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Abstract: Bumblebees are important insect pollinators for many wildflowers and crops. MicroRNAs
(miRNAs) are endogenous non-coding small RNAs that regulate different biological functions
in insects. In this study, the miRNAs in the heads of the three castes of the bumblebee Bombus
lantschouensis were identified and characterized by small RNA deep sequencing. The significant
differences in the expression of miRNAs and their target genes were analyzed. The results showed
that the length of the small RNA reads from males, queens, and workers was distributed between
18 and 30 nt, with a peak at 22 nt. A total of 364 known and 89 novel miRNAs were identified
from the heads of the three castes. The eight miRNAs with the highest expressed levels in males,
queens, and workers were identical, although the order of these miRNAs based on expression differed.
The male vs. queen, male vs. worker, and worker vs. queen comparisons identified nine, fourteen,
and four miRNAs with significant differences in expression, respectively. The different castes were
clustered based on the differentially expressed miRNAs (DE miRNAs), and the expression levels of
the DE miRNAs obtained by RT-qPCR were consistent with the read counts obtained through Solexa
sequencing. The putative target genes of these DE miRNAs were enriched in 29 Gene Ontology (GO)
terms, and catalytic activity was the most enriched GO term, as demonstrated by its association
with 2837 target genes in the male vs. queen comparison, 3535 target genes in the male vs. worker
comparison, and 2185 target genes in the worker vs. queen comparison. This study highlights the
characteristics of the miRNAs in the three B. lantschouensis castes and will aid further studies on the
functions of miRNAs in bumblebees.
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1. Introduction

As important pollinators of wildflowers and crops, bumblebees play a significant role in natural
and agricultural ecosystems [1–4]. Since 1987, bumblebees have been used for pollination in
commercial production, which has greatly promoted the development of artificial rearing technology [3].
Bumblebees are social insects with three castes—males, queens, and workers. During initial colony
formation, the queen collects nectar and pollen and lays eggs. After the first batch of workers has
hatched, the queen focuses on laying eggs. The main functions of the workers are gathering food,
secreting wax, nesting, feeding larvae, and cleaning. Males are colony philanderers and hatch from
unfertilized eggs, and their function is to mate with new queens [5]. Therefore, the functions of the
three castes in bumblebee colonies are significantly different. MicroRNAs (miRNAs) are molecules
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that play regulatory roles in biological functions, and an exploration of the miRNAs expressed in the
three castes will be helpful for understanding their molecular regulatory function in bumblebees.

miRNAs are endogenous, single-stranded, and non-coding small RNAs approximately 22 nt in
length that induce translational inhibition or target gene degradation by binding to complementary
mRNA sequences. These miRNAs are ubiquitous in eukaryotes and are highly conserved in related
species [6,7]. It has been demonstrated that miRNAs play regulatory roles in many biological processes
in animals, including embryonic development, tissue differentiation, cell proliferation, apoptosis, and
morphogenesis [8,9]. Previous studies have shown that miRNAs play important roles in regulating
neuronal differentiation, synaptic plasticity, and behavioral regulation in mammalian brains. Since the
head of the honeybee is the control center for learning, memory, and cognition [10,11], research on the
miRNAs expressed in the honeybee head can reveal functions related to behavior.

In honeybees, the expression levels of miRNAs are related to diverse biological functions, such as
caste differentiation, foraging and dancing behaviors, and ovary activation [12–14], and eight miRNAs
expressed in the head of the Bombus lantschouensis queen regulate oviposition [15]. Furthermore,
the expression pattern of miR-315 was measured to validate the stability of the best miRNA candidate
gene in the bumblebee queen in response to reproduction [16]. In Apis and Drosophila, six miRNAs show
differential expression between the queen and worker larvae, and the target genes of these miRNAs
are involved in development and reproductive differentiation [17]. However, the characteristics of the
miRNAs expressed in the three bumblebee castes have not been explored, and their functions in the
different bumblebee castes remain unknown.

