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Abstract: Migration is a costly strategy in terms of reproduction output. Competition for limited
internal resources leads to physiological management of migration-reproduction trade-offs in energy
allocation. Migratory insects must choose to determine to allocate energy into reproduction or
migration when confronted insufficient energy supply. Although nutrient shortage is known to
stimulate insect migration to escape deteriorating habitat, little is known about when and how
migratory insects make decisions when confronted by a nutritional shortage. Here Cnaphalocrocis
medinalis (Lepidoptera: Pyralidae), a migratory rice pest in eastern Asia, was used to study the effects
of starvation on reproductive traits, behavioral traits and energy allocation. The result showed that
one or two days’ starvation before preoviposition did not significantly reduce the fertility (total egg
per female laid) and flight capability (flight duration and distance) of both sexes C. medinalis. The
preoviposition period was extended significantly only if moths were starved starting on the first day
after emergence. Also, take-off percentage of moths starved since their first day increased significantly,
and continued to increase even if supplemental nutrients were supplied as honey solution in later
days. Moths starved on the first day appeared to allocate or transfer triglycerides into the thorax to
maintain the migration process: the quantity of thoracic triglycerides did not differ with age, but
abdominal triglycerides decreased with age if starvation continued. These results indicate that the
first day post-emergence is a critical period for C. medinalis to decide to migrate or not in response to
lack of food. This furthers our understanding of the population dynamics of migratory insects under
natural conditions.
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1. Introduction

Migration is an adaptive mechanism for insects to avoid adverse conditions and exploit temporary
or patchy habitats [1,2]. In most insects, migration usually occurs in the pre-reproduction period [3],
a phenomenon termed by Johnson [4] as “oogenesis-flight syndrome”. Many insects exhibit this
behavior, such as Myzus persicae [5], Aphis gossypii [6], and Gryllus firmus [7]. There is a trade-off

between migration and reproduction in these insects. In other words, the greater the amount of energy
consumed for flight, the less remains for development and reproduction. A longer preoviposition
period, lower fertility, lower reproductive energy investment, higher take-off percentage and stronger
flight capacity are usually associated with migratory behavior of insects [8–11].

Food conditions have important effects on the reproduction and migration of insects [2,4,12,13].
In addition to the quality and quantity of food intake, the time of nutrient intake plays an important
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role in determining reproductive and migration behavior [14–16]. In nature, a majority of adult
insects, such as Lepidoptera, Diptera, and Hymenoptera species, need nutrient supplements to enhance
reproduction [17–20]. Adult nutritional status affects the reproductive behavior of insects, including
mating [21,22] and oviposition [23–25]. In addition, since migration of most insects usually occurs
when the adult is sexually immature [3], the decision by adult to migrate may be more directly affected
by nutrient conditions in the adult stage than in the larval stage. Previous studies have suggested
that the supplementation of nutrition in the adult affects insect migratory behavior [2,4]. For example,
the migratory movement of Danaus plexippus depends on availability of nectar resources [26], and
large numbers of these butterflies are found at locations where nectar is abundant during migration
season [27]. Lack of supplemental nutrition in adults can promote insect migration, as demonstrated
in Bruchophagus roddi [28], Oncopeltus fasciatus [29] and Dysdercus cingulatus [30]. However, little is
known about how newly emerged migratory insects make decisions on allocating resources towards
reproduction and migration when faced with nutritional deficiencies.

Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) is an important long-distance migratory pest,
that has had serious outbreaks in many Asian countries in recent decades, especially in China [31,32].
It cannot overwinter in temperate climates. In China, only a few individuals can survive during
winter in areas of Southern Yunnan, Southern Guangxi, Southern Guangdong and Hainan [31–33].
Instead, infestations in temperate zones are initiated by windborne spring/summer migrants from
the southern areas. A northward migration begins in March every year, and migrant progeny
further expand population distributions to cover the rice-growing regions in China, Japan and the
Korean Peninsula [31–34]. From September onwards, the general direction of C. medinalis becomes
predominantly south bound [31–34].

