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Abstract: This paper presents a complete derivation and design of a physics-informed neural net-
work (PINN) applicable to solve initial and boundary value problems described by linear ordinary
differential equations. The objective with this technical note is not to develop a numerical solution
procedure which is more accurate and efficient than standard finite element- or finite difference-based
methods, but to give a fully explicit mathematical description of a PINN and to present an application
example in the context of hydrodynamic lubrication. It is, however, worth noticing that the PINN
developed herein, contrary to FEM and FDM, is a meshless method and that training does not require
big data which is typical in machine learning.

Keywords: PINN; machine learning; reynolds equation

1. Introduction

There are various categories of artificial neural networks (ANN) and a physics-
informed neural network (PINN), see [1] for a recent review on the matter, is a neural
network trained to solve both supervised and unsupervised learning tasks while satis-
fying some given laws of physics, which may be described in terms of nonlinear partial
differential equations (PDE). For example, the balance of momentum and conservation
laws in solid- and fluid mechanics and various types of initial value problems (IVP) and
boundary value problems (BVP), see e.g., [2,3]. The application of a PINN (of this type)
to solve differential equations, renders meshless numerical solution procedures [4], and
an important feature from a machine learning perspective, is that it is not a data-driven
approach requiring a large set of training data to learn the solution.

In fluid mechanics, under certain assumptions, i.e., that the fluid is incompressible,
iso-viscous, the balance of linear momentum and the continuity equation, for flows in
narrow interfaces reduces to the classical Reynolds equation [5]. For more recent work
establishing lower-dimensional models in a similar manner, see e.g., [6–8]. The present
work describes how a PINN can be adapted and trained to solve both initial and boundary
value problems, described by ordinary differential equations, numerically. The theoretical
description starts by presenting the neural network’s architecture and it is first applied to
solve an initial value problem, which is described by a first order ODE, which can be solved
analytically so that the validity of the solution can be thoroughly assessed. Thereafter, it
is used to obtain a PINN for the classical one-dimensional Reynolds equation, which is a
boundary value problem governing, e.g., the flow of lubricant between the runner and the
stator in a 1D slider bearing. The novelty and originality of the present work lays in the
explicit mathematical description of the cost function, which constitutes the physics-informed
feature of the ANN, and the associated gradient with respect to the networks weights and
bias. Important features of this particular numerical solution procedure, that is publicly
available here: [9], are that it is not data driven, i.e., no training data need to be provided
and that it is a meshless method [4].
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2. PINN Architecture

Knowing the characteristics of the solution to the differential equation under consider-
ation is very helpful when designing the PINN architecture, including structure, number of
hidden layers, activation function, etc. For this reason, the PINN developed here has one
input node x (the independent variable representing the spatial coordinate), one hidden
layer consisting of N nodes and one output node y (the dependent variable representing
pressure). Figure 1 depicts a graphical illustration of the present architecture, which when
trained solves both the IVP example and the Reynolds BVP considered here.
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Figure 1. Architecture of the PINN employed to solve the IVP and BVP considered here.

The Sigmoid function, i.e.,

φ(ξ) =
1

1 + e−ξ
, (1)

which is mapping R to [0, 1] and exhibits the property

φ′(ξ) = φ(ξ)(1− φ(ξ)). (2)

is employed as activation function for the hidden layer. This means that the neural network
has 3N + 1 trainable parameters. That is, the weights w(0)

i and bias b(0)i for the nodes in the

hidden layer and the weights w(1)
i , i = 1 . . . N, for each synapses connecting them with the

output node, plus the bias b(1) applied there.
Based on this particular architecture, the output zi of each node in the first hidden

layer is,
zi(x) = φ

(
w(0)

i x + b(0)i

)
. (3)

The output value is then given by applying the Sigmoid activation function scaled by the
weight from the node in the second layer and yields

y(x) = b(1) +
N

∑
i=1

w(1)
i zi(x) = b(1) +

N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

)
. (4)

Let us now construct the cost function which the network will be trained to minimise.
While the cost function appearing in a typical machine learning procedure is just the
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quadratic difference between the predicted and the target values, it will here be defined by
means of the operators L and B. The cost function applied here reads

l =
〈
(Ly− f )2

〉
+ ((By− b) · e1)

2 + ((By− b) · e2)
2, (5)

where 〈 f 〉 defines the average value of f , and this is exactly the feature that makes an ANN
“physics informed”, i.e., a PINN.

