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Abstract: With the long-term and large-scale use, herbicides have been well known to influence
tritrophic interactions, particularly natural enemies of pests in agro-ecosystems. On the other
hand, herbivorous insects, especially the generalist pests, have developed antagonistic interaction
to different insecticides, toxic plant secondary metabolites, and even heavy metals. However,
whether exposure to herbicides would affect resistance of insects against insecticides is largely
unknown, especially in agricultural pests. Here, we first reported that pre-exposure to two widely
used herbicides butachlor and haloxyfop-methyl for 48 h can prime the resistance of a generalist
agricultural pest Helicoverpa armigera Hübner against insecticide methomyl and fungal toxin aflatoxin
B1. In addition, there were no significant differences between control and herbicides-treated
caterpillars on weight gain, pupal weight, and pupation rates, suggesting that exposure to herbicides
induces resistance of H. armigera accompanied with no fitness cost. Moreover, by determining
detoxifying enzyme activities and toxicity bioassay with additional inhibitor of cytochrome P450
piperonyl butoxide (PBO), we showed that exposure to herbicides might prime P450-mediated
detoxification of H. armigera against insecticide. Based on these results, we propose that exposure
to herbicides prime resistance of H. armigera against insecticide and fungal toxin by eliciting a clear
elevation of predominantly P450 monooxygenase activities in the midgut and fat body.
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1. Introduction

The application of insecticides is currently the most common control measure against insect
pests [1]. However, the resistance of insects to chemical insecticides has become a growing agricultural
and ecological concern [2]. Since pesticides are widely and cross used in agriculture, one insecticide is
known to confer resistance to other insecticides in insects through the cross-resistance mechanism [3,4].

Herbicides have been largely used in agriculture to control weeds around the world. However,
excessive and inappropriate use of herbicides have also lead to serious harmful effects, including
breaking ecological chain, increasing environmental pollution, and sanitation concerns [5,6].
For example, the herbicide glyphosate has great infection on the population numbers of non-target
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Lepthyphantes Tenuis [5,6]. Exposure to the herbicide atrazine at low ecologically relevant doses cause
Xenopus Laevis hermaphroditic and demasculinized during sexual development [7]. What is worse,
farmers and entomologists have observed that insects have evolved insecticide resistance when
exposed to particular insecticides, including herbicides [8,9]. In mosquitoes, larvae that are exposed to
the herbicide atrazine and benzothiazole become more tolerant to insecticides [4,10]. However, the
antagonistic interaction between herbicides and insecticides is largely unknown in agricultural pests.

The induction of enzymatic activities, such as cytochrome P450 monooxygenases (P450),
glutathion-S-transferase (GST), and esterases, are strongly associated with insecticide resistance in
insects [11,12]. The detoxification enzyme system also take the major responsibility for cross-resistance
mechanism [9,13]. For instance, the expression of multiple P450 and GST genes, which were previously
linked to insecticide resistance, have been shown to be simultaneously induced by the herbicide
atrazine [14].

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is an economically important agricultural
pest that is responsible for severe yield loss in more than 200 host plants [15]. The control of
the H. armigera has been achieved with insecticides, such as methomyl and transgenic Bt crops.
Methomyl is one kind of carbamate pesticides, which is structurally similar to the good inhibitors of
acetylcholin esterase (AChE) and acetylcholine (ACH), cause excessive accumulation of ACH, and
lead to interference with the normal conduction of nerve impulses in insects [16]. However, H. armigera
has developed resistance to multiple classes of insecticides worldwide [17,18]. Aflatoxin B1 (AFB1) is a
fungal metabolite that is produced by Aspergillus flavus and related fungi [19]. AFB1 requires metabolic
activation by cytochrome P450 and then damage DNA, leading to strong carcinogenic mutagenesis
acute toxicity in animals, including insects [19]. Butachlor (BuCh) and haloxyfop-methyl (HLFM) are
both intensively used herbicides in a variety of plant crops, including rice, cotton, wheat peanuts,
and cabbage crops [20,21]. Insects could be exposed to residual herbicides and AFB1 by feeding on
host plants, and they are also subjected to pesticide stress in the ecosystem of cropland. However,
little is known about the antagonistic interaction between herbicides that are used for plant crops and
insecticides or fungal toxin used for H. armigera.

