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Abstract: When an elastomer approaches or retracts from an adhesive indenter, the elastomer’s
surface can suddenly become unstable and reshape itself quasi-discontinuously, e.g., when small-
scale asperities jump into or snap out of contact. Such dynamics lead to a hysteresis between approach
and retraction. In this study, we quantify numerically and analytically the ensuing unavoidable
energy loss for rigid indenters with flat, Hertzian and randomly rough profiles. The range of adhesion
turns out to be central, in particular during the rarely modeled approach to contact. For example,
negligible traction on approach but quite noticeable adhesion for nominal plane contacts hinges on
the use of short-range adhesion. Central attention is paid to the design of cohesive-zone models for
the efficient simulation of dynamical processes. Our study includes a Griffith’s type analysis for
the energy lost during fracture and regeneration of a flat interface. It reveals that the leading-order
corrections of the energy loss are due to the finite-range adhesion scale at best, with the third root of
the linear mesh size, while leading-order errors in the pull-off force disappear linearly.

Keywords: adhesion; cohesive zone model; hysteresis

1. Introduction

Adhesion between solid bodies plays an important role in nature and technology.
Usually, it is strongly suppressed due to the presence of roughness [1,2], which exists even
for highly polished surfaces. However, when one of the two solid bodies is very compliant
and both are smooth, adhesion can become noticeable at relatively large scales and be
exploited technologically [3].
The optimization of adhesive structures can certainly benefit from modeling adhesion,
which, however, is not always a trivial task. One difficulty is that adhesion tends to be
very short ranged, which leads to stiff differential equations to be solved when describing
a structure at a coarse scale. A popular method to avoid singularities and to reduce the
stiffness of adhesive contact problem is to use so-called cohesive zone models (CZMs) [4–6].
They describe, usually in analytical form, how the traction depends on the local separation
between two surfaces. CZMs are commonly stated and used for a given pair of surfaces
irrespective of the scale to which the surface is discretized.

Traditionally, CZMs [7] are constructed in a top-down fashion, i.e., surface energy
γ and Tabor parameter µT, a measure for the range of adhesion, are determined at an
intermediate length scale, and the parameters of a given CZM are adjusted such that
a desired pull-off stress is produced. It was shown for adhesive Hertzian contacts that
details of the functional form of CZM’s do not significantly affect how contact area and
displacement and thus the pull-off stress change as a function of normal load, as long as γ
and µT are matched [8].

Only few attempts have been made so far to construct CZMs from the bottom up [9,10].
This includes the systematic elimination of small-scale random roughness features leading
to a reduction of surface energies and an increase in the interaction range with respect
to the interatomic potentials [11,12]. While the stiffness of the mathematical problem
is certainly substantially alleviated by such coarse graining for most nominally plane
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surfaces, the traction laws to be used may remain rather short ranged for adhesive system,
for which random roughness does not substantially reduce the surface energy below the
typical values of O(100) mJ/m2. The desirable coarse of action may then remain to model
adhesion as being as short-ranged as needed but as long-ranged as possible.

Using CZMs that reflect the microscopic short range of adhesion realistically either
requires a fine discretization or induces unrealistic force-displacement dependencies [13].
When the grid is not sufficiently fine, jump-in or snap-out dynamics usually suffer from
unacceptably large errors, e.g., the pull-off force and work of separation can be largely
overestimated [14]. A frequent solution to this problem is a mesh refinement in the zone
of interest, which, however, implies a low computational efficiency. Unfortunately, there
does not appear to be a generally accepted or well tested rule for how to best select the
mesh. When it cannot be made very fine, the most common way to proceed is to reduce the
surface energy, whereby realistic traction forces [4,15–20] can be obtained. However, it is
doubtful that this is the best course of action, since the simulation of dynamical processes
requires the total energy balance to be accurate and not only the traction at the contact
edges. Underestimating surface energy in the contact region, where the mesh is coarse,
destroys that balance.

In this work, we propose a rule for how to select the mesh size for a given CZM,
and more importantly, we provide a recipe for how to redesign it such that it provides
accurate force-displacement dependencies if the mesh size cannot be made arbitrarily small.
Towards this end, we focus on the case of a smooth flat elastomer in contact with a rigid,
flat, smooth indenter with adhesive interaction as the most basic model. A central goal is to
construct a CZM in which the energy hysteresis occurring in a compression-decompression
loop are as accurate as possible. Much of the underlying analysis re-investigates the
question how, or, rather when originally flat, soft-matter surfaces become unstable on
approach to a flat adhesive counterface before making contact [21,22]. This in turn brings
us to another issue, which has been discussed surprisingly little, namely, whether a CZM
reproduces not only retraction but also approach realistically.