Since Ly is a differential operator the cost function contains derivatives of the network
output (4). In order to obtain an expression of the cost function, in terms of the input x, the
weights w and bias b, the network output (4), must be differentiated twice with respect to
(w.r.t. ) x. This can be accomplished by some kind of automatic differentiation (AD) (also
referred to as algorithmic differentiation, computer differentiation, auto-differentiation or
simply autodiff), which is a computerised methodology based on the chain rule, which
can be applied to efficiently and accurately evaluate derivatives of numeric functions, see
e.g., [10,11]. The present work instead applies symbolic differentiation to clearly explain
all the essential details of the PINN. Indeed, differentiating one yield

y′(x) =
∂

∂x

((
N

∑
i=1

w(1)
i zi(x)

)
+ b(1)

)
=

∂

∂x

((
N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

))
+ b(1)

)
=

=
N

∑
i=1

w(1)
i w(0)

i φ′
(

w(0)
i x + b(0)i

)
=

N

∑
i=1

w(1)
i w(0)

i φ
(

w(0)
i x + b(0)i

)(
1− φ

(
w(0)

i x + b(0)i

))
,

(6)

and, because of (2), a consecutive differentiation then yields

y′′(x) =
∂

∂x

(
N

∑
i=1

w(1)
i w(0)

i φ′
(

w(0)
i x + b(0)i

))
=

N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ′′
(

w(0)
i x + b(0)i

)
=

=
N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ′
(

w(0)
i x + b(0)i

)(
1− 2φ

(
w(0)

i x + b(0)i

))
=

=
N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ
(

w(0)
i x + b(0)i

)(
1− φ

(
w(0)

i x + b(0)i

))(
1− 2φ

(
w(0)

i x + b(0)i

))
.

(7)

Moreover, finding the set of weights and bias minimising the cost function requires its
partial derivatives w.r.t. to each weight and bias defining the PINN. In the subsections
below, we will present how to achieve this, by first considering a first order differential
equation with an analytical solution, and, thereafter, we will consider the classical Reynolds
equation which is a second order (linear) ODE that describes laminar flow of incompressible
and iso-viscous fluids in narrow interfaces.

3. A First Order ODE Example

Let us consider the first order ODE, describing the initial value problem (IVP) given by

Ly− f = y′ + 2xy = 0, x > 0 (8a)

By− b = y(0)− 1 = 0, (8b)

with the exact solution y = e−x2
. By means of (6), a cost function suitable for solving (8)

may be generated by

l =

〈[
N

∑
i=1

w(1)
i w(0)

i φ
(

w(0)
i x + b(0)i

)(
1− φ

(
w(0)

i x + b(0)i

))
+

2x

((
N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

))
+ b(1)

)]2〉
+ [y(0)− 1]2

(9)



Lubricants 2021, 9, 82 4 of 9

The solution of (8) can be obtained by implementing a training routine which iteratively
finds the set of weights w and bias b that minimises (9) (and similarly for (19) minimising
(17)). The most well-known of these is the Gradient Decent method attributed to Cauchy,
who first suggested it in 1847 [12]. For an overview, see, e.g., [13].