The aim of this study was to demonstrate that pre-exposure to herbicides BuCh or HLFM
can prime the resistance of H. armigera against insecticide methomyl and fungal toxin aflatoxin
B1 (AFB1). Furthermore, to identify which detoxification enzyme system took the major responsibility
for herbicides induced resistance in H. armigera, the most universal detoxification enzymes, including
cytochrome P450 monooxygenases, glutathion-S-transferase, and esterases in H. armigera were
investigated to illuminate the possible antagonistic interaction mechanism between herbicides
and insecticides.

2. Material and Methods

2.1. Insects

The laboratory strain of cotton bollworm (Helicoverpa armigera), provided by the Insectarium of
the Institute of Entomology, Sun Yat-sen University, were reared on artificial diets that are composed
of soybean powder (50 g), corn flour (40 g), brewer’s yeast (40 g), wheat bran (40 g), ascorbic acid
(4 g), methyl p-hydroxybenzoate (1.8 g), sorbic acid (2 g), agar (20 g), casein (25 g), saccharose (20 g),
streptomycin (0.15 g), 10% methanol (2 mL), and water (1 L), without exposure to any insecticide and
were used for all experiments. The caterpillars were maintained at 25 ± 2 ◦C with 70 ± 5% relative
humidity and a photoperiod of 14:10 h (L:D) in a climatic chamber. Adults were provided with 10%
honey solution under the same conditions.

2.2. Chemicals

Methomyl 98% was purchased from Jiangsu Jinghong Chemical Co. Ltd (Yancheng, China);
butachlor (BuCh) was purchased from Shandong qiaochang chemical Co. Ltd (Binzhou, China);
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haloxyfop-methyl (HLFM) was purchased from Dow AgroSciences LLC (Indianapolis, IN, USA);
cytochrome P450 inhibitor piperonyl butoxide (PBO), aflatoxin B1 (AFB1) and dimethyl sulfoxide
(DMSO) were purchased from Sigma (St. Louis, MO, USA); and, EDTA and Sodium dodecyl
sulfate (SDS) were bought from Shanghai Health and Biotechnology Co., Ltd (Shanghai, China).
Phenylmethylsulfonyl chloride (PMSF) was obtained from Beijing Dingguo Biotechnology Co.,
Ltd (Beijiing, China). Bovine serum albumin was bought from Shanghai Boao Biotechnology Co.,
Ltd (Shanghai, China). Dimercaptosyl alcohol (DDT) was purchased from Shanghai source poly
biotechnology Co., Ltd (Shanghai, China).

2.3. Pre-Exposure to Herbicides and Bioassays

Since insects could be exposed to residual herbicides by feeding on host plants or by olfactory
perception from their surroundings, we treated caterpillars with either volatile herbicides or diet
containing herbicides to simulate the natural field conditions. Newly molted fifth-instar caterpillars of
H. armigera were fed on a control diet (containing no allelochemicals) exposed to 1 µg volatile herbicides
butachlor (BuCh) or haloxyfop-methyl (HLFM), or fed on diet containing 0.5 mg/g herbicides BuCh or
HLFM exposing to fresh air for 48 h, and then accumulative mortalities were recorded 60, 120, 180, 240,
300, 360, and 720 min after treated with methomyl (50 µg per caterpillar) and the final mortalities were
recorded at 1440 min. The control caterpillars were fed on control diet exposed to fresh air in the volatile
induction experiment, and fed on diet containing 0.5 mg/g solvent sterilized water in the feeding
experiment. In the synergism analysis, 3 µL cytochrome P450 inhibitor piperonyl butoxide (PBO) was
delivered on to the prothorax notum of each caterpillar 1 h before the application of insecticide. Twenty
synchronous fifth-instar caterpillars were used for each treatment, and three independent replicates
were performed. For toxicity bioassay of carcinogenic mycotoxin aflatoxin B1 (AFB1), third-instar
caterpillars were pre-exposed to BuCh or HLFM for 48 h, as mentioned above, and the caterpillars were
fed on diet containing 2.5 µg/g AFB1. After that, the weight gain from the third-instar to sixth-instar
caterpillars and final mortalities were recorded. Twenty synchronous third-instar caterpillars were
used for each treatment, and three independent replicates were performed.

