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Abstract: Mosquito density plays an important role in the spread of mosquito-borne diseases such
as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes,
modelers have tried different methods to represent it in mathematical models. The goal of this
paper is to investigate the various ways mosquito density has been quantified, as well as to propose
a dynamical system model that includes the details of mosquito life stages leading to the adult
population. We first discuss the mosquito traits involved in determining mosquito density, focusing
on those that are temperature dependent. We evaluate different forms of models for mosquito
densities based on these traits and explore their dynamics as temperature varies. Finally, we compare
the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil.
Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors
when forced by temperature, but that all seem reasonably consistent with observed abundance data.

Keywords: mathematical modeling; mosquito density; temperature; dengue; mosquito-borne disease

1. Introduction

Mosquitoes transmit multiple pathogens, such as malaria, dengue, and Zika, that are responsible
for significant death and morbidity in humans, making these animals among the most lethal to
humans [1,2]. In particular, dengue is a life-threatening disease caused by dengue virus spread by
Aedes species mosquitoes, including the yellow fever mosquito, Aedes aegypti [3,4]. Currently, there is
not an effective vaccine or cure for dengue. Instead, dengue prevention relies solely on vector control
and avoidance [5]. Thus, methods to improve our current prevention and control strategies are sought
in order to reduce the severity of ongoing outbreaks and prevent them from occurring.

Mathematical models are important tools for understanding how both intrinsic factors (such as
host susceptibility) and extrinsic factors (such as environmental conditions or interventions) impact
the dynamics of infectious diseases, and of vector-borne diseases (VBDs) in particular [6]. Models
for VBDs run the gamut from simple to complex, depending on the goals of the model [7]. Often,
the primary modeling goal is to understand how the dynamics of mosquito-borne diseases respond
to extrinsic factors such as climate/temperature or to explore the impacts of potential prevention
and control strategies [8–11]. For example, Brand et al. [12] explored how more accurately predicting
dengue transmission probability is valuable when deciding the appropriate control measures for a
given outbreak. Similarly, predicting mosquito density and location is important when implementing
an insecticide spraying strategy to prevent an outbreak [13,14]. These types of predictions require a
deep understanding of the ecology of mosquitoes [15].

Insects 2019, 10, 393; doi:10.3390/insects10110393 www.mdpi.com/journal/insects

http://www.mdpi.com/journal/insects
http://www.mdpi.com
https://orcid.org/0000-0002-9682-2417
http://dx.doi.org/10.3390/insects10110393
http://www.mdpi.com/journal/insects
http://www.mdpi.com/2075-4450/10/11/393?type=check_update&version=2


Insects 2019, 10, 393 2 of 20

Although multiple mosquitoes could potentially transmit dengue, the primary vector globally is
Aedes aegypti, with Aedes albopictus mostly a secondary vector (although it transmits widely in some
Asian countries such as India) [16,17]. Mosquitoes go through three juvenile life stages (egg, larvae,
and pupae) before they emerge as adults. The time spent within each juvenile life stage varies between
species because of life history and genetic differences. There is also within-species variation as each
of the life stages is sensitive to environmental conditions [4]. Because of this sensitivity to climate
factors at each of their life stages, the dynamics of the mosquitoes, and thus of dengue transmission,
is closely coupled to environmental variation. Thus, it is important to understand and include the role
of environmental factors on mosquitoes when building models of dengue (or other mosquito-borne
pathogens) transmission [17]. In particular, temperature is an important determinant of multiple
mosquito life history traits, and so, it has a knock-on impact on mosquito density and on transmission.

In many models of mosquito-borne disease transmission, the dynamics of the mosquito population
have been ignored (i.e., assumed to be constant) or treated very simply [7]. For example, a sine formula
has been used to estimate mosquito density while taking into account possible seasonal fluctuations as
a response to temperature changes [18,19]. In a review of the literature conducted by Legros et al. [20],
they highlighted the importance of further investigating density dependence for A. aegypti and the
need for further empirical studies to reduce our uncertainty when estimating mosquito density.
Some progress has been made on this front. Although models for VBD transmission that include the
dynamics of the density of vectors typically ignore the underlying characteristics of each stage, as well
as the role of climate factors, in some models, approximations that depend on adult traits or a subset
of larval traits have been used [9,11,21–23].

