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Abstract: Shear stress at the cilia wall is considered as an imperative factor that affects the efficiency
of cilia beatings as it describes the momentum transfer between the fluid and the cilia. We consider a
visco-inelastic Prandtl fluid in a ciliated channel under electro-osmotic pumping and the slippage
effect at cilia surface. Cilia beating is responsible for the stimulation of the flow in the channel.
Evenly distributed cilia tend to move in a coordinated rhythm to mobilize propulsive metachronal
waves along the channel surface by achieving elliptic trajectory movements in the flow direction.
After using lubrication approximations, the governing equations are solved by the perturbation
method. The pressure rise per metachronal wavelength is obtained by numerically integrating the
expression. The effects of the physical parameters of interest on various flow quantities, such as
velocity, pressure gradient, pressure rise, stream function, and shear stress at the ciliated wall, are
discussed through graphs. The analysis reveals that the axial velocity is enhanced by escalating the
Helmholtz–Smoluchowski velocity and the electro-osmosis effects near the elastic wall. The shear
stress at the ciliated boundary elevates with an increase in the cilia length and the eccentricity of the
cilia structure.
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1. Introduction

Cilia-supported propulsions play an important part in many physiological and bio-
engineering systems. Cilia appear as protuberances on the outer surface of eukaryotic cells.
These appendage organelles can produce a current in a fluid motion for the passage of
fluid and substances through the cell’s surface. They tend to move as a group and generate
a rhythmic wave effect by attaining power and recovery strokes. Motile cilia [1–6] are
present in the respiratory system to make airways clear by removing mucus and dust; in
the digestive system to propel food and its egestion; the lining of female fallopian tubes to
support the movement of eggs and fertilization; and in male efferent ductules for mixing
the sperm cells to keep them from accumulating and hindering the tube, so they can reach
to their ultimate target. They also work for the transport of spinal fluid through the brain.

Primary cilia act as a sensory apparatus for the cell [7] and play a vital part in sensory
neurons. They are found in the kidneys, eye retina, ears and brain. Due to its diverse
applications in human life, it has become a fascinating area of research for many scientists.
Brennen [8] studied the locomotion of a cell through a viscous fluid induced by a harmonic
wave of progression on its surface. Qiu et al. [9] reported that to move several biological
microorganisms, cilia and flagella perform reciprocal motions in a non-Newtonian fluid
medium at a low Reynolds number. Eytan and Elad [10] presented a theoretical study of
egg transport in the fallopian tube and ovum in the uterine cavity by using the intrauterine
fluid motion that is primarily intended for myometrial contractions. Recently, Farooq
et al. [11] studied the flow of non-Newtonian fluid in a symmetric channel. It is assumed
that the flow is induced by metachronal waves of cilia that are present on the inner surface
of the channel wall under long wavelength and small Reynolds number approximations.
Farooq and Siddiqui [12] studied the transport of seminal fluid through the ductus efferent

Lubricants 2021, 9, 48. https://doi.org/10.3390/lubricants9050048 https://www.mdpi.com/journal/lubricants

https://www.mdpi.com/journal/lubricants
https://www.mdpi.com
https://doi.org/10.3390/lubricants9050048
https://doi.org/10.3390/lubricants9050048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/lubricants9050048
https://www.mdpi.com/journal/lubricants
https://www.mdpi.com/article/10.3390/lubricants9050048?type=check_update&version=1


Lubricants 2021, 9, 48 2 of 16

due to metachronal propulsions in couple-stress fluid. The involvement of cilia in the
female fallopian tube and uterus is reported in recent studies [13,14].