The European bumblebee, Bombus terrestris, is the commercial species most commonly used for
agriculture pollination worldwide, but strong invasion of B. terrestris has caused a decline in local
bumblebees in many parts of the world, which has raised concerns regarding the conservation of local
bees [18–21]. Recent studies have shown that the habitats of Chinese bumblebees are also threatened
by the invasive species B. terrestris [22]. Therefore, further studies on the rearing of local bumblebees
for pollination purposes is crucial for avoiding invasion of the introduced species. B. lantschouensis is
one of the most important local bumblebee species used commercially in China due to its beneficial
characteristics of easy rearing in captivity, large colony size, large number of queens, high mating rate,
and pollination services [23,24].

In the present study, the miRNAs expressed in the three castes of B. lantschouensis were identified
and characterized based on high-throughput sequencing, and the significant differences in the
expression levels of these miRNAs among the castes were validated by RT-qPCR. The target genes of
the miRNAs were predicted, and their regulatory pathways were analyzed. Our results will enhance
the basic knowledge of miRNAs expressed in different bumblebee castes and might help clarify
their important biological functions in bumblebees and thus aid in the rearing of bumblebees for
agricultural pollination.

2. Materials and Methods

2.1. Samples

Bombus lantschouensis samples were collected from the bumblebee rearing room at a laboratory in
the Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China. All the
colonies were fed sugar syrup (50% sugar content, w/vol) and the same pollen pellets (apricot:oilseed
rape = 1:1, mixture of fresh pollen with pure water) every other day to prevent fermentation of the
food under the rearing conditions (temperature of 29 ◦C ± 0.5 ◦C, 55% ± 5% relative humidity, and
continuous darkness). The pollen pellets were collected from honeybees (Apis mellifera) using pollen
traps [23]. One week after emergence, whole bodies of the males, queens, and workers were placed
directly into liquid nitrogen. The heads were cut and collected in Eppendorf tubes independently.
Three biological replicates of each caste were included in the study. In total, nine head samples,
including three males, three queens, and three worker heads, were collected.
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2.2. RNA Isolation, Library Construction, and Sequencing

One head was considered as one sample, and a total of nine bumblebee heads were used in
this study. Total RNA of each sample was isolated using the TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). After the homogeneity of the sample was confirmed, each head was digested with 1 mL
of the TRIzol reagent and incubated for 5 min at room temperature. Then, 0.2 mL of chloroform
was added to each sample, and the mixture was incubated for 3 min. The sample was centrifuged
for 15 min at 12,000× g and 4 ◦C. The aqueous phase was added to 0.5 mL of isopropanol, and
the mixture was incubated for 10 min and centrifuged for 10 min at 12,000× g and 4 ◦C. The pellet
was resuspended in 1 mL of 75% ethanol and vacuum dried, and these steps were performed twice.
The pellet was then resuspended in 50 µL of RNase-free water. The RNA integrity and quantity were
determined by 1% agarose gel electrophoresis and using a Micro-Volume UV–Vis spectrophotometer
(NanoDrop-2000, Waltham, MA, USA). For construction of the small RNA library, total RNA was
separated by 15% denaturing polyacrylamide gel electrophoresis, and the 18–30 nt fragments were
purified. The gel-purified small RNAs were then ligated to a 5’ adapter and a 3’ adapter using T4
RNA ligase. The ligated fragments were reverse-transcribed and amplified by PCR. The purified PCR
products were then sent to Berry Genomics Co., Ltd. (Beijing, China) for high-throughput sequencing
on the Solexa high-throughput platform.

2.3. Read Filtering and Mapping

The raw data were assessed using NGS QC Toolkit (version 2.3), and Cutadapt (version 1.16) was
used to discard reads with more than two N bases, 5’ and 3’ adapters from the reads, reads with more
than 10 poly-A sequences, low-quality reads containing a 5’ end with a cutoff of 15 and a 3’ end with a
cutoff of 10, and reads with a length less than 18 nt and more than 30 nt. All clean reads were mapped
to the B. terrestris genome using Bowtie (version 1.1.1) [25], and only reads with no more than two
mismatch sequences were screened.