To investigate the effects of exposing to herbicides on growth and development of H. armigera,
third-instar caterpillars were used, and the weight gain from the third-instar to sixth-instar caterpillars,
pupal weight and pupation rates were compared between the control group and herbicides exposing
group. Twenty synchronous third-instar caterpillars were used for each treatment, and three
independent replicates were performed.

2.4. Enzyme Activity Assay

To assay the detoxification enzyme activities, the total midgut and fat body from BuCh- or
HLFM-treated caterpillars of H. armigera were used. Newly molted fifth-instar caterpillars were fed on
a control diet (containing no allelochemicals) exposed to 1 µg volatile herbicides butachlor (BuCh) or
haloxyfop-methyl (HLFM), or fed on diet containing 0.5 mg/g herbicides BuCh or HLFM exposing
to fresh air for 48 h and then the midgut and fat body were dissected on an ice plate and placed
in 0.1 mM phosphate buffer solution (PBS, pH 7.0, containing 1 mmol/L EDTA, 0.1 mmol/L PMSF,
0.1 mmol/L DTT and 10% glycerol). The homogenate was centrifuged at 4 ◦C, 10,000 g for 20 min.
The supernatant of each treatment was used immediately for enzyme assays or stored at −80 ◦C until
use. The determination of cytochrome P450 enzyme activities were performed according to previously
published procedures with slight modifications [22]. The determination of the glutathione S-transferase
was slightly modified by the measure of Habig et al [23]. The determination of the carboxylesterase
was slightly modified by the measure of Van Asperen [24]. For the acetylcholinesterase activity, the
midgut or fat body was ground in 2 mL of 0.70% NaCl and centrifuged at 4 ◦C, 3500 g for 10 min.
The supernatant was used for enzyme assays by using a Choline esterase (ChE) detection kit (Nanjing
Jiancheng Bioengineering). Twenty synchronous fifth-instar caterpillars were used for each treatment,
and three independent replicates were performed for all treatments.
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2.5. Statistical Analysis

All data are presented as mean ± standard error. For statistical evaluation of the experiments,
one-way analysis of variance was performed. Different letters indicate significant differences (p < 0.05)
according to Tukey’s multiple range test. All of the data analyses were performed using GraphPad
Prism v.6.01 (GraphPad software, Inc., San Diego, CA, USA).

3. Results

3.1. Exposure to Herbicides Prime Resistance of H. armigera against Insecticide

We performed toxicity bioassays to evaluate the effects of pre-exposure to butachlor (BuCh) or
haloxyfop-methyl (HLFM) on susceptibility of H. armigera caterpillars to methomyl. Since insects
could be exposed to residual herbicides by feeding on host plants or by olfactory perception from their
surroundings, we treated caterpillars with either volatile herbicides or diet containing herbicides to
simulate the natural field conditions. We found that induction of H. armigera caterpillars with either
BuCh or HLFM, and whatever kinds of treatment, significantly decreased caterpillars mortality to
methomyl, from ~80% (Control) to ~40% (S-BuCh, S-HLFM, F-BuCh, and F-HLFM) (Figure 1A,C,
p < 0.05). Moreover, kinetics of H. armigera mortality follow the same pattern (Figure 1B,D). These
results showed that exposure to herbicides prime resistance of H. armigera against insecticide.