It is easily found, as in this contribution, that a Tabor parameter of µT = 1 is sufficiently
large to produce a load-displacement curve in contact similar to that obtained in the limit of
infinitesimally short-range adhesion, which was solved by Johnson, Kendall, and Robertson
(JKR) [23]. However, the approach is scarcely ever explored, although it is decisive for
the unavoidable hysteresis that ensues as a consequence of the difference between the
approach and the retraction curve. In a study addressing a full approach and retraction
cycle of an adhesive Hertzian indenter, Ciavarella et al. [24] found that the energy loss
is substantially reduced by finite Tabor parameters µT compared to the idealized case
of zero-range adhesion, e.g., for µT = 5 by almost a factor of two and by still O(20%)
for a Tabor parameter as large as µT = 50. This latter value would be characteristic of a
soft-matter interface with the following order-of-magnitude specifications: local radius of
curvature of 100 nm, surface energy of 100 mJ/m2, interaction range 4 Å, and a contact
modulus E∗ of 10 MPa. Based on this ballpark estimate, it appears as if most soft-matter
systems are locally sticky, even if typical surface roughness at large wavelength destroys
that stickiness at macroscopic scales [11,25,26]. Rather than simulating such interfaces with
µT = 50, it might be desirable to run simulations with much smaller µT and to extrapolate
to the desired µT, which may often be approximated as infinity. While Ref. [24] certainly
contains implicitly a recipe for this interpolation, it is neither explicitly stated nor is it clear
if it extends to geometries beyond parabolic tips. Thus, one purpose of this work is to
explore how to extrapolate numerical results for adhesive losses to short ranges.

The reminder of this paper is organized as follows: The model and the computational
method are presented in Section 2. Section 3 contains analytical and numerical approaches
to the contact between two adhesive, originally flat adhesive surfaces, including a guideline
for the construction of scale-dependent CZMs. While none of the analytical results might
be new, we obtain them from “first-principles” without making direct use of linear fracture
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mechanics. The guidelines identified for smooth surfaces are then applied to uneven
indenters in Section 4. Conclusions are drawn in the final Section 5.

2. Model and Method
2.1. Model

We consider an adhesive, flat, linearly elastic, semi-infinite elastomer interacting with
a rigid indenter. The center-of-mass of the elastomer’s bottom surface, u0, is gradually de-
creased from a large positive value, clearly exceeding the characteristic length of attraction,
to a value, where elastomer and indenter repel each other and then increased again back to
its original value. The internal degrees of freedom, as denoted by u(r) in real space or by its
Fourier transform ũ(q), are allowed to take arbitrary values except for the center-of-mass
mode u0 = ũ(0), see Figure 1. The elastic energy to deform the (surface of the) elastomer is
given by

Vela = A ∑
q

qE∗

4
|ũ(q)|2, (1)

where E∗ is the elastomer’s contact modulus and q is the magnitude of q = (qx, qy). The
square domain has an area of A = L2, where L is the system’s linear dimension. The central
image is repeated periodically in x and y direction,

elastomer

substrate

approach

u
0

z

x

Figure 1. Schematic illustration of the computational model. The elastomer is moved relative to a
rigid indenter such that the center-of-mass position of the elastomer’s lower surface is constrained
to a (time-dependent) value. The remaining internal degrees of freedom are allowed to relax to a
configuration minimizing the total (potential) energy.

The default geometry of the rigid indenter is flat, however, uneven surfaces are
considered as well. The xy-plane is located such that it cuts through the indenter’s highest
point. The contact between elastomer and indenter is frictionless. Furthermore, the
interfacial energy per simulation cell is defined as

Vint =
∫

A
d2r γ(r) (2)

with the interfacial energy density given by, for example, a relation inspired by the
Morse potential

γM(r) = γ
[
e−2{g(r)−ρ0}/ρ − 2 e−{g(r)−ρ0}/ρ

]
, (3)

where γ is the (maximum) surface energy, ρ the decay length of the adhesion, and ρ0 the
equilibrium separation between indenter and elastomer. The latter is set to ρ0 = 0, since it
constitutes only an offset, which can be deemed irrelevant in a continuum treatment. The
function g(r) = u(r)− h(r) indicates the gap or interfacial separation between elastomer
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and indenter as a function of the in-plane coordinate r = (x, y), where h(r) states the shape
of the indenter. For a flat indenter, h(r) ≡ 0.

The original rationale for the choice of this particular interaction law, which is also
known as Morse potential, was as follows: An exponential attraction as cohesive zone
model was reported to yield smooth responses [27,28]. For reasons that should become
obvious later in this work, we want the interaction to be at least twice differentiable so
that a hard-wall repulsion is no option. The Morse potential is then beneficial, because
the repulsive stress can be computed by squaring the exponential function exp{−g(r)/ρ}
without having to evaluate another exponential. Moreover, the curvature in the energy
minimum is relatively modest (which is beneficial for simulations). Finally, it is relatively
easy to change the interaction range by replacing ρ with a different value, without having
to reparametrize the prefactor γ.