Like most nocturnal migratory moths, C. medinalis perform ‘multi-stop’ migration in 3–5
consecutive nights, in which moths only take off at dusk, terminate migratory flight the following
dawn, and then take-off again at the next dusk [33]. Adult C. medinalis exhibit “oogenesis-flight
syndrome” during migration, which means migration occurs during the immature stage of reproductive
development [33–37]. Therefore, the migratory C. medinalis generally has a long reproductive
preparation stage (longer preoviposition period, lower mating percentage and less fecundity for
female) and a strong migratory propensity (higher take-off percentage and strong flight capability
in both sexes) [12,34–37] than a non-migratory moth. C. medinalis migrants also reserve sufficient
energy for migration [35,36]. Lipids, stored primarily as triglycerides, are the main energy sources for
migration in many nocturnal moths [9], and C. medinalis migrants have more lipids stored in thorax than
residents [35,36]. After one or two days post-emergence, C. medinalis needs to acquire supplemental
nutrients, which are often sucked from plant flowers in the field such as Paspalum conjugatum,
Amaranthus viridis, Ligustrum lucidum, and Gossypium spp. [12]. Nutritional supplementation in the
adult stage is especially important for C. medinalis. Lack of supplementary nutrition prolongs the
preoviposition period, and has a significant negative impact on reproduction and longevity [12]. The
level of ovarian development of C. medinalis adults fed only water is significantly lower than that of
females provided supplementary nutrition [38]. However, these studies were restricted to the effect of
continuous starvation on reproduction in adult C. medinalis. The effects of starvation at different ages
and for different durations on reproduction and migratory propensity are still unclear. Most studies
have used only the durations of preoviposition period to indirectly reflect migratory propensity, but
little is known about effects of adult nutrition or starvation in the adult stage on take-off behavior,
flight capability and energy reserve and transfer. This raises important questions about the effects of
adult nutrition on the migration and reproduction of newly emerged C. medinalis: (1) Does starvation
at different ages and for different durations have different effects on female reproduction? (2) Does
C. medinalis (both female and male) have a critical period of response to starvation? If yes, how does
starvation during this period affect reproduction and migration decisions? (3) How does adult nutrition
affect energy distribution in both female and male moths?
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To address these questions, we designed four independent experiments based on ecological and
physiological aspects to study the effects of starvation of different durations or different timing
(starvation at different starting ages) on the reproductive parameters (female only), migratory
parameters and energy allocation of newly emerged C. medinalis and to identify the stage at which
adult insects are sensitive to a lack of nectar. The results will help us understand the relationships
between supplemental nutrients, migratory behavior and reproduction and elucidate the role of nectar
resources in insect migration.

2. Materials and Methods

2.1. Insects

The larvae of C. medinalis were originally collected from rice fields in Nanjing, China. Larvae were
reared on wheat seedlings until pupation [39]. Pupae were removed from the seedlings and transferred
into a transparent plastic box (16 cm length, 24 cm width and 22 cm height), the bottom of which
was filled with moist cotton wool to maintain high relative humidity. Pairs of newly emerged male
and female adults were transferred to 500-mL transparent cups with absorbent cotton wool soaked
in 5% honey solution as a supplemental nutrient. The cups were covered with plastic film, and the
adults oviposited on the film. All the insects were reared in RXZ intelligent artificial climate chambers
(Ningbo Jiangnan Instrument Factory, China) at 26 ± 0.5 ◦C and 80%–90% relative humidity (RH) with
a photoperiod of 14L:10D [39]. These insects were maintained for twenty generations in the laboratory
when the experiments started.

2.2. Adult Starvation

To explore the effects of supplemental nutrition on the reproductive and migratory ability of
C. medinalis and to identify the sensitive period of adult response to starvation, we starved adults at
different ages and for different durations. We had three treatment groups: (1) no starvation, (2) early
starvation treatments and (3) no feeding (Scheme 1). Among them, the early treatment feeding group
included six treatment subgroups based on different day-age durations (one, two and three days) and
different starting ages (one-, two- and three-day-old). Treatments were imposed identically on male
and female moths.
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2.3. Reproductive Parameters of Female Moths

Reproductive parameters, including mating percentage, total number of eggs per female and
preoviposition period were measured in treated females. After adult emergence, each female was
paired with a male and transferred to a 500-mL transparent cup set up as described above. The number
of eggs per female was recorded daily to calculate the preoviposition period and fecundity. After death,
the female moths were dissected, and the number of spermatophores was determined; female with
spermatophores copulated successfully, and moths without spermatophores failed to copulate. The
mating percentage of adult females in the starvation treatments and controls were computed. More
than 14 adult females were examined for each treatment.