In this paper, we are interested exploring the extent to which including more details of mosquito
life histories in a dynamical model impacts our predictions of female mosquito density, which should
have knock-on effects for predictions of transmission and for the effects of intervention strategies aimed
at controlling mosquitoes. To this end, we build a dynamical model of mosquito population dynamics
that explicitly includes temperature-dependent traits for all life stages of the mosquitoes. We investigate
the effect of temperature on mosquito life stages (based on published data) and incorporate these into
our dynamical model. We then compare this model with three other models estimating mosquito
abundance that rely on less (or no) trait data and explore their responses to temperature. We finally
compare the predictions of all four models to data on weekly estimates of A. aegypti populations in
Vitòria, Brazil. We discuss the advantages and disadvantages of the various modeling approaches in
terms of both making predictions at a particular location and generalizing to other locations.

2. Methods

2.1. Dynamical Model of Mosquito Density Including Traits

We used a system of ordinary differential equations to describe mosquito vector dynamics at each
of the four life stages, namely: eggs (Eg); larvae (L); pupae (P); and adults (A) (Figure 1). As only
adult females lay eggs and take blood meals, most transmission models focus solely on the density
of females mosquitoes. To be consistent in our comparisons later on, we retained this convention,
and only modeled adult females, but we included both sexes in earlier stages.

Each day, every living adult female (Vd(t)) is assumed to produce a fixed number of eggs,
F. A proportion of eggs (Eg(t)) dies at a temperature-dependent rate µE, while a proportion
develops into larvae (L(t)) at a temperature-dependent rate 1/ρE (Equation (1)). We assumed
that larval death depends on two factors: over-crowding at a rate k j; and temperature at a rate
µL. The surviving larval population moves to the pupal stage (P(t)) at a temperature-dependent rate
1/ρL (Equation (2)). Pupae either die at a temperature-dependent rate, µP, or develop to the adult
stage at a temperature-dependent rate, 1/ρP (Equation (3)). We further assume that 50% of the pupal
population emerges as female adults. Female adults then experience mortality from a combination of
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temperature-dependent, µ, or a temperature-independent, k, causes (Equation (4)). Thus, our model
equations are given by:

dEg

dt
= F A− (µE + 1/ρE)Eg (1)

dL
dt

= Eg/ρE − µLL(1 + k jL))− L/ρL (2)

dP
dt

= L/ρL − (µP + 1/ρP)P (3)

dVd
dt

= 0.5× P/ρP − (µ + k)A. (4)

Figure 1. A graphical representation of the mosquito life cycle including eggs, larvae, pupae, and adults.
Note that only female adults provide new eggs to the population, and the adult compartment represents
just the female subclass. Arrows represent the movement between stages due to development, as well
as the removal from the stage due to mortality.

The total female mosquito density is Vd(t), our focus for subsequent analyses, which may be
obtained via numerical integration of this system of equations. Note that the dynamics of Vd(t)
implicitly depends on the details of the other life history stages that precede it.

2.2. Alternative Models for Mosquito Density

Our model is but one of many possible models that may be used to mathematically describe the
dynamics of mosquito abundances. We were interested in comparing this proposed model with three
other temperature-dependent mosquito density forms that rely on different amounts of biological
detail and information. In Figure 2, we show the spectrum of the four densities we will compare.
Our dynamical model is the most dependent on life history traits of the mosquitoes.

The model we considered second is an approximation that assumes a stationary and constant
mosquito population, but still depends on the life stages traits [21]. We denote Vl the density, given by:

Vl(t) =
F pE pL pP

(ρE + ρL + ρP)µ2 (5)

where pE pL pP and ρE + ρL + ρP are mortality rates and development times for eggs, larvae, and pupae,
respectively. F and µ are defined as in the dynamical model above.
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The third form we compared is an approximation of mosquito density that has been used in other
vector-borne disease (VBD) models [9,11,24,25], where density is dependent on adult thermal traits:

Va(t) =
F pEA
ρA µ2 (6)

where pEA is the probability from eggs to adults and ρA is adult mosquito development time.
Our final model is the most simple, in that it simply represents a seasonal pattern of the

vector population, without explicitly including either temperature or traits. This form was used
by Bacaër [18], Bacaër and Guernaoui [19] and represents the seasonally varying vector population as
a simple sine function:

Vs(t) = V0(1 + 0.5 sin(2πt/365)) (7)

where V0 = mean(V(t)). We note that this density form is the same as the sine form used for
temperature, which means that this form has the same temperature fluctuations and does not depend
on temperature directly.