As mentioned in the previous section, the derivatives of (4) w.r.t. to the weights w
and bias b are required to find them, and automatic differentiation is, normally, employed
to perform the differentiation. However, here we carry out symbolic differentiation to
demonstrate exactly the explicit expressions that constitute the gradient of the cost function.
Indeed, by taking the partial derivatives we obtain

∂y

∂w(0)
i

=
∂

∂w(0)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i x + b(0)i

)
x, (10a)

∂y

∂w(1)
i

=
∂

∂w(1)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

))
+ b(1)

)
= φ

(
w(0)

i x + b(0)i

)
, (10b)

∂y

∂b(0)i

=
∂

∂b(0)i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i x + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i x + b(0)i

)
, (10c)

∂y
∂b(1)

= 1. (10d)

Moreover, the derivatives of the cost function (5) w.r.t. to the weights and bias are also
required. For the derivative w.r.t. w(0)

i for the first order ODE (8), this means that〈
2
(
y′ + 2xy

)( ∂y′

∂w(0)
i

+ 2x
∂y

∂w(0)
i

)〉
+ 2(y(0)− 1)

∂y(0)

∂w(0)
i

. (11)

To complete the analysis, we also need expressions for the derivatives of y′ w.r.t. w(0)
i , w(1)

i ,

b(0)i and b(1). By the chain rule, the following expressions can be obtained, viz.

∂y′

∂w(0)
i

=
∂

∂w(0)
i

N

∑
i=1

w(1)
i w(0)

i φ′
(

w(0)
i x + b(0)i

)
=

= w(1)
i φ′

(
w(0)

i x + b(0)i

)
+ xw(1)

i

(
w(0)

i

)2
φ′′
(

w(0)
i x + b(0)i

)
, (12a)

∂y′

∂w(1)
i

=
∂

∂w(1)
i

w(1)
i w(0)

i φ′
(

w(0)
i x + b(0)i

)
= w(0)

i φ′
(

w(0)
i x + b(0)i

)
, (12b)

∂y′

∂b(0)i

=
∂

∂b(0)i

N

∑
i=1

w(1)
i w(0)

i φ′
(

w(0)
i x + b(0)i

)
= w(1)

i w(0)
i φ′′

(
w(0)

i x + b(0)i

)
, (12c)

∂y′

∂b(1)
= 0. (12d)

What remains now is to obtain expressions for y(0) and the partial derivatives of y(0), w.r.t.
to the weights and bias. Let us start with y(0). With y(x) given by (4) we directly have

y(0) =

(
N

∑
i=1

w(1)
i φ

(
b(0)i

))
+ b(1), (13)
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which, in turn, means that

∂y(0)

∂w(0)
i

= 0, (14a)

∂y(0)

∂w(1)
i

=
∂

∂w(1)
i

((
N

∑
i=1

w(1)
i φ

(
b(0)i

))
+ b(1)

)
= φ

(
b(0)i

)
, (14b)

∂y(0)

∂b(0)i

=

((
N

∑
i=1

w(1)
i φ

(
b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

b(0)i

)
(14c)

∂y(0)
∂b(1)

= 1. (14d)

The PINN (following the architecture presented above) was implemented as computer
program in MATLAB. The program was employed to obtain a numerical solution to the
IVP in (8), using the parameters in Table 1.

Table 1. Parameters used to defined the PINN to for the IVP in (8).

Parameter Description Value

Ni # of grid points for the solution domain [0, 2] 41
Ne # of training batches (# or corrections during 1 Epoch) 1000
Tb # of Epochs (1 Epoch contains Tb training batches) 100
Lr Learning rate coefficient (relaxation for the update) 0.01
N # of nodes/neurons in the hidden layer 10

The weights w(0)
i and bias b(0)i were initialised using randomly generated and uniformly

distributed numbers in the interval [−2, 2], while the weights w(1)
i were initially set to zero

and the bias b(1) to one, to ensure fulfilment of the initial condition (y(0) = 1).
Table 2 lists the weights an bias corresponding to the solution presented in Figure 2.

We note that, with the weights and bias given by Table 2, the trained network’s prediction
exhibits the overall error

1
Ni

√√√√ Ni

∑
k=1

(
e−x2

k − y(xk)
)2

= 5.8× 10−4, (15)

and 1− y(0) = 2.2× 10−4, when comparing against the initial condition.