2.4. Migration Parameters

Migration parameters, including take-off behavior and flight capability, were used to indicate the
migration propensity of adults. Because tests of reproductive characteristics obtained sensitivity to
starvation at 1 day after emergence, three treatment groups were set up to test migration characteristics:
no starvation group, first-day starvation group, and adult life-long starvation group. Radar observations
and field trials have shown that C. medinalis adults take off at dusk, approximately 19:00 [31]; therefore,
observation of take-off behavior and measurement of flight capability in one-, two-, and three-day-old
adults started at 19:00.

2.4.1. Percent Take-Off

Adults for observation were transferred into 500-mL clear plastic cups. The cups were placed
on white plastic foam (the take-off platform) and then covered with a transparent Polyvinyl chloride
(PVC) cage (diameter 60 cm, height 120 cm) to observe the take-off behavior of the moths. Each time
five female or male moths were observed, and at least 30 female or male moths were randomly selected
for each treatment. An effective migratory take-off was defined as that moth took off and spiraled
vertically with a vertical distance greater than 100 cm. If moths kept still or just flew at lower height
less than 100 cm, the these moths were recorded as non-migratory [37]. Here, the number of adults
that exhibited effective migratory take-off was recorded, and then take-off frequency was computed.
All take-off experiments were started at dusk.

All take-off experiments were performed in a climate chamber (26 ± 1 ◦C, 80%–90% RH). All tested
adults were moved into this climate chamber one hour before the observation of take-off behavior [37].
To simulate the lighting conditions of natural sunset, a light source composed of 20 rows of fluorescent
lamps (36 V/40 W) and 2 incandescent lamps (12 V/40 W) was used. This light source was located
200 cm above the take-off platform to eliminate the effect of its heat on the internal temperature of
the PVC cage. The light intensity was changed by gradually extinguishing 20 parallel fluorescent
lamps (2 every 3 min) and connecting the incandescent lamp with a potentiometer to create artificially
simulated evening light. The indoor light intensity was gradually decreased from 1000 L× to 0.1 L×
within 45 min. The changes in light intensity during the observation period were simultaneously
measured with a TES-1330A illuminometer.

2.4.2. Flight Capability Measurement

Flight tests of adults were conducted with a 24-channel computer-interfaced flight mill system
(Jiaduo Science, Industry and Trade Co., Ltd., Hebi City, Henan Province, China) that automatically
recorded total flight distance and flight duration. Each adult was tethered according to a technique
described in previous studies [40–42]. Experimental moths were mildly anesthetized with ether before
being glued onto a tether arm. The scales of the adults at the junction between the metathorax and
abdomen were brushed off using a soft brush pen, and the metathorax of each adult was glued onto
a hollow plastic tether (diameter of 0.80 cm and length of 1.5 cm) with Pattex Superglue (Henkel
Adhesive Co., Ltd., Guangdong, China). The flight capabilities of the adults were not affected by this
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treatment compared to those of the adults that were not anesthetized and glued to tethers [40–42]. The
flight directions of the tethered moths remained perpendicular to the arm of the round-about flight
mill. Light intensity was gradually reduced from 1000 L× to 0.1 L× to simulate natural dusk. Lights
were turned off at 20:00 and turned on at 6:00 [37]. The flight environment was maintained at 26 ± 1 ◦C
and 80%–90% RH, and the flight test was carried out from 19:00 to 7:00. At least 22 female or male
moths in each treatment were randomly selected to observe take-off behavior.