Figure 2. Traits’ dependence spectrum showing the evaluated density forms ranging from low to high
traits’ dependence. First, the sine form Vs, second the adult traits density Va, third the life stage traits’
density Vl , and the dynamical density Vd last.

2.3. Parameterization and Numerical Analysis

We assumed that all the vector traits included in the model depend on temperature except the
temperature-independent mortalities: k for adult mosquitoes and k j for larvae. The temperature
dependence in traits is represented by unimodal thermal curves previously fit to trait data using a
Bayesian method explained in detail in [24]. We used hump-shaped curves, a Brière, or a quadratic,
to represent our temperature-dependent mosquito traits. The Brière curve is determined by the
equation αT(T − TMin)

√
TMax − T, the concave-down quadratic by the equation qd(T − T0)(Tm − T0),

and the concave-up by the equation inter− slope T + qd T2. These forms are symmetric (quadratic)
and asymmetric (Brière) unimodal curves used by Mordecai et al. [24] to fit thermal curves to A. aegypti
and A. albopictus adult mosquito traits using a Bayesian fitting method. Table 1 summarizes all the
parameters used, their values, and references. These fitted curves describe each trait’s response to
temperature from 0 ◦C to 50 ◦C. For the thermal curves’ function values, see Table 1, and for the plots
of all curves, see Appendix A.
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We assumed that across a year, all temperature-dependent parameters and variables are driven
by the following temperature sine function capturing seasonality over a year:

T(t) = T0(1 + B sin(2πt/365)). (8)

Here, T0 is the starting temperature and B is the amplitude of the sine wave. For models Vl(t)
and Va(t). the density over time can be calculated simply by plugging in the temperature at each time
based on this function. That is, we defined the temperature function, T(t), with t being days of the
year. Then, we evaluated each parameter at each temperature using formulas from Table 1. Vs(t) is
evaluated directly.

Solving for the dynamics of Vd(t) requires numerical integration of Equations (1)–(4) as they are
being forced by the sinusoidal temperature function with each parameter defined at each temperature
using formulas from Table 1. We used the MATLAB software ode solver, ode45, to solve the ode
model numerically. First, we evaluated the model dynamics at one constant temperature T0 until they
reached equilibrium. We then used those steady state values as initial conditions for the temperature
varying model.

Throughout our analysis, we tuned the temperature-independent parameters to obtain reasonable
results. For the dynamical model, we adjusted k and k j to make the mean of Vd close to the other
densities. For the sine density Vs, we adjusted the amplitude and starting density. However, Vl
and Va depend solely on temperature-dependent thermal curves; thus, we did not adjust any of
their parameters.

Table 1. Mosquito traits used across the three trait-dependent models explored. For each trait, we
include the parameter, trait description, unimodal function assumed (for thermal traits), and the value
of the trait or values of parameters of the curve. We provide the references and the curves associated
with the temperature-dependent traits in Appendix A.

Parameter Description Function Value Units

l f Adult mosquito lifespan (µ = 1/l f ) quad qd = −0.0011, Tm = 36.1065, T0 = 9.1088 day
pEA Eggs-to-adult survival probability quad qd = −0.0006, Tm = 38.29, T0 = 13.56 -

F Eggs per female per day Brière α = 0.0086, Tm = 34.61, T0 = 14.58 day−1

ρE Eggs development time quad inter = 87.1722, slope = 1.1575, qd = 0.0136 day
ρL Larval development time quad inter = 201.2429, slope = 14.0345, qd = 0.2310 day
ρP Pupal development time quad inter = 20.5074, slope = 1.0954, qd = 0.0153 day