Alternatively, it would have been possible to use, for example, a m− n Mie potential,

γMie(g) = γ
m n

m− n

{
1
m

(
g
ρ

)−m
− 1

n

(
g
ρ

)−n
}

with m > n > 0 being real numbers. The Mie potential is sometimes misleadingly said
to be a generalization of Lennard–Jones, however, Mie [29] introduced his potential more
than two decades before Lennard–Jones [30]. An effective 8− 2 Mie potential between
surface points ensues from Lennard–Jones interactions between two semi-infinite bodies
within the Derjaguin approximation [31].

Since both considered potentials have the property that repulsion decreases more
quickly with distance than attraction, they should lead to qualitatively similar behavior,
just like other potentials with that property. However, moderate changes in the adhesion
law can still affect some computed properties quite substantially. This is why some thought
should be spent on the choice of the potential. If the goal is to construct a CZM starting
from the atomic scale, a properly constructed Mie potential would be a good candidate,
in particular if the adhesion arises mainly from dispersive or van-der-Waals forces. If,
however, the mesh-elements are more than a few microns in size, the CZM should reflect
the proper contact mechanics of the underlying microscopic (random) roughness and the
functional form be chosen accordingly. As we find in preliminary simulations of adhesive,
randomly rough surfaces, these CZMs can be similar to the Morse potential, as they can
be well described by a difference between two exponentially decaying functions. In fact,
a purely repulsive, non-overlap constraint between an elastomer and a randomly rough
surface effectively leads to an exponential between the two surfaces [32,33]. If, however,
the goal is to reach the continuum limit as quickly as possible, yet different choices are
possible, e.g., the one introduced later in Equation (31).

For the simulations on ideally flat surfaces in this study, we decided to use the Morse
potential. In hindsight, we could argue that this was done to represent the formation and
the detachment of a randomly rough surfaces at a coarse scale. Two properties of the Morse
surface-energy density are needed in the remainder of this article. First, the maximum
tensile traction, i.e., the maximum of the first derivative of the r.h.s. of Equation (3). It
is given by σmax = γ/(2ρ) and located at an interfacial separation of g = ρ ln 2. Second,
the negative minimum curvature, which can be deduced to be κmax = γ/(4ρ2). It occurs
at an interfacial separation of g = ρ ln 4. Moreover, note that the radius of curvature of
a flat contact is formally infinite (at least in the limit L → ∞) so that the (usual) Tabor
parameter can be said to diverge automatically and thus the interaction to be short-ranged
irrespective of the numerical value of ρ.

2.2. Method

The system is displacement-driven rather than force-driven, i.e., depending on the
mean gap u0 between elastomer and indenter, the total potential energy

Vtot[g0, u(r)] = Vela[u(r)] + Vint[g0, u(r)] (4)
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is minimized by a structured or unstructured displacement field u(r). Minimization is
done using Green’s function molecular dynamics (GFMD) [34], in which the elastomer
is discretized into (L/a0) × (L/a0) square elements, a0 being the linear discretization
so that the number of grid points in x and y direction are identical nx = ny = L/a0.
The Fourier transforms ũ(q) are used as the dynamical degrees of freedom. Here, we
employ the so-called mass-weighting GFMD variant as described in Ref. [35], because of
its high convergence rate. The basic idea of mass-weighting is to assign inertia to each ũ(q)
mode such that the system’s intrinsic frequencies collapse as well as possible. This can
be achieved by choosing the inertia roughly inversely proportional to q. The equations of
motion were augmented with a thermostat as described in Ref. [36], in order to introduce
small, symmetry breaking perturbations to the displacement field. The thermal noise
induces a quicker transition from an unstructured displacement field, u(r) ≡ const, to a
structured one than round-off errors. The thermal energy is chosen to be very small so that
it does not significantly assist the elastomer to overcome energy barriers. It is yet large
enough to make the elastomer quickly “realize” when a displacement field is no longer
stable against a small perturbation.

The mean gap, or in the case of Hertzian indenter, simply the displacement, is moved
quasi-continuously using a ramp, which in most cases, was realized as follows: For
50 time steps, u0 is changed over a small quantum ∆u0. The system is then relaxed
over typically 150 additional time steps. In most cases, this is sufficient to closely approach
the next stable or metastable configuration. For a 512 × 512 system, one increment in
average displacement then takes a little less than 1.5 s using our house-written GFMD
code on a single core of a 1.6 GHz Intel Core i5 processor. For larger systems, the number
of necessary time steps to be done per ∆u0 does not increase with system size due to the
mass-weighting procedure.

3. Patterns and Instabilities in Periodically Repeated, Flat, Adhesive Contacts

Adhesion is known to lead to instabilities when two surfaces approach each other. The
arguably simplest description of an adhesive instability was proposed by Tomlinson [37],
who assumed atoms to be bonded to their lattice sites by springs of stiffness k. As a
surface atom approaches a counterface, the position of the atom becomes unstable when
the negative curvature of the atom-surface interaction exceeds k, in which case, the atom
jumps into contact. On retraction, the inverse jump occurs at an increased separation
between the equilibrium site and the counter surface, so that hysteresis and thus energy
dissipation results.