2.5. Determination of Triglyceride Content

The triglyceride content in the thorax and abdomen was measured when adults were starved
on the first day after emergence, starved for the life of the adult, or fed honey throughout the adult
period. After treatment, one-, two-, three-, four- and five-day-old adults were collected and maintained
in liquid nitrogen for determination of triglyceride content using a Triglyceride Assay Kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according to the manufacturer’s instructions. Each
sample contained the thorax or abdomen of three moths, and at least 27 female moths or male moths in
each treatment were used to determine triglyceride content. The thorax of each adult was separated
from the abdomen after removal of the head, wings, and appendages. The weights of the thorax and
abdomen were measured by an XP6 electronic balance (0.001 mg, Mettler-Toledo AG, Sonnenberg
Strasse, Schwerzenbach, Switzerland). A proportionate amount (M:V = 1:9) of PBS (0.1 M, pH 7.4)
was added, and the mixture was homogenized in ice water. The sample was centrifuged at 587× g
for 10 min at room temperature (26 ± 1 ◦C), and supernatant was used for triglyceride measurement.
Measurement was performed for a blank tube with 7.5 µL of distilled water, a standard tube with 7.5 µL
of reference material, and a sample tube with 7.5 µL of sample homogenate. The OD value of 200 µL of
the solution was measured at 510 nm using a VersaMax microplate reader (Molecular Devices) after
the addition of 750 µL of working fluid. A portion of the sample supernatant was used to determine
protein content using a Pierce® BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Finally, the triglyceride levels were determined using protein levels as a quantitative standard.
The formula used was as follows:

Triglyceride content (mmol/gprot)
= (OD value of sample−OD value of blank)/(OD value of standard
− OD value of blank× calibrator content (mmol/L)
÷ protein content of test× sample (gprot/L)

(1)

where mmol/gprot is millimol per gram of protein, mmol/L is millimol per liter and gprot/L is grams of
protein per liter.

2.6. Data Analysis

All data obtained from the studies are prented as the mean ± SE, except mating percentage
and take-off percentage. The effects of adult starvation on the preoviposition period, total fecundity,
triglyceride content and flight capability were analyzed by one-way ANOVA followed by Tukey’s
HSD tests. The reproduction traits were also analyzed using two-way ANOVA with duration and
timing of starvation. Three-way ANOVA was used to analyze the effects of different treatment on flight
duration, flight distance and triglyceride content in C. medinalis. Differences in mating percentage and
take-off percentage among treatments were compared by the chi-square test. All statistical analyses
were performed with R software (version 3.6, Microsoft Corporation, Redmond, WA, USA).

3. Results

3.1. Influence of Adult Starvation on Reproduction

The control group of C. medinalis females did not have a starvation experience in our experiment,
and its mating percentage was 80.49% (33/41). In the group of starvation throughout adult life, only
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16.07% (9/56) of females mated, and this mating percentage was significantly lower than that of the
control group (Chi-square test: χ2 = 14.09, p < 0.001; Figure 1a). In the groups of individuals starved for
a short period (one, two or three days), mating percentages were 82.73% (115/141), 79.07% (34/43) and
71.43% (10/14), respectively. Compared with the control group, the result of Chi-square tests (χ2 = 0,
p = 1 in all three comparisons; Figure 1a) indicated that a short period of starvation before oviposition
did not significantly affect percentage of copulation in C. medinalis.
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Starvation reduced female fecundity of C. medinalis, but the effect of starvation on the total
number of eggs per female produced was found to be depended only on starvation duration, but
not starvation timing (age of moth when starvation began) (Table 1, Figure 1b). The number of eggs
per female decreased as starvation duration increased (Figure 1b). The female control group without
starvation laid 370 ± 18 eggs (n = 33), while the group that starved throughout the whole adult life
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laid only 48.67 ± 7.84 eggs per female (n = 9) (Figure 1b). However, one days’ starvation (no. of
eggs per female = 316 ± 12, n = 113) or a starvation in their first two days after emergence (no. of
eggs per female = 275 ± 23, n = 15) did not significantly affect female fecundity compared with the
control group (Figure 1b).

Table 1. Two-way ANOVA for the effects of duration and timing of starvation on fecundity and
preoviposition period in female Cnaphalocrocis medinalis.

Trait Source df Mean-Square
Value (MS) F-Values p

Fecundity

Starvation timing 2 990 0.079 0.924
Starvation duration 4 230,851 18.46 <0.001
Starvation timing × starvation duration 1 257 0.02 0.89
Error 191 12,508

Preoviposition period

Starvation timing 2 3.28 3.43 0.035
Starvation duration 4 8.86 9.26 <0.001
Starvation timing × starvation duration 1 1.03 1.07 0.30
Error 191 0.96

“×” is an interactive token. Significant values (p < 0.05) are printed in bold.