1/ρA Mosquito development rate Brière α = 0.0000786, Tm = 39.17, T0 = 11.36 day−1

pE Eggs survival probability Brière α = 0.00077, Tm = 30.33, T0 = 9.395 -
µE = (1− pE)/ρE

pL Larval survival probability Brière α = 0.00046, Tm = 36.79, T0 = 2.354 -
µL = (1− pL)/ρL

pP Pupal survival probability Brière α = 0.0349, Tm = 37.4679, T0 = 9.96278 -
µP = (1− pP)/ρP

k Temperature-independent mortality rate - 0.486 day−1

kj Density-dependent mortality rate - 0.09 day−1

3. Results

We started our model analysis by exploring the dynamics of our full model (i.e., Equations (1)–(4))
under time varying temperatures. We then compared the predictions of the four models of total adult
female mosquito densities.

3.1. Exploration of Dynamical Model Behavior

We specified initial densities for each life stage and solved our model numerically as described in
the previous section. We assumed that that the temperature curve had a mean temperature of 23 ◦C
and ranged between 18.67 ◦C and 30 ◦C (Figure 3B), and it began on Day 0 at its mean (so that Day
0 was in the spring). Within this range, A. aegypti trait values kept the population from dying out
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completely. The juvenile population densities (eggs, larvae, and pupae; Figure 3A) initially increased
exponentially as temperature increased to the 26–28 ◦C range (through ∼Day 75). As temperature
approached its peak of 30 ◦C (∼Day 90), the growth rate was reduced across life stages before they
resumed their increase as temperature began to lower again. As the temperature continued to drop
(from∼Day 120 onward in the year), densities decreased rapidly and reached their minimum. We show
two years of dynamics to illustrate that although densities seemed to be zero, they did not in fact
completely fade out. They only became very low, and as soon as temperature increased again, they
grew, as we can see during the second-year phase.

Figure 3. (A) Daily mosquito life stage densities evaluated for 730 days (two years). The lines show the
numerical solution of our dynamical model for eggs, larvae, pupae, and female adult life stages, and
the parameter values used here are given in Table 1. (B) The corresponding daily temperature given by
a sine function (T0(1 + B sin(2πt/365) with T0 = 23 and B = 0.3) evaluated for 730 days (two years)
used to evaluate our thermal traits incorporated into the dynamical model.

3.2. Comparison of Mosquito Density Patterns across Models

Next, we compared the adult dynamics across all four models, again driven by sinusoidal
temperature fluctuations. Recall the four densities, namely Vd the adult female population result from
our dynamical model, Vl the life stage trait-dependent vector population, Va the adult trait-dependent
vector population, and Vs the sine wave approximation of the vector population. We chose two
temperature regimes to illustrate the variety of patterns and predictions these models can exhibit.
The results showed differences in both the values and patterns of these densities.

The first regime (Figure 4) followed a sine wave that started at an initial temperature of T0 = 23 ◦C
and ranged from a minimum of 16 ◦C to a maximum of 30 ◦C (i.e., this was the same forcing used in
the previous section). In this case, the predictions of the four models were largely very different in
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both pattern and value. However, Vl and Va agreed when the temperature was below 25 ◦C. This is
because of the similarities in their formula and the way they incorporate thermal traits. As temperature
increased, Vd increased exponentially, while the rest of the curves had a more linear increase at first.
We note that the peak of Vd was delayed due to incorporating the dynamics for each stage explicitly
in the model, whereas the rest of the curves were evaluated directly at each temperature. All three
densities that included trait information (Vd, Vl , Va) decreased as temperatures peaked or approached
a minimum, which reflected the high mortality of vectors at very high and very low temperatures.
Vs decreased as well, but not as drastically, since it followed the temperature sine wave patterns.
Further, Vs neither decreased nor slowed during high temperature periods, a qualitatively different
density prediction compared to the other three models in this scenario.

We can additionally explore the change in the predicted densities across time by comparing
their gradients (i.e., the first derivative of the curve, so that a positive value indicates that the density
increased, while a negative value indicated a decrease; see Figure 4C). Local extrema (minima or
maxima) occurred when the gradient reached zero. In Figure 4C, we can see that three of the
models reached extrema when temperature peaked (∼Day 90); however, at that point, the sine
wave was a maximum, but the other two were at a minimum. Those two models had two maxima
at more intermediate temperatures, although they did not reach those maxima at the same time.
In contrast, although the dynamical model also exhibited only a single extrema, a maximum, it was
later that the sine wave and after the peak temperature, but before, the other two models reached their
second maxima.