It is now well known that Tomlinson’s model is not sufficiently refined to describe
adhesive hysteresis. Its simplest valid description was proposed by Johnson, Kendall,
and Robertson (JKR) [23]. In their solution of short-range adhesion in Hertzian contact
geometries, jump to contact occurs at a zero load, but breaking the same contact on
retraction requires the tensile load and the work of adhesion to be finite.

In a tribological context, surprisingly little attention has been paid to flat, adhesive
interfaces, unless they are nominally flat, with true contact occurring only in isolated
patches [38–41]. For surfaces in which microscopic roughness is not significant, previous
studies [42,43] reveal that adhesive instabilities are easily triggered in the presence of a
cohesive traction law, as to be expected from the JKR model in the limit of infinite radii
of curvature. Yet, little has been reported on the jump into and snap out of contact for
ideally flat adhesive surfaces, in particular when assuming periodic boundary conditions.
In this section, we will be concerned with this question, not only for academic reasons
(periodic boundary conditions do not exist in reality), but because this analysis gives clear
cues on how to select mesh sizes and how to meaningfully modify CZMs when the mesh
size cannot be made arbitrarily small. Towards this end, we use typical energy balance
arguments, as originally done by Griffith [44] in the context of cracks and later by Maugis
and Barquins [45] in the context of peeling, to describe the force-stress relations in certain
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asymptotic limits, while simulations are needed to properly describe those relations near
instability points.

Figure 2 shows the stress-displacement relation for a contact described by the two
dimensionless numbers L/ρ = 256 and γ/(E∗ρ) = 0.15 along with patterns—as defined
by the topography of the elastomer’s surface—that arise as stable or metastable solutions.
At very large separation, ideally flat surfaces are stable as shown in the inset (a) of Figure 2.
When approaching the indenter, the flat configuration becomes suddenly unstable, and a
circular bulge, see inset (b), is formed. Upon further reduction of the mean gap, the bulge
turns into a line ridge, depicted in inset (c). Next, the ridge develops into a dimple, as
shown in inset (d). Finally, the elastomer’s surface flattens out again at close approach as
revealed in inset (e).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
u0 / ρ

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

σ in
t / 
σ m

ax

(a) flat

(b) circular bulge

(c) line ridge

(d) circular dimple

(e) flat

Figure 2. Mean stress (normalized to the maximum adhesive strength) as a function of mean
displacement (in units of the interaction range) during approach (blue, upper solid curves) and
retraction (red, lower solid curves). Four gray regions indicate the energy loss. The square insets
show representative local, interfacial gaps on different branches, which increase from red to orange to
yellow to blue to black. Solid and dashed red arrows indicate instabilities on approach and retraction,
respectively. The dashed line indicates the stress-displacement relation for a flat elastomer.

All transitions shown in Figure 2 are reversible, but discontinuous and thus hysteretic:
upon retraction of the elastomer, the patterns reverse, however, at a larger mean gap than
during contact formation. The areas between approach and retraction curve in the stress-
displacement relation corresponds to the dissipated surface energy. In contrast to ordinary
visco-elastic losses, the lost energy depends very weakly on the velocity u̇0 at small u̇0,
see also Refs. [41,46,47] linking adhesive losses to (small-scale) instabilities rather than to
visco-elastic effects. Since our simulations are thermostatted to a very small temperature, a
minor logarithmic rate dependence of the lost energy with tiny prefactors is obtained.

Note that the patterns shown in the insets of Figure 2 occurred at random locations of
the simulation cell. However, they were moved to the center of the graphs for aesthetic
reasons. Note also that the line ridge is formed parallel to x with the same probability as to y,
however, it was never observed to form along the diagonal. To represent ridges consistently,
we represented them parallel to y. Figure 3 depicts the approach-retraction curve for a
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system, in which γ was kept the same as before, but L was increased to L = 1024 ρ, i.e., to
four times the linear dimension of the system represented in Figure 2.

(a) flat

(b) line ridge

(c) circular dimple

(d) flat

0 1 2 3 4 5 6 7 8 9
u0 / ρ

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

σ in
t / 
σ m

ax

Figure 3. Similar to Figure 2, however, for a linear system size of L = 1024 ρ.

While surface patterns and instabilities show similarities for the two different system
sizes, notable differences can be observed: in the larger system, the circular bulge has
disappeared and instabilities span a broader range in the interfacial displacement than
before. In addition, the energy hysteresis per unit area, γhys =

∮
du0σ(u0), has grown by a

factor close to 4, which means that the total lost energy is still far from a linear scaling with
system size for the used appropriate dimensionless numbers describing our system.