Starvation extended the preoviposition period of C. medinalis (Figure 1c, Table 1), but was affected
by the starvation timing not the starvation duration (Table 1). Adults suffering starvation from the first
day after emergence exhibited a significantly longer preoviposition period (4.54 ± 0.14 days, n = 67)
than the control group (3.3 ± 0.09 days, n = 33) (Figure 1c). In the groups of adults starved from age
2 or 3 days, their preoviposition periods (2-day-old group: 3.9 ± 0.13 days, n = 63; 3-day-old group:
3.6 ± 0.11 days, n = 36) were not significantly different from that of the control group (Figure 1c).

Taking the above results together, we found that starvation had a negative effect on female
C. medinalis reproduction, but a short period of starvation before oviposition did not significantly
reduced the mating percent (Figure 1a) or the number of eggs per female (Figure 1b). The preoviposition
period was extended significantly if moth suffered starvation in the first day after emergence (Figure 1c).

3.2. Influence of Adult Starvation on Flight Performance

Starvation was expected to stimulate C. medinalis adults to take off and start the migration process,
as the preovipostion period was extended under starvation in our experiment (see previous section).
As expected, the groups with a starvation experience had a higher take-off percentage, regardless of
sex (Table 2, Figure 2a,b). In the control group without starvation experience, only 9.40% (17/180)
individuals took off in the first 3 days after emergence (Table 2, Figure 2b,c). All groups experiencing
starvation at the age of 1 day had a low take-off percentage, only 14.29% (20/140), which was similar to
the control group (Chi-square test: χ2 = 1.70, p = 0.19). This indicated that most C. medinalis moths did
not commence their migration immediately after emergence. The takeoff percentages in the groups
starved on day 1 increased from the second day of age (Figure 1b,c). The group starved for the first
three days of adult life had a strong migratory propensity at 2- and 3-days old (takeoff percentage at
day 2: 67.14% (47/70); day 3: 92.86% (65/75)). In the group starved on day 1, takeoff percentages were
31.43% (22/70) o the second day, and 48.57% (34/70) on the third day. These takeoff percentages were
higher than that of control group (Chi-square test, day 2: χ2 = 5.94, p = 0.015; day 3: χ2 = 7.56, p = 0.006),
but lower than that of the group starved for 3 days (Chi-square test, day 2: χ2 = 5.44, p = 0.019; day 3:
χ2 = 4.12, p = 0.042) (Figure 2a,b). Here, it should be emphasized that the takeoff percentage in the
groups with one-day’s starvation were higher at the age of 3 days than at the age of 2 days (Chi-square
test: χ2 = 37.47, p < 0.001). This result indicates that feeding after starvation did not reduce migration
propensity even if the decision to migrate was initiated by starvation.



Insects 2019, 10, 364 8 of 16

Table 2. Three-way ANOVA for the effects of different treatments on take-off percentage, flight duration
and flight distance in Cnaphalocrocis medinalis.

Trait Source df MS F-Values p

Take-off
percentage

Adult age 2 16,891.56 46.52 <0.001
Sex 1 154.47 0.43 0.516
Treatment 2 23,182.94 63.844 <0.001
Adult age × Sex 2 190.81 0.53 0.593
Sex × Treatment 2 95.32 0.26 0.770
Adult age × Treatment 4 4294.37 11.83 <0.001
Adult age × Sex × Treatment 4 181.98 0.50 0.735
Error 102 363.12

Flight duration

Sex 2 58.34 6.34 0.002
Adult age 1 85.54 9.30 0.002
Treatment 2 94.98 10.33 <0.001
Adult age × Sex 2 11.19 1.22 0.297
Sex × Treatment 2 8.54 0.93 0.396
Adult age × Treatment 4 45.88 4.99 <0.001
Adult age × Sex × Treatment 4 1.98 0.22 0.930
Error 358 9.20

Flight distance

Sex 2 163.29 7.00 <0.001
Adult age 1 216.76 9.29 0.002
Treatment 2 218.48 9.36 <0.001
Adult age × sex 2 47.95 2.06 0.130
Sex × Treatment 2 21.22 0.91 0.404
Adult age × Treatment 4 103.10 4.42 0.002
Adult age × Sex × Treatment 4 6.66 0.29 0.887
Error 358 23.33

“×” is an interactive token. Significant values (p < 0.05) are printed in bold.