The analysis of rheological fluids in electric and magnetic fields has become a mount-
ing and interesting area for many researchers. Magnetofluid is always under special
consideration in physiological and bioengineering disciplines. Stud et al. [15] examined the
peristaltic motion of blood in the presence of a moving magnetic field applied in the normal
direction of the fluid flow. They considered that the mean velocity distribution decreases by
increasing the magnetic field. Mekheimer [16] addressed the peristaltic motion of magneto-
hydrodynamic (MHD) couple-stress fluid in a symmetric channel of non-uniform thickness.
He observed that the pressure rise for MHD fluids are greater than the hydrodynamic fluids.
Maqbool et al. [17] considered the MHD flow of Jeffery fluid due to metachronal waves.
Hayat et al. [18] studied the significance of a magnetic field on the Carreau fluid motion
in symmetric channel. The ciliary pumping flow of couple-stress fluid in the presence of
an applied external magnetic field was examined by Ramesh et al. [19]. Some attempts
analyzing the peristaltic flow through the perspective of MHD have been mentioned in
other studies [20–22].

An electro-osmotic stream grows in response to the submission of electric field to
the fluid under consideration. Applications include some advanced electronic apparatus
in microfluidic and nanofluidic applications, such as electro-osmotic fluid pumps, liquid
drug delivery, microelectronic chip cooling, DNA testing, lab-on-a-chip devices and mi-
crofabricated fluid devices etc. In this respect, the innovative attempt was presented by
Burgreen and Nakache [23]. Yang and Li [24] considered the electric double-layer effect
on pressure pumping flow through a rectangular microchannel and established that the
electric double-layer at the liquid–solid interface has a tendency to deviate the flow features.
Chaube et al. [25] examined the influence of the electric double-layer on micropolar fluid
and highlighted the use of this model in lab-on-chip appliances and microperistaltic pumps.
A mathematical study dealing with an inclined magnetic field applied to the peristaltic
motion of Jeffrey fluid in the presence of an electric double-layer was conducted by Akram
et al. [26]. Some recent investigations with the idea of combining electric and magnetic
fields in peristaltic flows through microchannels are mentioned in [27–30].

The flows that produce large changes in velocity over short distances subject to a high
shear rate induce a deceleration in fluid viscosity. Mucus is considered a non-Newtonian
physiological fluid. Unlike Newtonian fluids, when it is rapidly sheared, a slippage plane
develops between the mucus layers and hence decreases the mucus viscosity. If mucus
keeps on the slip, the viscosity in the slippage surface remains small and makes the mucus
a good lubrication. During a cough, because of high shear stress, the mucin fibers separate
and untangle at the slippage surface [31,32].

The sperm cells of small rodents [33] are kept in highly viscoelastic mucus in the
epidermis. At a high shear rate, the viscosity of mucus decreases dramatically. During
ejaculation, the mucus near the wall bears high shear stress and consequently constructs
a slippage plane between the storage bolus and the surface. Tripathi et al. [34] presented
a theoretical model of the peristaltic motion of blood enclosure with partial slip effects
under long wavelength and small Reynolds number. Makinde et al. [35] investigated the
thermal analysis of Walters’ B fluid under the effects of a magnetic field and slip condition.
Hayat et al. [36,37] presented the slip effects on peristalsis in an asymmetric channel. Some
important studies reporting the significance of slip-on physiological flows are listed here
for interested readers [38–41].

Given the above discussion, the aim of the present study is to investigate the effects of
slippage on cilia-endorsed transport of visco-inelastic, pseudoplastic Prandtl fluid under
a magnetic field in an electro-osmotic pump. The analysis is carried out in a wave frame.
Governing equations are simplified under the long wavelength and small Reynolds number
assumptions. Numerical integration is performed to find pressure rise ∆P per metachronal
wavelength. Perturbation solutions of axial velocity u(y), pressure gradient dp/dx, shear
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stress τxy at the ciliated wall surface, and stream functions are obtained. Parametric study
to different influential variables is also organized.