Table 2. Parameters used to defined the PINN for the IVP (8).

Node w(0) b(0) w(1) b(1)

1 1.8500 −0.5946 −3.5805 0.3055
2 1.8588 1.5974 0.9712
3 0.3025 1.9241 0.8921
4 1.4546 0.3742 −0.9955
5 0.5065 1.2535 −0.1430
6 −1.0898 −1.0199 −1.1067
7 −0.8302 0.3519 −1.1668
8 0.3789 1.6502 0.1754
9 2.5012 0.7657 1.2955

10 2.2743 1.4172 1.2787
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Figure 2. The solution to the IVP (8), predicted by the PINN (red line with circle markers) and the
exact solution obtained by integration (blue continuous line).

4. A PINN for the Classical Reynolds Equation

The Reynolds equation for a one-dimensional flow situation, where the lubricant is
assumed to be incompressible and iso-viscous, is a second order Boundary Value Problem
(BVP), which in dimensionless form can be formulated as

d
dx

(
c(x)

dy
dx

)
= f (x), 0 < x < 1, (16a)

y(0) = 0, y(1) = 0, (16b)

where c(x) = H3, f (x) = dH
/

dX and H is the dimensionless film thickness, if it is
assumed that the pressure y at the boundaries is zero. For the subsequent analysis it is,
however, more suitable work with a condensed form which can be obtained by defining
the operators L and B as

Ly = c(x)y′′ + c′(x)y′, (17a)

By =

[
y(0)
y(1)

]
. (17b)

The Reynolds BVP given by (16) can then be presented as

Ly− f = 0, 0 < x < 1, (18a)

By− b = 0, (18b)

where b = 0.
For the Reynolds BVP, the cost function (5) becomes

l =
〈(

c(x)y′′ + c′(x)y′ − f
)2
〉
+ y2(0) + y2(1), (19)

and from the analysis presented for the IVP in Section 3 above, we have all the “ingredients”
except for the partial derivatives of y′′ and y(1) w.r.t. to the weights and bias. For y′′, based
on (7) and (12), we obtain
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∂y′′

∂w(0)
i

=
∂

∂w(0)
i

N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ′′
(

w(0)
i x + b(0)i

)
=

= 2w(1)
i w(0)

i φ′′
(

w(0)
i x + b(0)i

)
+ xw(1)

i

(
w(0)

i

)2
φ′′′
(

w(0)
i x + b(0)i

)
, (20a)

∂y′′

∂w(1)
i

=
∂

∂w(1)
i

N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ′′
(

w(0)
i x + b(0)i

)
=
(

w(0)
i

)2
φ′′
(

w(0)
i x + b(0)i

)
, (20b)

∂y′′

∂b(0)i

=
∂

∂b(0)i

N

∑
i=1

w(1)
i

(
w(0)

i

)2
φ′′
(

w(0)
i x + b(0)i

)
= w(1)

i

(
w(0)

i

)2
φ′′′
(

w(0)
i x + b(0)i

)
, (20c)

∂y′′

∂b(1)
= 0, (20d)

where the third derivative of the Sigmoid function (1) is required. It yields

d
dξ

(
φ′′(ξ)

)
=

d
dξ

(
φ′(ξ)(1− 2φ(ξ))

)
= φ′′(ξ)(1− 2φ(ξ))− 2

(
φ′(ξ)

)2
=

= φ(ξ)(1− φ(ξ))(1− 2φ(ξ))2 − 2(φ(ξ)(1− φ(ξ)))2 =

= φ(ξ)(1− φ(ξ))2(1− 3φ(ξ)).