In the control group of C. medinalis without starvation, a short preoviposition period and a low
takeoff percentage indicated that it did not have a strong propensity to migrate (see previous sections),
but it still had strong flight capability before oviposition (Figure 2b,c). The result of ANOVA indicated
that flight duration was significantly different between female and male individuals (F: 4.84 ± 0.43 h
(n = 72); M: 3.31 ± 0.33 h (n = 88); F1,156 = 9.71, p = 0.002), but just a marginally significant difference
between individuals at different ages (F2,156 = 2.94, p = 0.056) (Figure 2c,d). In the group starved for
duration of adult life, the flight duration in the first 3 days after emergence was 2.08 ± 0.24 h (n = 78),
and there was not significantly difference between female and male individuals (F1,74 = 1.16, p = 0.29),
or individuals at different ages (F1,74 = 1.18, p = 0.31). Nonetheless, we found that the flight capability
of this group decreased with age (but not significantly), while the flight capability of the control group
increased (marginally significant). Consequently, the flight capabilities of these two groups were
significantly different at age 3 days (Figure 2c,d). This result indicated that starvation reduced the
flight capability. In the group of individuals with one-day’s starvation at age 1 day, flight duration in
the first 2 days was 2.30 ± 0.29 h (n = 84), regardless of sex (F1,74 = 1.15, p = 0.29) or age (F1,81 = 0.31,
p = 0.58). Also, this flight capability was similar to that of other two groups (i.e., control and adults
starved for life) at the same age (Figure 2c,d). At an age of 3 days, the flight duration of this group
after one-day’s starvation increased to 5.70 ± 0.52 h (n = 54), and this was even longer than that of the
control group at the same age (just below significant). The result of flight distance was just similar to
that of flight duration (Figure 2e,f), so the details of flight distance are not shown here.

In summary, starvation stimulated C. medinalis to fly and begin migration. The takeoff percentage
did not decrease even if supplemental nutrient was supplied by feeding with honey solution
(Figure 2a,b). The flight capability remained at a nearly stable level at the first 3 days after emergence
even under starvation. Supplemental nutrition enhanced their flight capability, especially in the
individuals starved for 1 day (Figure 2c–f). Thus far, the results suggest that migratory moths allocate
new energy to migration but not to reproduction.
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above the bars indicate significant differences between different treatments (p < 0.05), based on the
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male moths. (e) The flight distance of female moths. (f) The flight distance of male moths.

3.3. Influence of Adult Starvation on Triglyceride Content

The triglyceride content in the thorax of C. medinalis was not significantly different among
individuals of different sexes, ages or starvation treatments in our experiment (see more statistics detail
in Table 3; Figure 3a,b), and was expected to help moths maintain a nearly stable flight capability during
their first three days after emergence. However, the abdominal triglyceride content varied depending
on treatment and an interaction effect between treatment and age (Table 3). In the control group,
the abdominal triglyceride content increased with age, suggesting that moths allocate new energy to
reproduction (Figure 3a,b). In the group starved throughout the whole adult period, the abdominal
triglyceride content decreased significantly at age 3 days (Figure 3a,b). As flight capability did not
decrease significantly and the triglyceride content in the thorax remained unchanged, it appeared that
moths transferred energy from reproductive tissues to flight tissues to maintain migration capability.
The group starved only on day 1 after emergence had a stable abdominal triglyceride content.
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Table 3. Three-way ANOVA for the effects of duration and timing of starvation on triglyceride content
in the thorax and abdomen of Cnaphalocrocis medinalis.

Trait Source df MS F-Values p

Thorax Sex 1 0.48 0.26 0.609
Adult age 2 0.34 0.19 0.831
Treatment 2 0.21 0.11 0.895
Adult age × Sex 2 0.32 0.17 0.841
Sex × Treatment 2 1.69 0.81 0.403
Adult age × Treatment 4 2.19 1.18 0.319
Adult age × Sex × Treatment 4 3.06 1.65 0.162
Error 221 1.85

Abdomen Sex 1 12.46 3.05 0.082
Adult age 2 6.71 1.64 0.196
Treatment 2 39.45 9.67 <0.001
Adult age × Sex 2 1.36 0.33 0.718
Sex × Treatment 2 5.72 1.40 0.248
Adult age × Treatment 4 43.53 10.67 <0.001
Adult age × Sex × Treatment 4 0.62 0.15 0.962
Error 221 4.08

