, Germany) with a stated accuracy of 0.5 ◦C. At days 2, 4, 6, 8, and 9, approximately 100
larvae in 2–3 fruits infested with B. dorsalis were randomly selected and immediately examined with a
dissecting microscope for them in each treatment. According to the identification from Zhou et al., the
stages of B. dorsalis larvae were recorded [39].

2.4. Effect of Cold Disinfestation on B. dorsalis Survival

Different larval stages of B. dorsalis in the navel oranges were exposed to the cold chamber for
various periods to examine the effect of cold disinfestation on pest survival. Fruits infested with
B. dorsalis were placed on a rectangular plastic basket and loaded into a chamber (HRT-105P, Chong
Qing Well Co, Chongqing, China) with an accuracy of 1.7 ◦C ± 0.3 ◦C for cold treatment. Before each
trial, the thermoprobes were calibrated by a calibrator (RTC-156 B, Ametek Co., Alleroed, Denmark).
Each test read 10 times, and the average result for each thermoprobe was used for correction purposes.
During the experiment, thermoprobes (Testo 177-T4, Testo SE & Co. KGaA, Lenzkirch, Germany) with
an accuracy of ± 0.2 ◦C were placed at a diagonal in the core of the largest fruit in the environmental
chamber, and six temperatures of the chamber and the center of fruit were recorded every 30 min.

In the egg treatment, the petri dish temperatures were consistent with the chamber air temperature,
and the treatment was deemed to have started immediately after the chamber air temperature reached
the target treatment temperature. Larvae treatment was deemed to have started immediately after all
the centers of the fruits had reached the target temperature. In this study, the center temperature of the
fruits required about 4 h to reach the target temperature. On days 0, 1, 3, 5, 7, 9, and 11, petri dishes
loaded with eggs and fruits infested with B. dorsalis were randomly selected, removed from the cold
chamber, and examined for mortality after 5 days and 2 days recovery in the 26.0 ◦C chamber. Three
replicates were used in the larval trial and four in the egg trial. Eggs that were hatching were counted
as live, and larvae that did not move were scored as dead. Larvae movement or not was determined
by placing the unmoving larvae on a napkin.
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2.5. Confirmatory Tests

Based on the results of the effect of cold disinfestation on survival to determine which life stage of
B. dorsalis was the most cold-tolerant, a large-scale disinfestation trial was undertaken over the most
cold-tolerant life stage of this pest. On each of the confirmatory tests, 54 navel oranges were placed in
the cage for oviposition. Approximately 90% of the fruits infested with B. dorsalis were placed into a
1.7 ◦C cold chamber (70 by 80 by 90 cm), and the remaining infested fruits were used as the control.
During the confirmatory tests, thermoprobes were placed at a diagonal in the core of the largest fruit
in the cold chamber. Treatment was deemed to have begun, and mortality of larvae was determined
as above.

2.6. Fruit Quality Assessment

Navel orange fruits were used for the assessment of the internal and external qualities at cold
treatment (1.7 ◦C) and the conventional cold storage (4 ◦C). The changes in fruit quality were compared
between cold treatment and cold storage. In the case of cold treatment, the fruit quality was determined
on the fruits after exposure to 1.7 ◦C for 0, 8, and 15 days, followed by a 7 day cold storage period at
4 ◦C. In the case of cold storage treatments, the fruit quality was determined for the fruits after the
exposure to 4.0 ◦C for 0, 8, 15, and 22 days. The following quality attributes were determined: peel
color, fruit firmness, vitamin C (Vc), soluble solids concentration (SSC), and titratable acidity (TA).

2.6.1. Peel Color

The peel color was determined by Hunter Lab parameters with a colorimeter (Chroma meter
CR-400, Konica Minolta sensing Inc., Tokyo, Japan). A specific color index (CI) for citrus was calculated
as CI = 1000 × a/(L × b) [40]. For each treatment, 36 fruits were measured three times each, along the
equatorial region of each fruit.