Since piperonyl butoxide (PBO) is an inhibitor of cytochrome P450 and is used as a representative
synergist, we tested the synergistic effects of herbicides and PBO on methomyl toxicities. Remarkably,
larvae pre-treated with PBO before the insecticide application (BuCh + PBO, HLFM + PBO) significantly
increased both the mortality rates and accumulative mortality rates in all treatment groups (Figure 1),
which imply that induced resistance of H. armigera against insecticide was counteracted by PBO
treatment. These encouraging results showed that exposure to herbicides might prime P450-mediated
detoxification of H. armigera against insecticide.
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(C) and Accumulative mortality rates (D) of H. armigera caterpillars treated with methomyl after diet
feeding of herbicides. Newly molted fifth-instar caterpillars were fed on control diet (containing no
allelochemicals) exposing to volatile herbicides or fed on diet containing herbicides exposing to fresh
air for 48 h, then caterpillars were treated with methomyl (50 µg per caterpillar) and the mortalities
were recorded on 60, 120, 180, 240, 300, 360, 720, and 1440 min. S-BuCh, caterpillars fed on control
diet exposing to 1 µg volatile butachlor; S-HLFM, caterpillars fed on control diet exposing to 1 µg
volatile haloxyfop-methyl; F-BuCh, caterpillars fed on diet containing 0.5 mg/g butachlor; F-HLFM,
caterpillars fed on diet containing 0.5 mg/g haloxyfop-methyl; “+ PBO” represent that caterpillars
were pre-treated with cytochrome P450 inhibitor piperonyl butoxide (PBO 3 µL per caterpillar) 1 h
earlier before methomyl treatment. Data shown are mean ± SE (n = 3). Twenty synchronous fifth-instar
caterpillars were used for each treatment, and three independent replicates were performed. Different
letters indicate significant differences (p < 0.05), according to Tukey’s multiple range test.

3.2. Exposure to Herbicides Prime Resistance of H. armigera against Fungal Toxin

We also performed toxicity bioassay to evaluate the effects of pre-exposed to BuCh or HLFM on
the susceptibility of H. armigera caterpillars to carcinogenic mycotoxin aflatoxin B1 (AFB1). The weight
gain of either BuCh or HLFM exposed caterpillars were significantly higher than control caterpillars
(Figure 2A, p < 0.05), and the mortality rates of either BuCh or HLFM exposed caterpillars were
significantly lower than the control (Figure 2B, p < 0.05). These results imply that exposure to herbicides
prime resistance of H. armigera against AFB1.
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Figure 2. Effects of volatile smelling of herbicides on AFB1 resistance of H. armigera. Weight gain (A)
and Mortality rates (B) of H. armigera caterpillars reared on Aflatoxin B1 (AFB1)-supplemented diet
after pre-exposed of volatile herbicides. Newly molted third-instar caterpillars were fed on control
diet (containing no allelochemicals) exposing to volatile herbicides for 48 h, and weight gain from the
third-instar to sixth-instar caterpillars and final mortalities were recorded were recorded after exposing
to 2.5 µg/g AFB1. S-BuCh, caterpillars exposing to 1 µg volatile butachlor; S-HLFM, caterpillars
exposing to 1 µg volatile haloxyfop-methyl. Data shown are mean ± SE (n = 3). Twenty synchronous
individuals were used for each treatment and three independent replicates were performed. Different
letters indicate significant differences (p < 0.05) according to Tukey’s multiple range test.