In contrast to the first case, the dynamics of all of the models were much more similar when
temperature varied around a lower temperature, specifically when the starting temperature was 18 ◦C
with a range of 12–23 ◦C (Figure 5). This low range led all density forms to have global optimums
compared to local optimums in the previous regime. This was because, in this thermal regime,
the temperature was fluctuating along the linear part of all (or nearly all) of the thermal trait curves
(see Appendix A for the plots of all thermal traits from 0 ◦C to 50 ◦C). In particular, here, the two
forms Va and Vl were very similar, since they combined traits together in similar ways. Vs had a sine
shape with a lower peak compared to Va and Vl . In contrast, there was a 20-day lag between when
Vd was observed to peak compared to the peaks in the other densities (Figure 5C). This is because in
the dynamical model, the impact of temperature must propagate through the life stages, instead of
appearing immediately. This was also why in the first regime we explored, we did not see the extreme
peaks and valleys due to going “over the hump” of the thermal curves.
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Figure 4. (A) Daily adult female mosquito densities approximated using four forms, namely the sine
wave Vs with initial V0 = 33 and amplitude of 0.45, the adult trait-dependent form Va, the life stage
trait-dependent Vl , and the dynamical density Vd; the parameter values used to solve the ode model
are given in Table 1. (B) Daily temperature given by a sine function (T0(1+ B sin(2πt/365 with T0 = 23
and B = 0.3) evaluated for 365 days used to evaluate our thermal traits incorporated into the dynamical
model. (C) Densities’ first derivatives calculated to show how each curve changes its gradient as it
varies with temperature. The red line shows when the gradient is zero; positive gradient values (above
the red line) mean that the density increases; and negative values of the gradient (below the red line)
mean that the curve decreases.
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Figure 5. (A) Daily adult female mosquito densities approximated using four forms, namely the sine
wave Vs with initial V0 = 19 and amplitude of 0.95, the adult trait-dependent form Va, the life stage
trait-dependent Vl , and the dynamical density Vd; the parameter values used to solve the ode model are
given in Table 1. (B) Daily temperature given by a sine function (T0(1 + B sin(2πt/365) with T0 = 18
and B = 0.3) evaluated for 365 days used to evaluate our thermal traits incorporated into the dynamical
model. (C) Densities’ first derivatives calculated to show how each curve changes its gradient as it
varies with temperature. The red line shows when the gradient is zero; positive gradient values (above
the red line) mean that the density increases; and negative values of the gradient (below the red line)
mean that the curve decreases.
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3.3. Comparison to Observational Abundance Data on A. aegypti

We further wished to explore the extent to which any of the density forms presented were
consistent with observational data on the abundances of A. aegypti. We compared model predictions
to data collected as part of a long-term program of entomological surveillance (“Intelligent Dengue
Monitoring System”) in the city of Vitòria in Brazil Lana et al. [15]. A. aegypti mosquitoes were collected
weekly from mosquito traps placed in 80 neighborhoods of the city across four years (January 2008
to December 2011), resulting in 208 weeks of A. aegypti mosquito abundance. Concurrent weekly
temperature data at the city level were obtained from the International Research Institute for Climate
and Society (IRI) platform at Columbia University Land Institute.

We used weekly average temperatures from Vitòria as inputs for the three trait-dependent models
(i.e., to evaluate A. aegypti mosquito traits each week) in order to obtain the weekly prediction of
each model. Because of the delayed response shown in Vd dynamics, we defined a burning time
of eight weeks to reduce the lag between Vd patterns and A. aegypti abundance. In addition, we
adjusted the temperature-independent model parameters k and k j to make Vd close to A. aegypti
abundance in amplitude. We did not tune any of the parameters in Vl and Va since they were all
temperature-dependent. For the sine wave density, Vs, we changed the frequency from daily to weekly
and fit the amplitude and intercept using least squares (i.e., as a simple linear regression model).
The fitted version equation is given by Vs = 36.31 + 0.35sin(2πt/52). In Figure 6 Top, we show
the weekly temperature data for Vitòria city, and in Figure 6 Bottom, we show the corresponding
predictions for our four models together with the observed Aedes abundance data.