2.4. Prediction of miRNAs

Known and novel miRNAs were predicted using miRDeep2 with the default parameters [26].
Specifically, miRNAs were predicted from each dataset of small RNA clean reads. All predicted miRNAs
with scores less than 4 were removed, and the mapped small RNA clean reads were aligned to the mature
miRNAs in all species included in miRBase 22.1 [27]. The sequences that exhibited a perfect match in the
seed sequence and had no more than two mismatches in other locations were extracted as conserved
miRNAs. B. terrestris and B. lantschouensis, which are species that belong to the same subgenus of Bombus
s. str., exhibited a close relationship [28]. Since the B. lantschouensis genome has not been published, we
used the B. terrestris genome as the reference genome. The unmatched sequences were aligned to the
B. terrestris genome. The typical miRNA precursor consists of a 70-nt-long single-strand RNA, which
can form a stem-loop structure. The secondary structure of the miRNA precursors were predicted using
RNAfold software with the default parameters. The sequences in the bumblebee genome that formed the
typical miRNA precursor stem-loop structure were considered to encode novel miRNAs.

2.5. Differential Expression Analysis of miRNAs

The miRNA read counts were normalized to transcript per million (TPM) for better visualization and
comparability [29]. The DESeq R package [30] was used to analyze the differentially expressed miRNAs
(DE miRNAs; Benjamini and Hochberg method corrected p-value < 0.05, |log2-fold change (FC)| ≥1)
identified from each of the following comparisons: (1) male vs. queen, (2) male vs. worker, and (3) worker
vs. queen. A cluster analysis of the DE miRNAs was performed using TBtools (version 0.665) [31].
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2.6. Target Gene Prediction and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analyses

Due to the fact that information on the B. lantschouensis genome is not available, the 3′-untranslated
region (3’-UTR) sequences from the B. terrestris genome were used to predict the target genes of the DE
miRNAs with RNAhybrid (version 2.2.2) [32], miRanda [33], and PITA (version 1.6) [34]. We extracted
the overlapping target genes identified using the three software packages, and the biological functions
of the predicted target genes were predicted through GO and KEGG pathway analyses using Blast2GO
software [35]. The p-values of the significantly enriched GO terms and KEGG pathways were obtained
using the hypergeometric distribution and Fisher’s exact methods. Only terms with p < 0.05 in the
secondary classification of the GO terms and KEGG pathways were considered significantly enriched.

2.7. miRNA Extraction and RT-qPCR

To validate the predicted miRNA expression levels, miRNAs were extracted from the heads of B.
lantschouensis males, queens, and workers one week after emergence using the miRcute miRNA Isolation
kit (Tiangen, Beijing, China) according to the manufacturer’s recommended protocol. The RNA integrity
and quantity were determined by 1% agarose gel electrophoresis. cDNA synthesis was performed
using the miRcute Plus miRNA First-Strand cDNA synthesis kit (Tiangen) following the manufacturer’s
recommended protocol. RT-qPCR was performed using the miRcute Plus miRNA qPCR kit according to
the manufacturer’s instructions, and U6 small non-coding RNA was used as the reference gene in the
RT-qPCR analysis [36]. The relative expression of the miRNAs was determined using the comparative
quantity (2−∆∆CT) method [37]. In total, 19 DE miRNAs were selected and verified. The poly(A) tail
method yielded a lower number of false positives compared with those obtained using the stem-loop
primer method. We thus designed forward primers (Table 1) for the various miRNAs using Primer
Premier 3 and measured the expression of these miRNAs using the universal reverse primer provided
with the miRcute Plus miRNA qPCR kit. Three technical replicates and three biological replicates were
used to analyze each caste. The differences in the relative expression levels of the miRNAs obtained
in the two-cast comparisons (male vs. queen, male vs. worker, and worker vs. queen) were analyzed
using an independent-sample t-test with SPSS 20.0 software. Prior to the t-test, the normality and
homoscedasticity were checked using Shapiro–Wilk and Levene tests. If the data did not exhibit a
normal distribution, the differences in miRNA expression levels were tested using the non-parametric
Mann–Whitney U method.

Table 1. Forward primers used for the reverse transcription quantitative PCR (RT-qPCR) analysis of
the three castes of B. lantschouensis.