2.6.2. Fruit Firmness

The firmness of 36 fruits was evaluated by using a penetrometer (Fruit pressure tester FT327, TR
Ltd., Forli, Italy) equipped with a 3 mm diameter probe and operated at a constant penetration speed,
with each fruit being measured 3 times along the equatorial region.

2.6.3. Vitamin C

For each treatment, vitamin C (Vc) was extracted from fresh navel orange flesh using oxalates
and then filtered for use. Three measures of vitamin C were determined in 9 different fruits per
treatment. Vitamin C was quantified by titration with 2 6-dichlorophenol indophenol, and the results
were recorded as grams of vitamin C per kilogram of navel orange flesh.

2.6.4. Soluble Solids Concentration

The soluble solids concentration (SSC) was determined by using a digital refractometer (RX-5000α,
ATAGO Co. LTD., Tokyo, Japan) at 20 ◦C and expressed as a percentage. For each treatment, 12 fruits
comprising 6 replications were squeezed to obtain juice.

2.6.5. Titratable Acidity

For the experiments, the titratable acidity (TA) was determined by titration with 0.1 mol/L NaOH
with a 1% phenolphthalein indicator (% w/v), and the results were recorded as a percentage (%
w/w). For each treatment, the juice was obtained from 9 fruits, and each measurement comprised
three replications.
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2.7. Statistical Analysis

To make comparisons among the cold tolerance of the different life stages, time–response data on
the mortality were arcsine transformed to improve normality and subjected to analysis of covariance
(ANCOVA) by using the General Linear Model (GLM) (version 17, SPSS Inc., Chicago, IL, USA). For
each replicate, the mortality values were adjusted for control mortality calculated using Abbott’s
formula [41]. Probit and logit analysis (LeOra Software, Berkeley, CA, USA) were performed on the
time-response data for all days for B. dorsalis to calculate the predicted times to 99% (LT99) and 99.9968%
(LT99.9968) mortality. For the confirmatory test, the mortality proportion (1-Pu) associated with treating
a number of B. dorsalis with zero survivors was calculated by the following equation:

1− Pu = (1−C)1/n

where C is the confidence level, and n is the number of insects treated with no survivor [42].
To determine the effect of cold treatment and cold storage on fruit quality, two-way analysis of

variance and Tukey’s multiple comparison tests were applied with the SPSS software package.

3. Results

3.1. Development of B. Dorsalis in Navel Orange

Before the trial, the development of B. dorsalis larvae in navel orange was observed, Figure 1.
For B. dorsalis in navel orange, the percentage of larval development was 92% at the 1st instar on day 2,
90% at the 2nd instar on day 4, and 94% at the 3rd instar on day 6. On days 8 and 9, all of the species
tested were able to develop to 3rd instar. Therefore, we considered 2 day-old, 4 day-old, and 6 day-old
larvae of this species as the 1st, 2nd, and 3rd instar, respectively.
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3.2. Effect of Cold Disinfestation on B. Dorsalis Survival

The mortality increased with increasing treatment time for all life stages, no eggs hatched ≥7 days,
and no larvae survived ≥9 days, Table 1. Result showed no significant effect of the interaction between
treatment days and stages (F2,30 = 1.897; p = 0.168) on the survival; whereas a significant impact
was found for the treatment days (F1,32 = 242.260; p < 0.001) and life stages (F2,32 = 8.451; p = 0.001).
The mortality of 1st and 2nd instar larvae was significantly lower than the mortality of the 3rd instar
and eggs. However, no significant difference was observed between the 1st and 2nd instar larvae.
In addition, the mortality of 2nd instar was lower than that of the 1st instar at 1, 3, 5, and 7 days, Table 1.

The parameters from the results of the probit analysis (probit and logit model), including slope
and estimated day to 99% (LT99) and 99.9968% (LT99.9968) mortality, are presented in Table 2. The
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estimated LT99 was very close to the day that produced 100% mortality in the cold treatment, Tables 1
and 2, and the LT99 of the 2nd instar was higher than that for the other stage, indicating that the
resistance of 2nd instar was higher. Furthermore, the LT99.9968 of the 2nd instar was highest in all tested
stages. Thus, the 2nd instar larvae likely to be found in fruits were determined to be the most tolerant
stage in the navel orange.