To investigate how close each model was to the observed data, we calculated the mean squared
error (MSE) between the prediction of each model and the data (Table 2). The smaller the MSE,
the closer the prediction to the data on average. Not surprisingly, the closest approximation was Vs,
which was the only model that was fitted to the abundance data directly. By this metric, the second
best was Vl (the life stage trait-dependent curve), followed by the dynamical curve Vd (that also
incorporated life stage traits). The adult trait-dependent density model Va was the poorest fitting
model, indicating that incorporating juvenile traits may improve predictions of adult dynamics.

Table 2. Mean squared error (MSE) calculated between A. aegypti abundance data and the predictions
from our suite of models for the mosquito density Vd, Vl , Va, and Vs.

Model Vd Vl Va Vs

MSE 279 255 316 227



Insects 2019, 10, 393 11 of 20

Figure 6. (Top) Vitòria city’s weekly average temperature during the period of the study. (Bottom)
Vitòria city’s Aedes weekly abundance data in red stars and our density estimates evaluated at
the weekly temperature in Vitòria city, Brazil. The sine wave density Vs in cyan blue, the adult
trait-dependent density Va in dark blue, the life stage trait-dependent density Vl in magenta, and the
dynamical density Vd in green. Mosquito and temperature data both from [15].

4. Discussion

Vector density is an essential component of vector-borne disease transmission as it partially
determines interaction rates between vectors and hosts. For instance, a location with a high vector
density increases the chance for contact with the host, which increases disease risk and facilitates
disease spread [26,27]. However, measuring mosquito abundance in the field can be challenging, and
the role climate factors play in the global distribution and dynamics of mosquitoes including A. aegypti
remains unclear [28,29]. Instead of relying exclusively on measurements, mathematical models could
potentially help bridge the gap between what we know about vector biology and the dynamics of
vector populations. The dynamics of vector populations in general, including mosquito populations,
are driven by the dynamics of all life stages and by the traits of the vectors across stages. Thus,
better understanding mosquito traits and how they determine dynamics have knock-on impacts for
understanding constraints on transmission of VBDs like dengue and for planning and implementing
intervention strategies.

In this study, we compared four models of differing complexity that could be used to approximate
vector density for A. aegypti based on temperature. The model formulations we explored ranged along
a spectrum based on the amount of detail they included on mosquito thermal traits from none (just
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a simple sine wave to represent “seasonality”) to a dynamical model including separate equations
for each of the four mosquito life history stages. When each model was allowed to vary as it was
forced by extrinsic seasonal temperature forcing, the models exhibited patterns that differed both
quantitatively and qualitatively. For example, in the lower temperature regime, the qualitative patterns
were fairly similar across models (primarily differing in the exact values observed; Figure 5), while in
the higher temperature regime, both significant qualitative patterns (e.g., dual peaks in some models
versus single peaks in others), as well as differences in quantitative predictions (e.g., heights of peaks,
Figure 4) existed. Unlike the rest of the density forms, the simple sine wave cannot explicitly capture
the effects of the unimodality of thermal traits on mosquito density.

Ideally, the models constructed should be able to serve dual purposes. That is, they should be
useful for testing our understanding, as well as for making predictions. To test the usefulness of the
models for this second purpose, we explored the extent to which each of the models, with some tuning,
could be used to predict observational data on A. aegypti abundance data collected in Vitòria city,
Brazil, based on weekly average temperatures. We explicitly fit the simple sine wave function to the
data. This served as a kind of null model; this is perhaps the most efficient simple model we might
expect to capture the gross patterns in these data. The other models were tuned to get them as close as
possible to the observed data without changing the temperature-dependent relationships encoded in
the models (i.e., only the non-temperature-dependent parameters were adjusted). Not surprisingly,
the sine wave function, the only explicitly fit to the observed data, gave the smallest error. However,
the other models also were able to capture many of the features of the data; for example, capturing
approximate timing of peaks and troughs in abundances.