2. Mathematical Formulation

Consider two-dimensional pumping transport through a ciliated channel filled with
incompressible non-Newtonian Prandtl fluid by incorporating the effects of electric E and
uniform magnetic field B0. The flow is stimulated due to periodic beatings of cilia knocking
with constant speed c, which synchronize their knocks to generate metachronal waves
along the channel wall side. It is also intended that partial velocity slip is present at the
ciliated boundary. Using a rectangular coordinate system, the X-axis is taken along the
parallel direction of wave transmission, and the Y-axis is perpendicular to it (see Figure 1
for instance). The shape of wall surface lining cilia is described as [39,42]:

−
Y = f

(−
X, t
)
= H =

[
a + aε cos

(
2π

λ

(−
X− ct

))]
(1)
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It is assumed that cilia tip the lash by attaining an elliptical motion configuration and
are vertically located at:

−
X = g

(−
X, t
)
= X0 + aεα sin

(
2π

λ

(−
X− ct

))
(2)

where a, α, ε, H, t, λ, and X0 are mean channel width, eccentricity of an elliptic path, cilia
length parameter, half channel width, time, wavelength and indicated position of the
particle.

In a laboratory frame, the axial and transverse velocity components at the channel
wall and governing equations of current flow problem are listed as:

U0 =

(
∂X
∂t

)
X0

=
−
( 2π

λ

)
acεα cos

( 2π
λ

(
X− ct

))
1−

( 2π
λ

)
aεα cos

( 2π
λ

(
X− ct

)) , (3)

V0 =

(
∂Y
∂t

)
X0

=
−
( 2π

λ

)
acεα sin

( 2π
λ

(
X− ct

))
1−

( 2π
λ

)
aεα sin

( 2π
λ

(
X− ct

)) , (4)

∂U
∂X

+
∂V
∂Y

= 0, (5)

ρ

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
U = − ∂P

∂X
+

∂SXX
∂X

+
∂SXY

∂Y
− σB2

0U + ρeEx, (6)
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ρ

(
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
V = − ∂P

∂Y
+

∂SXY
∂X

+
∂SYY

∂Y
− σB2

0V, (7)

where, ρ is the fluid density, B0 the constant magnetic, σ the electrical conductivity, p the
pressure and

(
U, V

)
are the velocity components in (X, Y) direction.

The electric potential existing on a ciliated wall is described with the Poisson–Boltzmann
equation as:

∇2Φ = − ρe

εε
, (8)

here Φ, ρe and ε, ε0 correspond to the electroosmotic potential function, net charge density,
permittivity of medium and permittivity of free space. For dual fluid owning two types of
ionic charges (equal and opposite), the net charge density is calculated as:

ρe = ez(n+ − n−), (9)

with n+, n− are positive and negative charge in concentration, e is the electric charge and z
is the valence of ions.

We suppose that wall zeta potential (≤25 mV) is adequately small and therefore the
Debyeh-Huckel linearization applies as:

ρe = −2nzesinh
(

zeΦ
kbTave

)
, (10)

where kb, Tave and no are the Boltzmann constant, local average temperature, and the
average amount of electrolytes. When the electrical potential is lower than temperature
field, the Debyeh–Huckel approximation applies as:

sinh
(

zeΦ
kbTave

)
∼=

zeΦ
kbTave

(11)

Employing Equations (9)–(11) in Equation (8), the potential function for the electric
double-layer is represented by:

∇2Φ =
2nz2e2Φ
kbTaveεε

. (12)

The relative coordinates, velocity components and pressure are converted from the
laboratory frame to wave frame of reference by defining the transformations as:

x = X− ct, y = Y, u = U − c, v = V, p(x, y) = P
(
X, Y, t

)
. (13)

The extra stress for the Prandtl fluid is defined as [43,44]:

S = SXY =


Aµsin−1

[
1
C

{(
∂U
∂Y

)2(
∂V
∂X

)2
}1/2

]
{(

∂U
∂Y

)2(
∂V
∂X

)2
}1/2

∂U
∂Y

, (14)

in which A and C are material constants of Prandtl fluid model. Moreover, the function sine
inverse is expanded up to the first two terms only, since the rest of the terms are negligible.