Name miRNA Sequence Primer Sequence

ame-let-7-5p UGAGGUAGUAGGUUGUAUAGU GCGACGCTGAGGTAGTAGGTTGTATAG
ame-miR-9a-5p UCUUUGGUUAUCUAGCUGUAUGA GACGCTCTTTGGTTATCTAGCTGTATGA

ame-miR-31a-5p AGGCAAGAUGUCGGCAUAGCUGA AGGCAAGATGTCGGCATAGCTG
ame-miR-92b-3p AAUUGCACCCGUCCCGGCCUGA AATTGCACCCGTCCCGGC
ame-miR-100-5p AACCCGUAGAUCCGAACUUGUG GCAACCCGTAGATCCGAACTTGTG
ame-miR-125-5p CCCCUGAGACCCUAACUUGUGA GCCCCCTGAGACCCTAACTTGTG
ame-miR-263a-5p AAUGGCACUGGAAGAAUUCACG CAATGGCACTGGAAGAATTCACG
ame-miR-278-3p UCGGUGGGACUUUCGUCCGUUU TCGGTGGGACTTTCGTCCGT
ame-miR-279c-3p UGACUAGAGUCACACUCGUCCA GACGCTGACTAGAGTCACACTCGTCC
ame-miR-279d-3p UGACUAGAUCCACACUCAUCCA CGCTGACTAGATCCACACTCATCCA
ame-miR-281-3p AAGAGAGCUAUCCAUCGACAGU CGCTGTCATGGAGTTGCTCTCTTTG
ame-miR-3477-5p UAAUCUCAUGCGGUAACUGUGAG CGCTAATCTCATGCGGTAACTGTGAG
ame-miR-6001-5p UUCUCUUUGGUUGUUACCACU GACGCTTCTCTTTGGTTGTTACCACT

cel-miR-251 UUAAGUAGUAGUGCCGUAGAUGA CGACGCTTAAGTAGTAGTGCCGTAGATG
dme-miR-274-5p CUUGUGACCGUAACAACGGGCG TTGTGACCGTAACAACGGGCG

mtr-miR2611 UAUUUGUCGAGAGUCAUUCUGA GACGCTATTTGTCGAGAGTCATTCTGA
oni-miR-10695 UAUGUGAUCGCGGAUUUUGUC GCTATGTGATTGCGGATTTTGTCA

str-miR-7880m-5p UGUCGGUAGCAAAGAGGUGGUAG GCTGTCGGTAGCAAAGAGGTGGTAG
tca-miR-3850-3p UUCGAGACUACACGCUGAUUUU GACGCTTCGAGACTACACGCTGATT

U6 GGCCAAGGATGACACGCAAA
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3. Results

3.1. Analysis of Sequencing Data

Solexa sequencing yielded 14,326,369, 14,736,596, and 16,317,406 raw reads from the males, queens,
and workers; after removal of the short reads (<18 nt), low-quality reads, and reads with adapters,
the male, queen, and worker libraries contained 13,569,008, 13,949,908, and 15,413,820 clean reads,
respectively (Table 2). Further analysis showed that 71.61%, 69.76%, and 70.33% of the clean reads in
the male, queen, and worker libraries were successfully mapped to the B. terrestris genome, respectively
(Table 2). The length of the small RNA reads in the three castes of B. lantschouensis was between
18 nt and 30 nt, with a peak at 22 nt (Figure 1). The percentage of reads with a length of 22 nt in
males was 52.08%, whereas the corresponding percentages in queens and workers were 50.59% and
50.64%, respectively.

Table 2. Classification of small RNAs belonging to different categories that are expressed in the three
castes of B. lantschouensis.