3.3. The Effects of Exposing to Herbicides on Growth and Development of H. armigera

To investigate the effects of exposing to herbicides on growth and development of H. armigera,
the weight gain of third-instar caterpillars, pupal weight, and pupation rates were compared between
control group and herbicides exposing group. As shown in Figure 3, there were no significant
differences between control group (Control) and herbicides treatments (S-BuCh, S-HLFM, F-BuCh,
and F-HLFM) on weight gain, pupal weight, and pupation rates (Figure 3, p > 0.05). Although three
treatments pre-treated with PBO showed slightly lower than the larvae without PBO pre-treating
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(Figure 3A–C, S-BuCh + PBO vs. S-BuCh, S- HLFM + PBO vs. S- HLFM and F-BuCh + PBO vs. F-BuCh
on weight gain; S- HLFM + PBO vs. S- HLFM on pupal weight), most treatments showed no significant
differences. These results suggest that exposure to herbicides did not affect growth and development
of H. armigera and induce resistance of H. armigera accompanied with no fitness cost.
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Figure 3. Effects of volatile smelling and diet feeding of herbicides on caterpillar growth and
development of H. armigera. Weight gain (A) Pupal weight (C) and Pupal rate (E) of H. armigera
caterpillars reared on control diet (containing no allelochemicals) after pre-exposed of volatile
herbicides. Weight gain (B) Pupal weight (D), and Pupal rate (F) of H. armigera caterpillars reared on
diet containing herbicides. Newly molted third-instar caterpillars were fed on control diet (containing
no allelochemicals) exposed to volatile herbicides or fed on diet containing herbicides for 48 h, and
weight gain, pupal weight, and pupal rate were recorded. S-BuCh, caterpillars fed on control diet
exposing to 1 µg volatile butachlor; S-HLFM, caterpillars fed on control diet exposing to 1 µg volatile
haloxyfop-methyl; F-BuCh, caterpillars fed on diet containing 0.5 mg/g butachlor; F-HLFM, caterpillars
fed on diet containing 0.5 mg/g haloxyfop-methyl; “+ PBO” represent that caterpillars were pre-treated
with cytochrome P450 inhibitor piperonyl butoxide (PBO 3 µL per caterpillar) 1 h earlier before
methomyl treatment. Twenty synchronous individuals were used for each treatment and three
independent replicates were performed. Data shown are mean ± SE (n = 3). Different letters indicate
significant differences (p < 0.05), according to Tukey’s multiple range test.
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3.4. The Effect of Exposing to Herbicides on Detoxifying Enzyme Activities in H. armigera

To identify which detoxification enzyme system took the major responsibility for herbicides
induced resistance in H. armigera, four kinds of universal detoxification enzymes, including
cytochrome P450 monooxygenases (P450), glutathione S-transferase towards 3,4-dichloronitrobenzene
(GST-DCNB), esterase activity towards a-naphthyl acetate (Esterase-aNA), and choline esterase (ChE)
in both the midgut and fat body of H. armigera were investigated. In the assay of P450 in the midgut,
the activities in the herbicides-treated group were extremely increased by 1.7-fold to 4.8-fold (Table 1).
For the GST-DCNB, the activities were slightly inhibited in the BuCH-treated group, but increased in
the S-HLFM-treated group (Table 1). For Esterase-aNA, the activities were slightly inhibited in the
BuCH-treated group and more significantly inhibited in the F-HLFM-treated group (Table 1). For ChE,
no obvious differences of midgut activities were observed between the herbicides -treated and the
control caterpillars (Table 1).

For the activities of detoxification enzymes in fat body of H. armigera, similar results were obtained
for P450, the activities in the herbicides-treated group were extremely increased by 2.1-fold to 2.6-fold
(Table 2). For the GST-DCNB, the activities were slightly inhibited in the BuCH-treated group, but
increased in the F-HLFM-treated group (Table 2). For Esterase-aNA, the activities were significantly
increased in all herbicides-treated groups (Table 2). For ChE, the activities were inhibited in the
S-BuCH-treated group and the F-HLFM-treated group (Table 2).

Taken together, these data demonstrate that exposure to herbicides elicited a clear elevation of
predominantly P450 monooxygenase activities in the midgut and fat body.

Table 1. Activities of detoxification enzymes in midgut of H. armigera.