In the remaining part of this section, we attempt to rationalize and to quantify the
differences for the different system sizes. This is done by two means, first by exploring
a harmonic approximation around the stable or metastable, undeformed elastomer. This
analysis provides a first guideline for how to set the minimum value for the range of
adhesion in a cohesive-zone model-based (peeling) simulation. Second, an energy analysis
of the characteristic defect pattern is performed similarly to the traditional Griffith analysis.
Ref. [23], however, adopted to periodically repeated domains. As a word of honesty, we
must confess that we cannot fully judge to what extent Griffith theory of brittle fracture is
simply “reinvented” in some of the following calculations, as we even find text books on
that matter somewhat difficult to follow. If it is a reinvention, we hope to have provided an
alternative derivation, which is easier to digest than common treatments of that matter, in
particular because our treatment is based entirely on the (Fourier) stress-strain relation and
does not necessitate any prior knowledge of linear fracture mechanics.

Before proceeding to the theoretical analysis, a few words of clarifications might still
be in place. First, it is important to note that controlling the center-of-mass of the layer
facing the indenter is impractical experimentally, due to the finite (combined) compliance
of the elastomer and the loading apparatus. However, to know the (possible values or
range of values of the) traction at a given separation between two (coarse-grained) surface
elements, we need to constrain their fully resolved structure at that separation. This why
we opted not to run our simulations in a force-controlled fashion. Second, much of what is
done in the remaining theoretical section relates to existing literature on configurational
instabilities occurring during contact formation [21,22] or delamination [48]. However, we
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felt the need to have a coherent description of the various patterns, which is adopted to the
surface interactions assumed in this work. At the same time, we explore immediately what
can be learned from this analysis for (a) the construction of CZMs and (b) the correction
of energy hysteresis from simulations using relatively long-range CZMs to short-ranged
CZMs. Last but not least, analyzing how the choice of µρ affects the result often addresses
two questions at the same time. (a) Is µρ an appropriate choice under the assumption that
we aim to model short-range adhesion? (b) How does the range of adhesion affect the
system? In this sense, the circular bulge pattern observed in the small simulation cell can
be said to have arisen as an artifact or as a consequence of finite-range adhesion.

3.1. Harmonic Approximation

At mean gaps, where an undeformed surface is the only stable solution, any deviation
of the function u(x, y) from u(x, y) ≡ u0 is counteracted at fixed u0 by a restoring force.
For small perturbations, γ(r) and therefore also Vint[u(r)] can then be expanded as a
second-order Taylor series in the displacement, so that the total excess energy w.r.t. a flat
surface reads

∆Vtot =
A
2 ∑

q,q 6=0

{
γ′′(u0) +

qE∗

2

}
|ũ(q)|2 +O(δu3). (5)

Thus, when γ′′(u0) is negative, the harmonic approximation cannot be maintained if
there exists a non-zero wave vector whose magnitude is less than the critical wave number

qc(u0) ≡ −2γ′′(u0)/E∗. (6)

In other words, if the linear dimension of a periodically repeated cell exceeds a
critical length

Lc = 2π/qc, (7)

the surface will deform spontaneously in response to a tiny perturbation of appropriate
symmetry.

For fixed system size, two critical separations (may) result. For the used Morse
potential, these can be evaluated to

uc = −ρ ln

1
4
± 1

4

√
1− 4πρ2E∗

γ L

. (8)

Thus, for linear system sizes less than the critical size Lc = 4πρ2E∗/γ, the undeformed
surface can remain (meta) stable at any separation and instabilities can be avoided, even if
configurations with lower potential energy may exist. Figure 4 confirms that the just-made
analytical calculations are consistent with the results of GFMD simulations.

3.1.1. Scale-Dependent Cohesive Zone Models

How do the just-obtained results relate to the construction of cohesive-zone models?
Assume that a system is discretized to an in-plane linear dimension of a0. If ρ were much
less than the critical value below which a periodically repeated cell of length a0 adopts
internal defects, then a proper representation of the defect structure (e.g., a peeling front)
cannot be represented. Subsequently, the energy required for the peeling process would be
much too large. If, however, ρ were much in excess of the critical value, then the adhesion
would become long ranged and potentially too long-ranged for a given purpose, e.g., if
a system had (microscopic) roughness, or the tape to be peeled were very thin. In that
case, the force required to peel the system might be underestimated. This means that the
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optimum choice for the mesh size, or, alternatively, the choice of the optimum range of
interaction, should satisfy

ρ &

√
γ ∆a

4π E∗
(9)

in the case of Morse potential.
For a general CZM, the just-proposed criterion could also be formulated as

min
{

γ′′(u)
}
= −µ2

ρ ·
E∗

∆a
, (10)

where µρ should be a constant of order unity. The precise optimum value for µρ will depend
on the specific functional form of the CZM, however, we do not expect a great sensitivity
for reasonable choices. In the case of the Morse potential, Equation (10) translates (back) to

ρ =
1

2 µρ

√
γ∆a
E∗

. (11)

83 128 256 512 1024 2048

L / ρ

0

1

2

3

4

5

6

u
c
 /

 ρ

Figure 4. Critical separations at which an undeformed, flat surface becomes unstable. The upper
(black) and the lower (red) branch relate to approach and retraction, respectively. Circles show GFMD
simulation results, while lines reflect Equation (8).