Introducing non-dimensional quantities as:

x =
−
x
λ , y =

−
y
a , u =

−
u
c , v = λ

−
v

ac , β = a
λ , H =

−
H
a , t = c

−
t

a , p = a2−p
µcλ , Φ =

−
Φ
ζ

φ = ηc2

c2a2 , S = a
µc

−
S, Re = ac

v , φ = αc2

c2a , η = µA
c , M =

√
σ
µ B0a, Uhs =

−Ex∈∈oζ
cµ f

 (15)
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where (u, v) are velocity components in (x, y) direction, p is the fluid pressure, β is the wave
number, Re is the Reynolds number, M is the Hartmann number, and φ the time relaxation
parameter.

Using Equations (13)–(15) into Equations (6),(7) and (12) and then employing lubrica-
tion approximations, the resulting equations take the following form:

∂p
∂x

=
∂

∂y

[
η

(
∂u
∂y

)
+

φ

6

(
∂u
∂y

)3
]
−M2(u + 1) + Uhs

∂2Φ
∂y2 , (16)

∂p
∂y

= 0, (17)

∂2Φ
∂y2 = K2Φ. (18)

The corresponding boundary conditions of the flow problem are defined as:

∂u
∂y

= 0,
∂Φ
∂y

= 0 at y = 0, (19)

+ ξ

[
η

∂u
∂y

+
φ

6

(
∂u
∂y

)3
]
= −1− 2παεβ cos(2πx)

1− 2παεβ cos(2πx)
, Φ = 1 at y = h = 1 + ε cos(2πx) (20)

where ξ (=L/a), h are a dimensionless form of slip parameter, ciliated wall and K =

aze
√

2n
εεkbTave

is the electro-osmosis parameter exhibited as the ratio of the mean channel
width to the Debye length.

The pressure rise per wavelength, dimensionless volume flow rate and mean flow
rate are formulated as:

∆Pλ =
∫ 1

0

(
dp
dx

)
dx, (21)

F =
∫ h

0
udy, Q = F + 1. (22)

The dimensionless shear rate is computed using a Taylor series expansion of Equation
(14) and normalizing with dimensionless Equation (15) as

SXY = η

(
∂u
∂y

)
+

φ

6

(
∂u
∂y

)3
. (23)

3. Solution

To calculate the solutions of Equations (16) and (18) subject to the boundary conditions
Equations (19) and (20), we apply perturbation procedure by selecting φ as perturbation
parameter. We expand the flow quantities as:

u = u0 + φu1 + O
(

φ2
)

, (24)

dp
dx

=
dp0

dx
+ φ

dp1

dx
+ O

(
φ2
)

, (25)

F = F0 + φF1 + O
(

φ2
)

, (26)

Φ = Φ0 + φΦ1 + O
(

φ2
)

, (27)

and get a zeroth-order and first-order system of equations.



Lubricants 2021, 9, 48 6 of 16

3.1. Zeroth-Order System

dp0

dx
= η

∂2u0

∂y2 −M2(u0 + 1) + Uhs
∂2Φ0

∂y2 (28)

∂2Φ0

∂y2 = K2Φ0, (29)

F0 =
∫ h

0
u0dy, (30)

with boundary conditions as:

∂u0

∂y
= 0,

∂Φ0

∂y
= 0 y = 0, (31)

u0 + ξη
∂u0

∂y
= −1− 2παεβ cos(2πx)

1− 2παεβ cos(2πx)
, Φ0= 1 at y = h = 1 + ε cos(2πx). (32)

3.2. First-Order System

dp1

dx
= η

∂2u1

∂y2 −M2u1 +
φ

6
∂

∂y

(
∂u0

∂y

)3
+ Uhs

∂2Φ1

∂y2 , (33)

∂2Φ1

∂y2 = K2Φ1, (34)

F1 =
∫ h

0
u1dy, (35)

with boundary conditions as:

∂u1

∂y
= 0,

∂Φ1

∂y
= 0 at y = 0, (36)

u1 + ξ

[
η

∂u1

∂y
+

1
6

(
∂u0

∂y

)3
]
= 0, Φ1 = 1 at y = h = 1 + ε cos(2πx). (37)

We have calculated the solutions of the zeroth- and first-order system of equations with
Mathematica software. The data for the pressure rise (per metachronal wavelength) is obtained
by performing the numerical integration of Equation (21). To validate our approximate
analytic solution, we provide a comparison by computing a numerical solution by a shooting
method. Table 1 is produced by reporting the numerical values of velocity gradient at the wall
of the channel. From the table a good agreement is seen between both solution methodologies.
This provides a good check on the validity of the present analytic solution.