“×” is an interactive token. Significant values (p < 0.05) are printed in bold.
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4. Discussion

4.1. Effect of Adult Starvation on Reproductive Parameters

C. medinalis moths have the ability to endure short-term starvation because of energy stored during
the larval stage, but reproduction of the adult moths is strongly dependent on supplemental nutrition.
Mating is costly for both sexes and increases energy expenditure [43]. Long-term starvation results in
failure to mate adequately, which greatly affects the reproduction of insects. Many lepidopteran insects
exhibit greatly reduced mating percentages, such as Spodoptera exigua [22] and Pseudaletia separata [21],
when adult moths lack nutrition. In addition, even if adults successfully mate, females tend to reduce
oviposition to adapt to starvation [44–46]. Most lepidopteran insects, such as Spodoptera exempta [47],
and Athetis lepigone [48], show significant decline in fecundity when adults are undernourished. In
this study, the fecundity of C. medinalis was noticeably reduced when starvation lasted for more than
two days. Fecundity and ovarian development levels of C. medinalis females fed only with water
were significantly lower than those of adults provided supplemental nutrition [12,38]. Therefore,
adult nutrition is particularly important for reproduction and lack of nectar may strongly impact
reproduction success in C. medinalis.

In general, to escape starvation, insects have evolved a series of strategies to deal with food
shortages. These include physiological factors, such as reducing metabolic rate to save energy [49]
to deal with starvation and behavioral responses, such as migration [1], to avoid starvation. As
an insect with long-distance migration ability, C. medinalis can escape from bad environments and
track resources by migration through time and space. In a previous study in southern China, it was
found that C. medinalis emigrants (old instar larvae or pupae were collected from rice paddies during
the emigration period of natural population and then fed indoor) had much lower fecundity (laid
84.76 ± 59.74 eggs per female) than residents (339.47 ± 115.36 eggs per female), but emigrants remained
stronger migration propensity through days one to six after emergence [37]. By contrary, immigrants
(completed its migration, moths collected from natural population during its immigration period and
then fed indoor) laid the biggest number of eggs (400.50 ± 70.07 eggs per female) [37,50]. It seems that
migratory females reduce reproductive investment to support migration process until the termination
of migration, and migrants allocate most resource to reproductive after migration and even had a
higher fecundity than residents [37,50]. Therefore, we speculate that C. medinalis might need to reduce
reproductive investment after short-term starvation in favor of allocating resources to searching for a
more resource-rich environment.

4.2. Effect of Adult Nutrition on Behavioral Response

Adult starvation affects the timing of oviposition in C. medinalis, that is, the preoviposition period.
Migration of C. medinalis begins while the adult is sexually immature, and ovarian development of
females undertaking migration is slowed [32], resulting in longer preoviposition periods in migratory
populations [37]. Therefore, prolongation of the preoviposition period is closely related to insect
migration. Our results indicate that starvation significantly prolonged the preoviposition period of
C. medinalis, which is consistent with the results of Zhang et al. [12]. In addition, there is a crucial
stage in which some migratory insects respond to environmental factors, and during this crucial
period, environmental changes can alter the direction of insect development, such as by inducing
migration or reproduction [51–53]. Our study found an interesting phenomenon where starvation
on the first day post-eclosion prolonged the preoviposition period. Other studies in C. medinalis also
found that only the first-day adults suffering low temperature or treated by juvenile hormone shorten
the preoviposition period [41,54]. Therefore, we believe that the first day after emergence is a critical
period for C. medinalis to respond to environmental changes, and that starvation on that day promotes
the onset of migration.

Our study showed that starvation in recently-emerged adults increased take-off percentage, and
the longer the starvation duration, the higher the take-off percentage. Thus, adult starvation enhances
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propensity to migrate. Interestingly, the take-off percentage of C. medinalis subjected to restoration
of nutrition after one day of starvation did not decrease but was significantly higher than that of the
control group on the third day of adulthood, which indicated that starvation on the first day greatly
enhanced migratory propensity. This result confirms that the first day after emergence is a critical
period for C. medinalis to respond to environmental changes.