3.2. Griffith-Based, Continuum Approach

In this section, we identify some traction-displacement relations for mechanically
stable or meta-stable, non-constant displacement fields. Thus, we attempt to minimize the
total energy

Vtot = Vela + Vint + Vext (12)

with respect to the displacement field, which contains an “external energy” Vext in addition
to the elastic and interaction energies, which have already been introduced. Vext is the
energy gained in response to an external load, including gravitational loads, i.e.,
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Vext = −pext u0 A
= p u0 A,

(13)

where the external pressure pext plays the role of a Lagrange parameter, which is adjusted
such that the desired mean displacement u0 is an extremum of the total energy. The pressure
p exerted from the indenter has the opposite sign of pext, but is equal in magnitude.

In order to proceed analytically, adhesion is considered to be infinitesimally short-
ranged, so that

Vint = −γ Ac, (14)

where Ac is the real contact area.
In the following treatment, we will minimize the total energy per area. A lower-case

letter v (with varying indices, i.e., ela, ext, int, and tot) will indicate that the pertinent
energy is re-expressed as a surface energy density. Moreover, a periodically repeated
square domain of length L will be assumed.

Since elasticity is a scale-free theory, in which energy increases quadratically with the
displacement, and adhesion is considered to be infinitesimally short ranged, the mean total
energy density of a given defect pattern must be of the form

vtot =
E∗u2

0
L

v̂ela(α) + p u0 − γ â(α), (15)

where αL is the linear dimension of the non-contact with 0 < α ≤ 1 so that α L would be,
for example, the diameter of a dimple, Moreover, v̂ela(α) is a dimensionless function of α,
while â(α) denotes the relative contact area, i.e.,

â(α) =


π (ᾱ/2)2 (bulge)
ᾱ (ridge)
1− π (α/2)2 (dimple)

, (16)

where ᾱ ≡ 1− α is the linear dimension of a contact patch in units of L.
The non-trivial part of the calculation is the determination of the function v̂ela(α).

Asymptotic analytical solutions for some defect patterns are derived in the appendix for
α→ 0 and α→ 1. They can also be determined numerically in adhesion-free simulations,
as described further below. For the moment, we simply assume the function v̂ela(α) to exist
and to be differentiable.

For any stable solution, both u0 and α must minimize the mean energy density, which
is why the partial derivatives of vtot with respect to these two variables must be equal to
zero. Thus,

v̂′ela(α)

â′(α)
=

γ L
E∗u2

0
(17)

p = − 2 E∗ u0

L
v̂ela(α) (18)

in mechanical equilibrium. A consequence of Equation (17) is the existence of a maximum
(or minimum) displacement u0 if the l.h.s. of Equation (17) has a minimum (or maximum).

Defining Ξ̂(...) such that α = Ξ̂{v̂′ela(α)/â′(α)} and inserting the resulting value of α
into Equation (18) yields

p̃ = −2 ũ2
0 v̂ela

{
Ξ̂
(

ũ−2
0

)}
, (19)

after expanding the fraction with u0/γ. Here, we used
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ũ0 =
u0√

γL/E∗
(20)

p̃ =
p

γ/u0
. (21)

Thus, for any defect pattern, there is a unique shape of the p(u0) dependence in the
continuum limit, which is obtained by expressing u0 in units of

√
γL/E∗ and p in units of

γ/u0.
The most important missing ingredient to identify the stress-displacement relation

summarized in Equation (19) is the determination of the dimensionless function v̂ela(α).
For its numerical determination, we proceeded as follows: For a given defect pattern and a
given fixed value of α, contact points were defined and constrained to a zero displacement.
The energy is minimized with respect to the unconstrained displacement field under a
given external pressure pext. In the last step, Vela and u0 are determined from u(r). This was
done for different discretizations, which allowed us to perform a Richardson extrapolation
of the two observables of interest to the continuum limit for each value of α.

In the remaining part of this section, we will present our numerical results on v̂ela(α)
and compare them to asymptotic results wherever appropriate, as well as with simulation
results that were obtained with finite-range adhesion. Since an accurate determination of
Ξ(ũ−2

0 ) turned out to be very labor intensive, we decided to abstain from this exercise for
now.

3.2.1. Line Ridge

The line ridge is considered first and with a greater level of detail than the other
patterns, since it allows peeling to be studied in the most straightforward fashion. Periodic
boundary condition makes the simulation cell have two peeling fronts, which are mirror
images of each other.

Two possible asymptotic limits arise, namely a thick ridge with a localized “line crack”
as defect pattern for α → 0 and a thin contact ridge for α approaching unity from below
as closely as possible. For each limit, it is possible to identify a closed-form analytical
expression for v̂(α):

v̂ela(α) =

{
2

π α2 (thick line ridge)
π

−4 ln(πᾱ)+8c (thin line ridge)
(22)

with c = 0.3079(7). These two expressions are derived in Appendices A.1 and A.2. Figure 5
reveals that the analytical results for v̂ela(α) are consistent with GFMD data.