Table 1. A comparison of the present analytic solution with a numerical result by the shooting
method when Q = 2, α = ε = 0.2, K = 1, φ = 0.01, η = 1, x = 0.5, Uhs = 1 are fixed.

M Ψ”(h) (Analytic) Ψ”(h) (Numerical)

0.5 −11.5061 −11.5171
1 −11.7651 −11.7837

1.5 −12.2013 −12.2129
2 −12.7451 −12.7830

2.5 −13.3785 −13.4664

4. Results and Discussion

To discuss the effects of sundry parameters of interest on flow quantities such as axial
velocity u(y), pressure gradient dp/dx, pressure rise per wavelength ∆P, shear stress τxy at
the ciliated wall and trapping phenomenon, Figures 2–23 are prepared.
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Figures 2–6 determine the effects of the Hartmann number (M), cilia length parameter
(ε), Prandtl fluid parameter (φ), eccentricity parameter (α) and electro-osmotic parameter (K)
on u(y). From Figure 2, it is noted that higher values of M cause more resistance to axial fluid
flow and generate hindrance in the channel center region. However, near the edge zone,
axial velocity accelerates for the same parameter values. Figure 3 is plotted to see the velocity
profile for various values of Prandtl fluid time relaxation parameter φ. From the figure, it
is noticed that the velocity profile describes two opposite patterns as φ increases. Near the
boundary, the velocity decreases with φ, and in the center of channel the velocity increases,
which is due to the mass balancing phenomenon at a certain cross-section. Figure 4 depicts
the velocity profile for varying Helmholtz–Smoluchowski (HS) velocity Uhs.

The positive Uhs velocity indicates the exertion of electric current passes in the parallel
direction of the flow stream, while the negative value indicates the electric current passes
in the reverse direction. The velocity profile shows an increasing trend near the charged
wall as Uhs increases, while an opposite behavior is noticed at the center caused by the
cross sectional momentum balance.

The velocity is the decreasing (increasing) function of α at the channel centre (bound-
ary), shown in Figure 5. Figure 6 discloses that the velocity profile alters by considering
different values of parameter K through the elastic channel. In the locality of the channel
center, a remarkable decline is associated with the fluid velocity for parameter K. Since
electro-osmotic parameter is the ratio of ciliated channel height and Debye width; therefore,
the behavior of K on the axial velocity near the ciliated boundary is quite opposite as
compared with the channel center. Figure 7 portrays a 3D view of velocity profile versus x
and y coordinates. From this figure, it can be observed that the fluid velocity is boosted at
the channel center than the channel boundary. Moreover, the velocity is at maximum in the
contracted part of the channel.
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The effects of ε, α, ξ and K on pressure gradient versus volumetric flow rate can be
visualized through Figures 8–11. Figure 8 establishes that an increase in ε puts a strong
acceleration in pressure gradient that may generate flow. Also, this proliferation is more
substantial in the core region. From Figure 9, it is concluded favorable pressure gradient
increases for small values of α. This increase is more visible at the channel center as
compared to channel wall. Figure 10 states that adverse pressure gradient rises with a
decrease in ξ, which produces reverse flow. Figure 11 describes that K has intensifying
effects on pressure gradient throughout the channel. This rise is more considerable in the
contracted portion of the flexible channel as compared to its wider part. To preserve the
fluid volume in the narrow zone, a much-elevated pressure is required. It also reveals that
the thinning or thickening of the size of the electric double-layer can control the pumping
trend.
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Figures 12–15 show large values of ε and φ, which bring an increase in the pressure
rise in the pumping region, but induce a drop in the augmented pumping region. In the
pumping zone, the pressure rise per metachronal wavelength elevates for the small values
of ξ and η but has the opposite effect in the augmented pumping zone. However, in the
free pumping region, the effect of these parameters is negligible.