P450 GST-DCNB Esterase-aNA ChE

(nmole per min per mg pro)

CK 0.134 ± 0.009 d 4.22 ± 0.06 b 37.53 ± 1.33 a 16.07 ± 2.76 a
S-BuCH 0.230 ± 0.016 c 3.19 ± 0.13 c 30.03 ± 0.63 b 20.14 ± 2.28 a
F-BuCH 0.327 ± 0.020 bc 3.38 ± 0.12 c 33.03 ± 0.45 b 19.97 ±1.23 a
S-HLFM 0.383 ± 0.015 b 5.10 ± 0.11 a 40.98 ± 0.58 a 22.04 ± 1.85 a
F-HLFM 0.650 ± 0.034 a 4.87 ± 0.23 ab 17.14 ± 0.57 c 21.48 ± 1.50 a

CK, caterpillars fed on control diet without exposing to herbicides; S-BuCh, caterpillars fed on control diet exposing
to 1 µg volatile butachlor; S-HLFM, caterpillars fed on control diet exposing to 1 µg volatile haloxyfop-methyl;
F-BuCh, caterpillars fed on diet containing 0.5 mg/g butachlor; F-HLFM, caterpillars fed on diet containing 0.5 mg/g
haloxyfop-methyl. Twenty synchronous individuals were used for each treatment, and three independent replicates
were performed. Data shown are mean ± SE (n = 3). Different letters indicate significant differences (p < 0.05)
according to Tukey’s multiple range test.

Table 2. Activities of detoxification enzymes in fat body of H. armigera.

P450 GST-DCNB Esterase-aNA ChE

(nmole per min per mg pro)

CK 0.130 ± 0.034 b 3.37 ± 0.33 b 7.18 ± 0.35 c 16.06 ± 0.81 a
S-BuCH 0.270 ± 0.027 a 2.66 ± 0.27 c 11.87 ± 0.57 b 8.19 ± 0.84 b
F-BuCH 0.317 ± 0.018 a 2.20 ± 0.18 c 14.16 ± 0.43 b 17.02 ± 1.01 a
S-HLFM 0.343 ± 0.028 a 3.69 ± 0.33 b 22.24 ± 0.27 a 13.79 ± 1.64 a
F-HLFM 0.284 ± 0.054 a 4.44 ± 0.13 a 14.78 ± 1.37 b 7.24 ± 0.23 b

CK, caterpillars fed on control diet without exposing to herbicides; S-BuCh, caterpillars fed on control diet exposing
to 1 µg volatile butachlor; S-HLFM, caterpillars fed on control diet exposing to 1 µg volatile haloxyfop-methyl;
F-BuCh, caterpillars fed on diet containing 0.5 mg/g butachlor; F-HLFM, caterpillars fed on diet containing 0.5 mg/g
haloxyfop-methyl. Twenty synchronous individuals were used for each treatment, and three independent replicates
were performed. Data shown are mean ± SE (n = 3). Different letters indicate significant differences (p < 0.05)
according to Tukey’s multiple range test.
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4. Discussion

Most of the important agricultural pests are polyphagous, which can feed on a variety of
host plants [25] and develop resistance to a variety of pesticides [26,27]. For example, the cotton
bollworms (Helicoverpa armigera) is a major polyphagous pest feeding on hundreds of different plants,
including cotton (Gossypium hirsutum), and show rapid evolution of resistance against various kinds
of insecticides, even the transgenic Bacillus thuringiensis (Bt) cotton [28,29]. Therefore, to research how
the polyphagous insect copes with the diversity of plant defenses and pesticides is of great concern in
crop protection.