As mentioned before, u0 has extrema (and thus end points) when the l.h.s. of
Equation (17) has an extremum. Since â′(α) = −1 for a line ridge, an endpoint of u0(α)
coincides with an extremum in v̂′ela(α). Since v̂′ela(α) is monotonic at small α, no unstable
point exists in the continuum solution for thick line ridges. Thus, the instabilities in the
GFMD simulations toward the formation of dimples can only have arisen due to adhesion
having been modeled with a finite range. The power-law relation

α =

(
4E∗u2

0
πLγ

)1/3

, (23)

is easily deduced in the α→ 0 thick-ridge limit, which turns out to be quite accurate even
up to α . 0.7, as evidenced in Figure 6.

In contrast to the thick-line-ridge limit, the thin-line-ridge asymptote does have
a critical value αc, at which v̂ela(α) has zero curvature. It is located at αc ≈ 0.92(0).
Although the thick-line-ridge limit appears to match αc quite well, it fails to produce a truly
satisfactory p(u0) dependence, because the first and the second derivative are not quite as
accurate as v̂ela(α) itself.
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Figure 5. Dimensionless elastic energy v̂ela(α) for a line ridge as a function of 1− α. Symbols show
GFMD results. The red and blue lines reflect the α → 1 and α → 0 asymptotics respectively. Inset:
v̂′ela(α) in the vicinity of its maximum. The orange line shows a third-order polynomial of α.
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Figure 6. Comparison of the α(ũ0) dependence obtained with GFMD to the asymptotic thick-ridge
(blue line) and critical point (orange line) solutions.

In order to obtain a more precise estimate for the asymptotic thin-ridge behavior before
the instability to flattening, GFMD calculations of the reduced elastic energy were refined in
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the vicinity of αc. The following results were deduced, which allow that “critical behavior”
to be characterized: αc = 0.90(9), v̂c ≡ v̂ela(αc) = 0.420(4), v̂′c ≡ v̂′ela(αc) = −2.2(6), and
v̂′′′c ≡ v̂′′′ela(αc) = −1.4(5)× 102. Thus, near the flattening transition, Equation (17) reads

− v̂′c −
v̂′′′c
2
(α− αc)

2 =
1
ũ2

0
, (24)

in leading order, which can be easily solved for α(ũ0). Just before the flattening instability,
a critical separation of ũc = 1/

√
−v̂′c ≈ 0.665(6) is reached.

The final analytical step is to insert the two analytical α(u0) dependencies into
Equation (18). In the thick-line-ridge limit, this yields

p
E∗

= −
(

4γ2

πLE∗2u0

)1/3

, (25)

which reads
p̃ = − 3

√
4/π ũ2/3

0 (26)

in reduced variables. In the thin-line-limit, we obtain in leading order

p̃ = p̃c + p̃(1/2)
c
√

ũc − ũ0 (27)

with p̃c ≈ −0.393(7) and p̃(1/2)
c = −2/ũ

′′
c ( p̃c) ≈ −0.360(0).

Figure 7 reveals the correctness of our analysis. The larger system with fixed finite-
range adhesion reproduces the continuum solution more closely than the smaller system.
This includes a closer approximation of the end-points.
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Figure 7. Reduced pressure p̃ ≡ p/(γ/u0) as a function of reduced displacement ũ0 ≡ u0/
√

γ L/E∗

for different values of ρ̃ ≡ ρ/
√

γ L/E∗, i.e., for ρ̃ = 0.1614 (green, small circles) and ρ̃ = 0.0807 (red,
large squares). For these calculations, dimples were suppressed by making the cell in the y direction
infinitesimally thin. The full blue and the full orange line represent the thick-line and critical-point
asymptotics, respectively, while the dashed black line shows a direct numerical analysis of the GFMD
data from Figure 5.
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The continuum solution shown in Figure 7 is an overlapping superposition (con-
glomerate) of three different approaches: On 0 ≤ α ≤ 0.1 and on 0.6345 ≤ α ≤ αc the
thick-line-ridge asymptotic solution and the expansion about the flattening point are de-
picted, respectively. In addition, the GFMD data presented in Figure 5 were processed
numerically to yield results on 0.05 < α < 0.663. It agrees with the two shown approxima-
tions within line widths in the shown overlapping domains.

We now turn our attention back to a computational question central to this study. How
can we design a CZM such that it reproduces the p̃(ũ0) relation for zero-range adhesion as
accurately as possible for a given, fixed number of grid points? In Section 3.1.1, a scaling
relation was proposed towards this end, which is tested next. Figure 8 reveals that using
µρ & 0.5 induces instabilities and thus hysteresis on the p(u0) curve, which do not exist in
the continuum solution and which would disappear if ρ was kept constant but the mesh
was refined. For µρ . 0.5, instabilities disappear but only a relatively small part of the
line-ridge solution is stable for the given discretization of nx = 16.
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Figure 8. Reduced pressure p̃ as a function of reduced displacement ũ0 for a fixed mesh of nx = 16
grid points in x-direction. For these calculations, dimples were suppressed by making the cell in the
y direction infinitesimally thin. Different scaling parameters µρ determining the range of interaction
were used.