Male Queen Worker

Adapter CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT CTGTAGGCACCATCAAT

Raw reads 14,326,369 14,736,596 16,317,406

Clean reads 13,569,008 13,949,908 15,413,820

Mapped (%) 9,717,155 (71.61%) 9,731,221 (69.76%) 10,841,052 (70.33%)

Unmapped (%) 3,851,853 (28.39%) 4,218,687 (30.24%) 4,572,761 (29.67%)

Figure 1. Distribution of the lengths of the small RNA reads in the three B. lantschouensis castes.
The black vertical lines represent error bars. The size distribution of the 18–30 nt clean reads obtained
from all three groups was assessed. Most sequences in the three libraries were 21–23 nt in length, and
the most abundant size was 22 nt.
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3.2. Identification and Expression of Known and Novel miRNAs

The analysis of the three castes of B. lantschouensis identified 364 known miRNAs (Figure 2) and 89
novel miRNAs (Supplementary Figure S1). The estimated false positive rate obtained with a score cutoff

of four was 0.09 ± 0.01 among the known miRNAs and 0.06 ± 0.01 among the novel miRNAs. In total,
84 of the 364 known miRNAs were aligned to the Apis mellifera genome (Supplementary Figure S2), and
the 10 unique miRNAs with the highest abundance were extracted (Table 3). Interestingly, eight of the
top 10 miRNAs (ame-miR-1-3p, ame-miR-276-3p, ame-miR-8-3p, ame-bantam-3p, ame-miR-2796-3p,
ame-miR-317-3p, ame-miR-7-5p, and ame-miR-277-3p) were present in males, queens, and workers,
although their rankings showed differences among the castes. The analysis of the different caste
libraries revealed that ame-miR-1-3p was the most abundant miRNA with 989,563 reads.

Figure 2. Distribution of known microRNAs (miRNAs) in the three B. lantschouensis castes. The Venn
diagram displays the distribution of 364 unique known miRNAs among the male, queen, and
worker libraries.

3.3. DE miRNAs in Males, Queens, and Workers

In total, 19 miRNAs exhibited significantly different expression among the male, queen, and
worker libraries (q < 0.05 and |log2-fold change| >1): 18 miRNAs showed differential expression in the
male vs. female comparisons (seven upregulated and two downregulated miRNAs were obtained in
the male vs. queen comparison, and 11 upregulated and three downregulated miRNAs were identified
in the male vs. worker comparison), and three upregulated miRNAs and one downregulated miRNA
were found in the worker vs. queen comparison (Table 4). A greater number of DE miRNAs were
obtained in the male vs. female (male vs. queen or male vs. worker) comparisons compared with
the worker vs. queen comparison. The clustering analysis suggested that the different castes were
significantly grouped based on the DE miRNAs (Figure 3). Among the 19 DE miRNAs identified in
this analysis, dme-miR-274-5p was differentially expressed in the male vs. queen, male vs. worker,
and worker vs. queen comparisons; ame-miR-263a-5p, ame-miR-278-3p, ame-miR-279c-3p, and
ame-miR-3477-5p showed differential expression in both the male vs. queen and male vs. worker
comparisons; ame-miR-6001-5p and cel-miR-251 were differentially expressed in both the male vs.
worker and worker vs. queen comparisons.
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Table 3. Ten most abundant miRNAs in the three castes of B. lantschouensis.

Male Queen Worker

Rank miRNA Mean Number of Reads miRNA Mean Number of Reads miRNA Mean Number of Reads

1 ame-miR-1-3p 642,846 ame-miR-1-3p 989,562 ame-miR-1-3p 963,375
2 ame-miR-276-3p 627,171 ame-miR-276-3p 650,030 ame-miR-317-3p 709,018
3 ame-miR-8-3p 573,082 ame-miR-317-3p 638,023 ame-miR-276-3p 676,149
4 ame-bantam-3p 525,099 ame-miR-277-3p 611,509 ame-miR-2796-3p 642,316
5 ame-miR-2796-3p 414,425 ame-miR-2796-3p 570,760 ame-miR-277-3p 573,485
6 ame-miR-317-3p 396,338 ame-bantam-3p 474,566 ame-bantam-3p 510,915
7 ame-miR-7-5p 372,830 ame-miR-8-3p 355,134 ame-miR-7-5p 358,513
8 ame-miR-14-3p 335,963 ame-miR-7-5p 270,861 ame-miR-8-3p 328,866
9 ame-miR-277-3p 323,674 ame-miR-184-3p 262,970 ame-miR-14-3p 280,422

10 ame-miR-9a-5p 284,686 ame-miR-34-5p 203,858 ame-miR-34-5p 277,987
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Table 4. Differentially expressed miRNAs in the three castes of B. lantschouensis.