Lubricants 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 10. Pressure gradient for different values of variable. 

 

Figure 11. Pressure gradient for different values of variable K. 

Figures 12–15 show large values of ε and ϕ, which bring an increase in the pressure 

rise in the pumping region, but induce a drop in the augmented pumping region. In the 

pumping zone, the pressure rise per metachronal wavelength elevates for the small values 

of ξ and η but has the opposite effect in the augmented pumping zone. However, in the 

free pumping region, the effect of these parameters is negligible. 

 

Figure 12. Pressure rise per wavelength for different values of ε. Figure 12. Pressure rise per wavelength for different values of ε.
Lubricants 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 13. Pressure rise per wavelength for different values of ξ. 

 

Figure 14. Pressure rise per wavelength for different values of ϕ. 

 

Figure 15. Pressure rise per wavelength for different values of η. 

Another interesting occurrence of pumping ciliary flow called trapping is provided 

in Figures 16–19. Trapping is the formation of internally circulating bolus of fluid locked 

by streamlines of propulsive waves. This confined bolus is propelled forward along with 

the metachronal wave (power and recovery strokes). Figure 16 depicts that the trapped 

bolus reduces in size when large values of M are taken into consideration. This indicates 

a sufficient decrease in the flow as the magnetic field increases and happens due to the 

strengthening of resistive Lorentz force. Figure 17 is plotted to see the stream pattern at 

different cilia length parameter ε. The figure indicates that the bolus size increases as ε 

increases. This behavior indicates the significant role of cilia structure in flow augmenta-

tion. From Figure 18, it is concluded that the trapped bolus expands in size for higher 

values of α. The trapped bolus shrinks when it is moved from no slip to partial slip con-

dition, as shown in Figure 19. This is a common phenomenon that occurs due to decrease 

in shear forces as the slip length increases. 

Figure 13. Pressure rise per wavelength for different values of ξ.



Lubricants 2021, 9, 48 11 of 16

Lubricants 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 13. Pressure rise per wavelength for different values of ξ. 

 

Figure 14. Pressure rise per wavelength for different values of ϕ. 

 

Figure 15. Pressure rise per wavelength for different values of η. 

Another interesting occurrence of pumping ciliary flow called trapping is provided 

in Figures 16–19. Trapping is the formation of internally circulating bolus of fluid locked 

by streamlines of propulsive waves. This confined bolus is propelled forward along with 

the metachronal wave (power and recovery strokes). Figure 16 depicts that the trapped 

bolus reduces in size when large values of M are taken into consideration. This indicates 

a sufficient decrease in the flow as the magnetic field increases and happens due to the 

strengthening of resistive Lorentz force. Figure 17 is plotted to see the stream pattern at 

different cilia length parameter ε. The figure indicates that the bolus size increases as ε 

increases. This behavior indicates the significant role of cilia structure in flow augmenta-

tion. From Figure 18, it is concluded that the trapped bolus expands in size for higher 

values of α. The trapped bolus shrinks when it is moved from no slip to partial slip con-

dition, as shown in Figure 19. This is a common phenomenon that occurs due to decrease 

in shear forces as the slip length increases. 

Figure 14. Pressure rise per wavelength for different values of φ.

Lubricants 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 13. Pressure rise per wavelength for different values of ξ. 

 

Figure 14. Pressure rise per wavelength for different values of ϕ. 

 

Figure 15. Pressure rise per wavelength for different values of η. 