In our study, only starvation for more than two days decreased the flight capability. Such
short-term starvation does not reduce flight capability in some insects but is exhibited by others,
such as Pachnoda siuata [55] and Agrotis ipsilon [56]. Although the flight capability of C. medinalis
measured by tethering flight mills did not show significant differences between adults in the short-term
starvation groups and control, starvation might reduce the flight capability in some other non-migrating
insects [57]. This may be due to the fact that C. medinalis deals with starvation differently from other
migrating insects. The accumulation of energy during the larval period is limited, and when adults
face starvation, energy may need to be redistributed from reproduction organs to flight organs, or
reversely. As a migratory insect, C. medinalis are more inclined to allocate energy into flight organs to
ensure that there is sufficient flight capacity to emigrate away from a food-poor environment, while
other insects may reduce energy allocation to other organs to ensure reproduction. However, in other
migrating insects such as Spodoptera exigua [58], starvation has been found to reduce flight capacity.
This difference may be due to a difference in energy requirements between migratory insects. There was
no significant change in flight capability in the case of days one to three after emergence of C. medinalis,
but the flight capability of S. exigua increased with adult age [59]. When energy is limiting, C. medinalis
can maintain flight capacity by redistributing triglyceride from the abdomen to thorax, but the flight of
S. exigua requires more energy, and the storage of energy during larval stage is extremely limited [59].
However, the specific impact mechanism needs further research. Therefore, C. medinalis apparently has
a strategy to allocate energy towards flight when it encounters a food shortage early in its adult life.

Lepidoptera adult behavioral strategies are directly or indirectly altered by changes in adult
nutrition. Food shortage in newly emerged C. medinalis prolonged the preoviposition period, increased
take-off propensity and maintained the long-distance flight capability. These behaviors showed a
strong migratory propensity in C. medinalis and are consistent with our previous predictions, based on
reproductive characteristics, that starvation induces migration.

4.3. Effect of Adult Nutrition on Physiological Adjustment

Our experiments clearly demonstrated that in the face of starvation, C. medinalis has prolongs
reproduction development and increases migration propensity. Behavior results from complex
physiological processes, and energy redistribution is one of the adaptive physiological countermeasures
to food shortage. The transition between migration and reproduction results from the transformation
or redistribution of intrinsic energy [37,55]. Because C. medinalis exhibits “oogenesis-flight syndrome”
during its long-distance migration [33,34,50], there is a trade-off between flight and reproduction [9].
Moreover, triglycerides are the main energy sources for migration of C. medinalis [9,35,36]. Consequently,
the triglyceride distribution in the thorax and abdomen reflects the transition between migration and
reproduction. In this study, we found that, regardless of sex of the moth, its thoracic triglyceride content
is not significantly reduced by starvation, indicating that C. medinalis maintains the energy supply to
the thorax under hunger. In contrast, starvation affects the energy reserve in the abdomen. Our results
show that when nutrition is supplemented, the triglyceride content of both female and male moths
increases with the adult age, while adults who continue to be deprived have reduced triglycerides.
However, moths starved on the first day did not quickly replenish their abdominal triglycerides after
supplementing nutrition, which may be related to their prolonged preoviposition period and higher
takeoff tendency on the third day after emergence. These results suggest that C. medinalis chooses
between breeding and migration in response to nutritional deprivation. When food is abundant,
C. medinalis choose to allocate more energy into breeding, while faced with starvation, it will allocate
more energy into the flight-readiness. Somewhat surprisingly, although continuous starvation did not
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significantly reduce the triglyceride content of the thorax, the flight capability decreased on the third
day after emergence. Since starvation can lead to a decrease in metabolic enzyme activity [55,60–62], we
speculate that this may be related to the decline in activity of flight-related enzymes under starvation
that affect energy efficiency, but the specific reasons are not clear and further research is needed to
validate our speculation. In short, changes in physiological adjustment after starvation explained the
results of reproductive characteristics and behavioral response. Starvation in the first day of C. medinalis
life leads to the allocation of energy into their thorax, ensuring successful migration.

5. Conclusions

Overall, our study shows that a short starvation (one or two days) before preoviposition don’t
significantly reduce the fertility and flight capability of C. medinalis, and adult supplemental nutrition
is essential for the reproduction of C. medinalis moths. One day after emergence is a critical period in
the response to starvation. Starvation during the critical period promotes migratory traits and leads to
migration in C. medinalis. Our results suggest that nectar resources play an important role in insect
migration, and may be important for development of improved ecological control strategies.
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