Table 1. Mortality (mean± SE) of Bactrocera dorsalis subjected to cold treatment at 1.7 ◦C in navel oranges.

Stage No. Treated
Exposure (Days)

Control 1 3 5 7 9 11

Eggs 5600 22.5 ± 2.45 84.19 ± 1.76 99.19 ± 0.31 99.84 ± 0.16 100.0 ± 0.00 100.0 ± 0.0 100.0 ± 0.0
2 day-old

larvae 3976 8.16 ± 3.09 22.98 ± 7.88 46.68 ± 4.50 90.73 ± 6.64 99.46 ± 0.29 100.0 ± 0.0 100.0 ± 0.0

4 day-old
larvae 3991 7.87 ± 2.29 22.09 ± 5.32 46.34 ± 9.26 87.80 ± 5.60 97.59 ± 1.72 100.0 ± 0.0 100.0 ± 0.0

6 day-old
larvae 3932 12.49 ± 11.75 48.55 ± 4.94 81.63 ± 6.50 94.77 ± 1.61 99.66 ± 0.34 100.0 ± 0.0 100.0 ± 0.0

Table 2. Probit and logit analysis of Bactrocera dorsalis mortality response to cold treatment at 1.7 ◦C.

Analyzing Model Stage Slope ± SE LT99 (95% CL) (Days) LT99.9968 (95% CL) (Days)

Probit

Eggs 0.62 ± 0.07 3.1 (2.6, 4.3) 5.8 (4.5, 8.6)
2 day-old larvae 0.58 ± 0.03 7.1 (6.2, 8.8) 10.0 (8.4, 12.9)
4 day-old larvae 0.47 ± 0.02 7.8 (6.7, 9.6) 11.3 (9.5, 14.6)
6 day-old larvae 0.41 ± 0.02 6.4 (5.7, 7.3) 10.5 (9.2, 12.3)

Logit

Eggs 1.45 ± 0.19 3.0 (2.6, 3.6) 7.0 (5.8, 8.9)
2 day-old larvae 1.07 ± 0.08 7.5 (6.3, 10.3) 12.9 (10.1, 19.6)
4 day-old larvae 0.82 ± 0.04 8.4 (6.9, 11.7) 15.4 (12.0, 23.3)
6 day-old larvae 0.78 ± 0.04 6.8 (5.9, 8.1) 14.2 (12.0, 17.7)

3.3. Confirmatory Tests

Confirmatory tests were conducted to validate the estimated day to achieve 99.9968% mortality in
B. dorsalis 2nd instar, and 15 days was selected as the target day according to the estimates of probit
and logit analysis, Table 2.

No survivors were found in the 15-day treatment at 1.7 ◦C, and the data are presented in
Table 3, whereas the percentage of survivors in the control was 94.09%. In this study, calculating the
disinfestation efficacy (1-Pu) with a confidence level of 95% by the equation is 99.9916%.

Table 3. Results of large-scale tests on second instar Bactrocera dorsalis larvae in navel oranges for
15 days at 1.7 ◦C.