For y(1) we obtain

∂y(1)

∂w(0)
i

=
∂

∂w(0)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i + b(0)i

)
, (22a)

∂y(1)

∂w(1)
i

=
∂

∂w(1)
i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= φ

(
w(0)

i + b(0)i

)
, (22b)

∂y(1)

∂b(0)i

=
∂

∂b(0)i

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= w(1)

i φ′
(

w(0)
i + b(0)i

)
, (22c)

∂y(1)
∂b(1)

=
∂

∂b(1)

((
N

∑
i=1

w(1)
i φ

(
w(0)

i + b(0)i

))
+ b(1)

)
= 1, (22d)

and we now have all the “ingredients” required to fully specify (19). To test the performance
of the PINN, a Reynolds BVP was specified for a linear slider with dimensionless film
thickness defined by

H(x) = 1 + K− Kx. (23)

This means that c(x) = (1+K−Kx)3 and f (x) = dH
/

dx = −K and that the exact solution
is

yexact(x) =

[
1
K

(
1

1 + K− Kx
− 1 + K

2 + K
1

(1 + K− Kx)2 −
1

2 + K

)]
, (24)

see, e.g., [14].
The PINN (following the architecture suggested herein) was implemented in MATLAB

and a numerical solution to (16) was obtained using the parameters in Table 3. As for
the IVP, addressed in the previous section, the weights w(0)

i and bias b(0)i were, again,
initialised using randomly generated numbers, uniformly distributed in [−2, 2], while the
weights w(1)

i and the bias b(1) was initially set to zero, to ensure fulfilment of the boundary
conditions.

Figure 3 depicts solution predicted by the PINN (red line with circle markers) and the
exact solution obtained by integration (blue continuous line).
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Table 3. Parameters used to defined the ANN to for the Reynolds equation.

Parameter Description Value

Ni # of grid points for the solution domain [0, 1] 21
K Slope parameter for the Reynolds equation 1
Ne # of training batches (# or corrections during 1 epoch) 2000
Tb # of Epochs (1 epoch contains Tb training batches) 600
Lr Learning rate coefficient (relaxation for the update) 0.005
N # of nodes/neurons in the hidden layer 10

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

·10−2

X (-)

D
im

en
si

on
le

ss
pr

es
su

re
(-

)

Exact
PINN

Figure 3. The solution achieved by the ANN (red line with circle markers) and the exact solution
obtained by integration (blue continuous line).

Table 4 lists the weights an bias corresponding to the solution presented in Figure 3.

Table 4. Parameters used to defined the ANN.

Node w(0) b(0) w(1) b(1)

1 0.0557 1.9808 −0.2186 −0.0641
2 −6.3047 6.1664 0.1220
3 −9.3674 11.4571 0.3843
4 −4.5473 3.3266 0.0305
5 −2.4464 −1.9884 0.1188
6 −0.1365 −0.1674 0.4155
7 0.8581 0.5253 0.5089
8 1.0901 2.0858 0.3348
9 0.2085 0.2523 −0.2024

10 −3.2168 5.9722 −0.9899

We note that, with these weights and bias, the trained network’s prediction of the solution
to the Reynolds BVP exhibits the overall error

1
Ni

√√√√ Ni

∑
k=1

(yexact(xk)− y(xk))
2 = 6.2× 10−5, (25)

while y(0) = 4.1× 10−4 and y(1) = −4.0× 10−4.
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Remark 1. The formulation of the PINN presented here is applicable as a numerical solution
procedure for the Reynolds BVP (16) and it does not consider the effect of cavitation. Exactly how
the effect of cavitation can be included is, however, out of the scope of this paper.

5. Concluding Remarks

A physics-informed neural network (PINN) applicable to solve initial and boundary
value problems has been established. The PINN was applied to solve an initial value
problem described by a first order ordinary differential equation and to solve the Reynolds
boundary value problem, described by a second order ordinary differential equation.
Both these problems were selected since they can be solved analytically, and the error
analysis showed that the predictions returned by the PINN was in good agreement with
the analytical solutions for the specifications given. The advantage of the present approach
is, however, neither accuracy nor efficiency when solving these linear equations, but that
it presents a meshless method and that it is not data driven. This concept may, of course,
be generalised, and it is hypothesised that future research in this direction may lead
to more accurate and efficient in solving related but nonlinear problems than currently
available routines.
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