Male vs. Queen Male vs. Worker Worker vs. Queen

DEM Log2FC PADJ Regulated Log2FC PADJ Regulated Log2FC PADJ Regulated

ame-miR-100-5p 1.03 0.004484567 Up - - - - - -
ame-miR-263a-5p 1.10 0.003483259 Up 1.14 0.000195153 Up - - -
ame-miR-278-3p 1.32 0.000692894 Up 1.35 0.000435914 Up - - -
ame-miR-279c-3p 1.69 8.42568 × 10−15 Up 1.41 4.02648 × 10−08 Up - - -
ame-miR-3477-5p 1.76 3.03154 × 10−11 Up 1.49 3.66407 × 10−19 Up - - -
dme-miR-274-5p −1.33 0.003999496 Down −2.54 3.08025 × 10−15 Down 1.21 0.003047672 Up

mtr-miR2611 −1.15 0.020339838 Down - - - - - -
oni-miR-10695 1.31 0.039998779 Up - - - - - -

tca-miR-3850-3p 1.19 0.026213313 Up - - - - - -
ame-let-7-5p - - - 1.08 0.040255941 Up - - -

ame-miR-125-5p - - - 1.05 0.035218532 Up - - -
ame-miR-279d-3p - - - 1.23 2.63402 × 10−05 Up - - -
ame-miR-31a-5p - - - 1.60 0.000681818 Up - - -
ame-miR-6001-5p - - - 2.37 0.013708048 Up −2.67 0.026701585 Down
ame-miR-92b-3p - - - 1.01 0.027956543 Up - - -
ame-miR-9a-5p - - - 1.11 1.15411 × 10−14 Up - - -

cel-miR-251 - - - −1.64 2.24266 × 10−19 Down 1.12 2.16263 × 10−06 Up
str-miR-7880m-5p - - - −1.70 3.24877 × 10−06 Down - - -
ame-miR-281-3p - - - - - - 1.18 8.3985 × 10−05 Up

DEM: differentially expressed microRNA; miRNA/miR: microRNA; FC: fold change; PADJ: p-value after adjustment.
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Figure 3. Heat map diagram showing the differentially expressed miRNAs (DE miRNAs) in the three
B. lantschouensis castes. Nineteen differentially expressed miRNAs with |fold change| ≥1 and p < 0.05
were screened using the DESeq R package. The rows represent the different miRNAs, and the columns
represent males (M1, M2, M3), workers (W1, W2, W3), and queens (Q1, Q2, Q3). The expression data
for each miRNA were calculated from three biological replicates.

3.4. Prediction of Target Genes of DE miRNAs and Functional Enrichment Analysis

The intersection of the data obtained using RNAhybrid (version 2.2.2), miRanda, and PITA
(version 1.6) predicted 3515, 4333, and 2658 target genes for nine miRNAs obtained in the male vs.
queen comparison, 14 miRNAs identified in the male vs. worker comparison, and four miRNAs
obtained in the worker vs. queen comparison, respectively. The putative target genes of these DE
miRNAs obtained in the male vs. queen, male vs. worker, and worker vs. queen comparisons were all
enriched in 29 GO terms. Catalytic activity, metabolic process, and binding were the top three most
abundant terms (Figure 4). The putative target genes were enriched in 21 KEGG pathways, and the
biosynthesis of antibiotics, pyrimidine metabolism, and purine metabolism were the top three most
abundant pathways (Figure 5).
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Figure 4. Gene Ontology (GO) enrichment analysis of potential target genes of the DE miRNAs of B.
lantschouensis obtained in the male vs. queen, male vs. worker, and worker vs. queen comparisons.
The x-axis shows the GO category, and the y-axis indicates the number of genes.

Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of potential target genes of
DE miRNAs of B. lantschouensis obtained in the male vs. queen, male vs. worker, and worker vs. queen
comparisons. The x-axis shows the pathway terms, and the y-axis indicates the number of genes.
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3.5. Validation of Differential miRNA Expression by RT-qPCR

Seven miRNAs identified in the male vs. queen comparison, eleven miRNAs obtained in the
male vs. worker comparison, and one miRNA identified in the worker vs. queen comparison were
investigated by RT-qPCR, and the results were basically consistent with the Solexa deep sequencing
data (Figure 6). The male vs. queen comparison showed that seven miRNAs were upregulated, and the
highest and lowest log2-fold changes in miRNA expression were 18.550773 and 1.930871, respectively.
The comparison of the male vs. worker libraries revealed that 11 miRNAs were upregulated, and the
highest and lowest log2-fold changes in miRNA expression were 15.93865 and 2.121722, respectively.
The worker vs. queen comparison showed that one miRNA was downregulated, and the log2-fold
change in miRNA expression was 0.161489.

Figure 6. RT-qPCR validation of the DE miRNAs in the three B. lantschouensis castes identified by
Solexa small RNA sequencing. RT-qPCR was performed using nine B. lantschouensis heads, which
included three biological replicates of the three castes. The log2 (fold-change) relative expression values
obtained from the male vs. queen, male vs. worker, and worker vs. queen comparisons are shown.
The black vertical lines represent error bars. In the RT-qPCR assays, the expression of the miRNAs
was normalized to the U6 snRNA levels. The data were statistically analyzed using the comparative
quantity (2−∆∆CT) method.
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4. Discussion

miRNAs are important elements that regulate gene expression and impact many vital biological
functions. Specifically, miRNAs regulate the mRNA expression levels of their target genes through
cleavage or translational repression in plants, mammals, and insects [6,8,9]. This study found that
miRNAs were expressed at different levels in the three castes of the bumblebee B. lantschouensis (289
miRNAs in males, 301 miRNAs in queens, and 323 miRNAs in workers), and 171 miRNAs were
common to the three castes. This finding indicated that the type of miRNAs expression among the
various castes showed substantial variation and that miRNAs might have different biological functions.
The analysis of the common miRNAs showed that a higher number of miRNAs was found between
queens and workers than queens and males, which indicates a relationship between miRNAs and the
haploid or diploid status of individuals. Our results provide valuable information for further studies
on the functions of miRNAs in bumblebees.

The lengths of the miRNAs expressed in the three castes of B. lantschouensis were distributed
between 18 and 30 nt, which is similar to the results from previous studies on queen bumblebees and
honeybees [15,38]. This finding suggests that the length distribution pattern of miRNAs is conserved
not only within species, but also between species. Moreover, the miRNA distribution showed a similar
trend in the three castes. However, a greater number of reads with each length was found in the worker
vs. queen comparison compared with the male vs. queen comparison, which indicates that these
miRNAs mostly represent all of the miRNAs in the head and the same sex despite caste differences.
The different read numbers might be caused by different sexes. Nonetheless, this finding should be
confirmed by analyzing data from another species.

The miRNAs in the three castes were sorted by read counts with TPM normalization, and the
top eight most abundant miRNAs (ame-miR-1-3p, ame-miR-276-3p, ame-miR-8-3p, ame-bantam-3p,
ame-miR-2796-3p, ame-miR-317-3p, ame-miR-7-5p, and ame-miR-277-3p) in males, queens, and
workers were identical, even though their rankings based on expression showed differences among the
castes. These results suggest that the major miRNAs are conserved during functional regulation and
play indispensable roles in bumblebee physiology. However, the expression levels of three miRNAs
(ame-miR-8-3p, ame-miR-2796-3p, and ame-miR-277-3p) showed significant differences between males
and queens or between males and workers, whereas no significant difference was found between
workers and queens. Previous studies revealed that miRNA expression exhibits significant differences
between the testes and ovaries [39–41]. Therefore, the expression levels of miRNAs are likely affected
by caste differences.