Another interesting occurrence of pumping ciliary flow called trapping is provided 

in Figures 16–19. Trapping is the formation of internally circulating bolus of fluid locked 

by streamlines of propulsive waves. This confined bolus is propelled forward along with 

the metachronal wave (power and recovery strokes). Figure 16 depicts that the trapped 

bolus reduces in size when large values of M are taken into consideration. This indicates 

a sufficient decrease in the flow as the magnetic field increases and happens due to the 

strengthening of resistive Lorentz force. Figure 17 is plotted to see the stream pattern at 

different cilia length parameter ε. The figure indicates that the bolus size increases as ε 

increases. This behavior indicates the significant role of cilia structure in flow augmenta-

tion. From Figure 18, it is concluded that the trapped bolus expands in size for higher 

values of α. The trapped bolus shrinks when it is moved from no slip to partial slip con-

dition, as shown in Figure 19. This is a common phenomenon that occurs due to decrease 

in shear forces as the slip length increases. 
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Another interesting occurrence of pumping ciliary flow called trapping is provided in
Figures 16–19. Trapping is the formation of internally circulating bolus of fluid locked by
streamlines of propulsive waves. This confined bolus is propelled forward along with the
metachronal wave (power and recovery strokes). Figure 16 depicts that the trapped bolus
reduces in size when large values of M are taken into consideration. This indicates a sufficient
decrease in the flow as the magnetic field increases and happens due to the strengthening of
resistive Lorentz force. Figure 17 is plotted to see the stream pattern at different cilia length
parameter ε. The figure indicates that the bolus size increases as ε increases. This behavior
indicates the significant role of cilia structure in flow augmentation. From Figure 18, it is
concluded that the trapped bolus expands in size for higher values of α. The trapped bolus
shrinks when it is moved from no slip to partial slip condition, as shown in Figure 19. This is a
common phenomenon that occurs due to decrease in shear forces as the slip length increases.
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From Figure 20, it can be concluded that extended cilium can exert more force to
hasten the fluid flow, which causes an elevation in shear stress at the flexible channel wall.
Figure 21 depicts that shear stress considerably declines in the presence of high partial slip
effects at the ciliated boundary. Moreover, the shear stress is high in the deep channel zone
as compared to its edge portion. Figure 22 is sketched to show the wall shear stress for
various values of eccentricity parameter α. The higher values of α show the elasticity of
the cilia structure. The figure shows a clear increase in the shear stress as α increases. Since
it was already evident from Figure 5 that higher α supports the fluid velocity; therefore,
it is evident that the wall shear forces must increase with α. Figure 23 exhibits the shear
stress for varying values of time relaxation parameter φ. The figure indicates a significant
development of shear stress at the wall since the parameter φ is directly proportional to the
wall shear stress.
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5. Conclusions

A theoretical study revealing the significance of the electric field, magnetic field, and
velocity slippage in pumping ciliary flow of Prandtl fluid is investigated in a symmetric
ciliated channel. The flow is generated due to rhythmic (metachronal) waves of beatings
of cilia. After employing lubrication approximations, governing equations are solved by
perturbation technique. The following conclusions are from the study:

• For large values of Hartmann number, cilia length, electro-osmotic and eccentricity
parameter, axial velocity decreases at the channel center and increases near the ciliated
wall region.

• The Helmholtz–Smoluchowski velocity supports the fluid augmentation if applied in
the direction of flow stream.

• In the core region, a considerable elevation in the pressure gradient is obtained for
the small values of the slippage parameter and the large values of cilia length and
eccentricity parameters.

• A more elevated pressure gradient is seen (for large values of electro-osmotic parame-
ter) in the contracted channel zone than in the wider part of the channel.

• A pressure rise per wavelength is an increasing function of cilia length and pertur-
bation parameter in the pumping region and shows the opposite behavior in the
augmented pumping region.

• The pressure rise is an increasing function of the velocity slip parameter and Prandtl
fluid parameter (η) in the augmented pumping region and a decreasing function in
the pumping region.

• Shear stress at the ciliated wall surface increases when large values of the cilia length
and small velocity slip parameters are considered.

• Shear stress becomes stronger for higher values of the eccentricity of cilia.
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