Each of the models with different amounts of detail are likely to be useful in different situations.
For example, if we are primarily interested in approximating the number of mosquitoes over time for
a given location based on historical data, then using a simple sine wave might be sufficient. However,
the fit of that model is not likely to be useful to predict dynamics in another setting, for example in a
city with a very different climate. In contrast, the models that are built from experimental data are
quite general because they include biological information about mosquito traits. With potential daily
temperature patterns, we could make predictions about how the mosquito dynamics would look if
A. aegypti invades a new location based on any of the trait based models. Indeed, the intermediate
complexity model versions compared here (Va and Vl) were successfully used to quantify how the basic
reproductive ratio of falciparum malaria depends on temperature, and the predictions were congruent
with the observed entomological inoculation rate [9]. Thus, for capturing large scale patterns or
extrapolating to new locations, any of the models that included traits could potentially be useful.
We expect that our most detailed model that explicitly included the dynamics of juvenile stages
would be most useful when data on larval mosquitoes are collected instead of on adults or when
the effectiveness of interventions to reduce larval populations is being explored. Models that do not
include details on juveniles cannot be used for that purpose. Thus, the choice of which model to use
must be guided based on modeling goals and how this matches with modeling assumptions and with
data types and availability [18,19,30,31].
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Appendix A

We evaluated the thermal functions described in Table 1 at a temperature varying from 0 ◦C
to 50 ◦C to look at Aedes aegypti adult and juvenile trait responses to temperature. Then, with these
thermal curves, we looked at the total mosquito densities Va and Vl variation with temperature.

Figure A1. Adult mosquito mortality rate µ and the survival probability from eggs to adult pEA as
they vary with the temperature range of 0 ◦C to 50 ◦C [24,32].

Figure A2. Cont.
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Figure A2. Adult mosquito fecundity F [8,33] and the adult mosquito development rate 1/ρA [24,32]
as they vary with the temperature range of 0 ◦C to 50 ◦C .

Figure A3. Juvenile stages’ development time, eggs ρE, larvae ρL, and pupae ρP as they vary with the
temperature range of 0 ◦C to 50 ◦C [8,33].
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Figure A4. Juvenile stages’ survival probability, eggs pE, larvae pL, and pupae pP as they vary with
the temperature range of 0 ◦C to 50 ◦C [34].
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Figure A5. Adult trait-dependent mosquito density Va and life stage trait-dependent mosquito density
Vl as they vary with the temperature range of 0 ◦C to 50 ◦C.

Figure A6. Cont.
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Figure A6. (Top) Daily adult females mosquito densities approximated using four forms, namely
the sine wave Vs with initial V0 = 33 and amplitude of 0.45, the adult trait-dependent form Va, the life
stage trait-dependent Vl , and the dynamical density Vd; the parameter values used to solve the ode
model are given in Table 1. (Middle) Daily temperature given by a sine function (T0(1 + B sin(2πt/365
with T0 = 25 and B = 0.3) evaluated for 365 days used to evaluate our thermal traits incorporated
into the dynamical model. (Bottom) Densities’ first derivatives calculated to show how each curve
changes its gradient as it varies with temperature. The red line shows when the gradient is zero;
positive gradient values (above the red line) mean that the density increases; and negative values of
the gradient (below the red line) mean that the curve decreases.

Figure A7. Cont.
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Figure A7. (Top) Daily adult females mosquito densities approximated using four forms, namely
the sine wave Vs with initial V0 = 33 and amplitude of 0.45, the adult trait-dependent form Va, the life
stage trait-dependent Vl , and the dynamical density Vd; the parameter values used to solve the ode
model are given in Table 1. (Middle) Daily temperature given by a sine function (T0(1 + B sin(2πt/365
with T0 = 27 and B = 0.3) evaluated for 365 days used to evaluate our thermal traits incorporated
into the dynamical model. (Bottom) Densities’ first derivatives calculated to show how each curve
changes its gradient as it varies with temperature. The red line shows when the gradient is zero;
positive gradient values (above the red line) mean that the density increases; and negative values of
the gradient (below the red line) mean that the curve decreases.
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