Among the top eight most abundant miRNAs, ame-mir-2796 is reportedly involved in the
development and differentiation of honeybee neurons by synergistically enhancing the role of the host
gene, Phospholipase C Epsilon (PLC epsilon) and thereby regulating the division of adult workers.
The miRNAs ame-mir-34 and ame-mir-317 are involved in the development of related brain functions
in honeybees [42]. The miRNA bantam controls neuroblast numbers and proliferation in the central
brain of Drosophila [43], and in honeybees, bantam, ame-miR-1-3p, ame-miR-276-3p, and ame-miR-8-3p
are also highly expressed in queen and worker larvae [38,44]. Therefore, as demonstrated in previous
studies, highly expressed miRNAs play important roles in the bumblebee brain.

Some of the 19 DE miRNAs identified in this study play important biological functions,
as demonstrated by other authors [45–52]. For example, the let-7 family is highly expressed in
gonads and plays housekeeping roles during ovarian and testicular development in insects, fishes,
birds, and mammals by playing a key role in the regulation of cell proliferation and differentiation
pathways [45–49]. Previous studies have also shown that the increase in miR-9a expression during
ageing in stem and progenitor germ cells modulates degeneration in spermatogenesis and promotes
detachment towards sperm maturation [50]. In this study, the expression of ame-miR-9a and ame-let-7
in males was higher than that found in females, which indicates that ame-miR-9a and ame-let-7 might
play more important roles in male development. The miRNAs let-7, miR-281, and miR-125 have vital
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neuroprotective roles in the ageing brain, molting, and metamorphosis of insects [51,52] and might
thus play different biological functions in the bumblebee head.

The putative target genes of the DE miRNAs in all three castes were enriched in 29 GO terms and
21 KEGG pathways. Catalytic activity, metabolic process, and binding were the most enriched GO
terms among the three castes. The higher catalytic activity, metabolic process, and binding of males
and workers might be caused by foraging activity and mating flight, which require considerable energy.
Among the 21 KEGG pathways, differences between males and females were found in tryptophan
metabolism and antibiotic biosynthesis pathways. Since tryptophan metabolism is vital in pregnancy,
high tryptophan expression is related to queen reproduction.

The expression level of DE miRNAs measured by RT-qPCR in the three bumblebee castes was
not completely consistent with the Solexa deep sequencing results. Two main reasons could account
for this discrepancy: on the one hand, false positives might have occurred in the experiment, and on
the other hand, low fold-change values and low relative expression of the miRNAs expressed in the
three castes might be important reasons for these differences [53]. These DE miRNAs were clustered
between the three bumblebee castes. Each caste was clustered in the same branch, which demonstrated
that the expression of the miRNAs was specific in the different castes.

Since the genome of the Asian bumblebee, B. lantschouensis, has not been published, we used
the genome of the European bumblebee, B. terrestris. We obtained high-accuracy mapping results
because of the close relationship between B. terrestris and B. lantschouensis since both species belong to
the same subgenus of Bombus s. str. The percentages of clean reads in the male, queen, and worker
libraries that were mapped to the B. terrestris genome reached 71.61%, 69.76%, and 70.33%, respectively.
Therefore, the B. terrestris genome can be used as a reference for providing invaluable information for
high-throughput sequencing analyses of B. lantschouensis.

5. Conclusions

This study contributed new data for the identification and characterization of miRNAs in
different castes of highly eusocial bees. In total, 364 known and 89 novel miRNAs were successfully
identified from the small RNA libraries obtained from the heads of the three B. lantschouensis castes.
The composition of the major miRNAs was similar in the three castes. The top eight most abundant
miRNAs were found in all the castes, even though their abundances in the various castes were different,
which indicated that the miRNAs that regulate different castes are relatively conserved. However,
the similarity between workers and queens was higher than that between males and queens. In this
study, the differences in miRNA expression between the sexes (male and female) were more pronounced
than those between different reproductive states (queen and worker), even in the head. The distinct
differences in behavior, physiology, longevity, and reproductive capacity between castes are driven
by changes in the expression level of miRNAs. The discovery of DE miRNAs and their target genes
provides a basis for understanding sex differentiation via different regulatory systems. The data
obtained in this study will facilitate further research on the miRNA-mediated post-transcriptional
regulation of reproduction-related genes in this species. Functional annotations and pathway analyses
using the GO and KEGG databases could contribute to a better understanding of the miRNA-mediated
regulation of target genes during B. lantschouensis development.
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