Trial No.
Treated

No. of Fruit Infested No. of Insects Treated No. of Surviving Individuals

Control 18 4724 4445
1 48 13,136 0
2 48 8784 0
3 48 15,872 0

Total 37,792 0

3.4. Quality of Navel Orange Exposed to Cold Treatment

Comparisons of the effect of storage time and temperatures at 1.7 ◦C and 4.0 ◦C on the objective
attributes of navel orange are presented in Figure 2a–e. The results showed no significant effect of the
interaction between temperatures and storage time for peel color (F3, 856 = 1.721, p = 0.161) Figure 2a
and firmness (F3, 856 = 0.836, p = 0.474) Figure 2b, whereas a significant impact was found for the
SSC (F3, 40 = 3.852, p = 0.016) Figure 2c, TA (F3, 16 = 4.263, p = 0.022) Figure 2d, and Vc (F3, 16 = 7.707,
p = 0.002) Figure 2e.
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When the effect of storage time on the quality of the navel orange was measured, a significant
impact was observed on the firmness (F3, 856 = 5.743, p = 0.001) Figure 2b, SSC (F3, 40 = 45.659, p < 0.001)
Figure 2c, TA (F3, 16 = 87.157, p < 0.001) Figure 2d, and Vc (F3, 16 = 119.006, p < 0.001) Figure 2e, whereas
no significant impact was observed on the peel color (F3, 856 = 0.984 p = 0.400) Figure 2a. The result
indicated that the quality of the navel orange was affected by the storage time.

No significant difference between temperatures was observed on the firmness (F1, 856 = 0.041,
p = 0.839) Figure 2b, SSC (F1, 40 = 3.517, p = 0.068) Figure 2c, and TA (F1, 16 = 0.531, p = 0.477) Figure 2d,
whereas a significant impact was observed on the peel color (F1, 856 = 9.999, p = 0.002) Figure 2a and Vc
(F1, 16 = 14.593, p = 0.002) Figure 2e. In addition, the values of CI and Vc of the navel orange changed
slower in the cold treatment Figure 2a,e.
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Figure 2. Changes in quality of navel orange, peel color (a), firmness (b), soluble solids concentration
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significantly (p < 5%).

4. Discussion

In the present study, B. dorsalis 2nd instar larvae appear to be the most cold-tolerant life stages
tested at 1.7 ◦C. Therefore, large-scale confirmatory testing for a cold disinfestation treatment targeted
the 2nd instar larvae. In the confirmatory test, no survivors were found after the 15 days treatment at
1.7 ◦C, resulting in a disinfestation efficacy of 99.9916% at the 95% confidence level. The results suggest
that holding the fruit center temperature at ≤1.7 ◦C for a minimum of 15 days is an effective treatment
for the control of B. dorsalis in the navel orange.

The fruit type may affect the cold treatment period required for disinfestation. Fruit type could
affect the development of fruit flies, which in turn affects the cold tolerance of fruit flies. Generally,
individuals of a certain age in days are considered as the 1st, 2nd, and 3rd instars in a cold treatment
study [17,26,31,43]. In this study, the percentage of larvae was 1% at 1st instar, 90% at 2nd instar,
and 9% at 3rd instar on day 4, and the result was consistent with the research in oranges and “Hass”
avocado [16,17]. The relationship between the percentages of the different stages and cold tolerance is
not clear. Therefore, further experiments are needed to confirm the effect of the proportions of 1st, 2nd,
and 3rd instars on pest cold tolerance.

The infestation method may also affect the cold treatment period required for disinfestation.
Commonly, a natural infestation method and an artificial infestation method are the two main types
of infection methods [13,15]. In artificially infested fruit, eggs are placed near the fruit center but are
laid near the fruit surface in naturally infested fruit. The fruit center is the warmest place during
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the treatment, differences in the infestation methods may have an influence on the response to
the cold treatment. In addition, the temperature, most tolerant life stage, colony source, and the
identified endpoint were considered the factors that affect the cold treatment period required for
disinfestation [13].

Usually, an effective cold treatment protocol should meet the demand to kill the pest and minimize
the negative effects on host quality at the same time [10,29,34]. The present results confirm that
cold treatment did not negatively affect fruit quality. In summary, the present results support the
implementation of cold phytosanitary treatment at 1.7 ◦C for 15 days for the navel orange.

5. Conclusions

This study has documented the effect of cold phytosanitary treatment on B. dorsalis mortality and
postharvest quality of navel orange at low temperatures. The results confirmed that 15 days at 1.7 ◦C
could provide quarantine security for controlling B. dorsalis at an efficacy level of 99.9916%. Moreover,
cold treatment did not negatively affect fruit quality. Therefore, this cold treatment showed potential
as a commercial quarantine treatment for navel orange in international trade.
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