Cross-resistance is the tolerance to a usually toxic substance as a result of exposure to a similarly
acting substance, which is quite ubiquitous in insects [30]. Especially, when adapting to a wide
variety of host plants and adventurous chemical environment, many herbivorous generalist insects
have developed antagonistic interaction to insecticides and toxic plant secondary metabolites [31,32].
H. armigera can take advantage of gossypol from cotton plants to elaborate defense systems against
a pyrethroid insecticide [31]. The most significant case is the cross-resistance between imidacloprid,
thiamethoxam, and acetamiprid in the Bemisia tabaci [32]. With the long-term and large-scale use,
herbicides have already been well known to influence wild plant diversity in agro-ecosystems,
tritrophic interactions, particularly natural enemies of pests and environmental contamination [33].
However, whether exposure to herbicides would affect insecticides resistance is largely unknown,
especially in agricultural pests. In this study, we showed that exposure to herbicides butachlor
(BuCh) or haloxyfop-methyl (HLFM) can prime the resistance of H. armigera against insecticide and
fungal toxin. Although mosquitoes such as Aedes aegypti has been found increasing tolerance to
insecticide temephos after exposure to atrazine [34], to our knowledge, there is scarcely any report
that antagonistic interaction between herbicides and insecticides is also exist in the agricultural pest.
We also found that being pre-exposed to BuCh or HLFM significantly decreases the susceptibility
of H. armigera caterpillars to carcinogenic mycotoxin aflatoxin B1 (AFB1). These results suggest that
H. armigera can take advantage of pre-exposed to herbicides for antagonistic interaction with wide
targets. We speculated that it is a very significant reason for H. armigera being a polyphagous pest on
many plants and in complex environmental stresses.

The development of resistance to an insecticide in insects are generally associated with
high energetic cost or significant disadvantage when compared with susceptible individuals [35].
For example, fitness costs of Bt resistance occur in many species of insects, that is, in the absence
of Bt toxins, fitness is lower for resistant insects than for susceptible insects [36]. In this study, our
preliminary findings suggest that exposure to herbicides did not affect growth and development
of H. armigera and induce resistance of H. armigera against insecticide and fungal toxin aflatoxin B1
accompanied with low fitness cost. More fitness effects, such as adult emergence rate, adult fecundity,
and longevity, should be studied in the future. A large number of studies have shown that multiple,
complex resistance mechanisms are responsible for insecticide resistance in insects [37], including
increased metabolic detoxification of insecticides, decreased sensitivity of the target proteins, and
reduction of cuticular penetration [38–41]. Insect detoxification enzymes typically include three main
superfamilies: cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and
carboxylesterases (CarEs) [12]. Since the detoxification enzyme system takes the major responsibility
for cross-resistance mechanism [9,13]. We successively measure the major detoxifying enzyme activities
after exposure to herbicides on in both the midgut and fat body of H. armigera. Interestingly, exposure
to herbicides, either BuCh or HLFM, elicited a clear elevation of predominantly P450 monooxygenase
activities in both midgut and fat body. The up-regulation of P450 genes mediated by insecticides and
other xenobiotic compounds have been largely reported in insect species [42,43]. Multiple P450 genes
have been reported to be overexpressed in insecticides-resistant strains in H. armigera, especially the
CYP4 clan, CYP6, and CYP9 families [18,44,45]. Therefore, the changes in transcript abundance of P450
genes after exposure to herbicides should be systematically studied in a follow-up experiment.
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In order to develop an effective long-term resistance management strategy, it is very necessary to
monitor the resistance and cross-resistance between different insecticides [30]. When considering that
insects are exposed to chemical insecticides and meanwhile could be exposed to residual herbicides by
feeding on host plants or by olfactory perception from their surroundings, what we find here could be
one potential risk of priming pest insecticides resistance by antagonistic interaction with herbicides.
Therefore, we argue that detailed study of the impacts of herbicides on insect will facilitate efforts to
reduce the influence of antagonistic interaction in pest control in the future.

5. Conclusions

In conclusion, we propose that exposure to herbicides prime resistance of H. armigera against
insecticide by eliciting a clear elevation of predominantly P450 monooxygenase activities in the midgut
and fat body.
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