Despite visible discrepancies, the agreement between the exact solution and the one
obtained for µρ = 0.5 can be called surprisingly good, because the discretization of the
simulation cell into nx = 16 elements disposes only of eight independent, i.e., symmetry-
unrelated points to describe contact plus non-contact. They both have fields (stress and
derivative of displacement) that cannot be Taylor expanded upon. This makes a total
of four fields, which are numerically difficult to integrate, because the simulation cell
contains two peeling processes, plus the zones in between the diverging fields. Their
combined effect is reflected by merely 16 grid points. Anyone having applied numerical
integration schemes to such “poorly behaved” functions will thus certainly appreciate the
“performance” of the nx = 16, µρ = 0.5 simulation. Specifically, for µρ = 0.5, the line ridge
becomes unstable to flattening at ũ0 ≈ 0.15 for a thick ridge (dimples were suppressed by
using ny = 1 for the analysis of ridges) and at ũ0 ≈ 0.6 for a thin ridge. From Figure 6, it
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becomes obvious that non-contact is only about 30% of the simulation cell in the first case
and contact is only 20% of the simulation cell in the second. At that point, a simulation
effectively evaluates an integral over displacement (first case) or stress (second case) field
using only two to three integration points. Yet relative errors are relatively small. They
decrease quite substantially for all three studied choices for µρ when the linear mesh size is
reduced to half its value. Evidence for this claim is not shown explicitly, because the main
problem is the approach to contact rather than a proper description of p(u0) in contact, as
will be discussed further below.

3.2.2. Circular Defect Patterns

Since our main interest is the line ridge, we only sketch results for the two remaining
defect patterns. The dimensionless elastic energy for the two circular patterns satisfies

v̂ela(α) =

{
8√

3π α3 dimple, α→ 0
√

2(1− α)3/2 bulge, α→ 1.
(28)

Figure 9 shows the numerical results for v̂ela(α) of the two circular defects, including
their asymptotic behavior.
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Figure 9. Dimensionless elastic energy v̂ela(α) as a function of the relative, linear contact dimension
ᾱ for the dimple (red squares) and the bulge (blue diamonds).

Proceeding as above, the p̃(ũ0) is obtained as

p̃ = −(4ũ0/3)4/5 (29)

for the dimple. Figure 10 reveals that this asymptotic solution is approached as the (dimen-
sionless) range of adhesion is reduced.
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Figure 10. Reduced pressure p̃ as a function of reduced displacement ũ0 for different values of ρ̃.
i.e., for ρ̃ = 0.1614 (small, green circles) and ρ̃ = 0.0807 (large, red squares). The full blue and the full
orange lines represent the point-dimple and critical point asymptotics, respectively, while the dashed
black line shows a direct numerical analysis of the GFMD dimple data from Figure 9.

No stable solution exists for the bulge in the continuum limit, because an extremum
in vtot(α) is a maximum in α. Thus, the bulge in Figure 2 can only have arisen as a
consequence of the finite-range of the adhesion. This argument is supported by the bulge’s
disappearance in Figure 3, in which the (dimensionless) range of adhesion was reduced
compared to that used in Figure 2. It is also consistent with the observation that the
detachment process of a nominally flat surfaces (which can be roughly mimicked with—or
“coarse-grained” to—Morse-like potentials) frequently has one last contact patch in place
before the contact breaks.

3.3. Dissipated Energy

When two or more stable microstates coexist for a given collective degree of freedom,
quasi-discontinuous transitions between them occur when the collective degree is driven
externally. This is the mechanism by which multistability leads to instability and ultimately
to energy loss, which, as stated in Coulomb’s law of friction, predominantly depends on
the moved distances and much less on rates or velocities [37,49]. For Coulomb’s friction
law and related laws to be applicable, the motion has to be slow enough to prevent “basin
hopping” between the two stable “macro” states when they are similar in energy, but not
so fast that significant heating occurs. In this section, we calculate the energy hysteresis
arising from the multistability of non-contact and a line ridge.

In a first approximation, the stress can be approximated with zero as long as the
elastomer is flat. The approximation is exact for potentials with a true cut-off, as for
example, in the potential introduced later in Equation (31). When the range of adhesion is
very small, the elastomer turns directly to a thick line ridge upon approach, which happens
at the distance uc, nc, where the flat, non-contact solution becomes unstable. It is the larger
of the two solutions in Equation (8), that is, the one in which the minus sign is selected in
the parenthesis on the r.h.s. of that equation. Upon retraction, the elastomers flattens out
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again at the critical distance, uc,lr, where the line-ridge solution becomes unstable. Thus,
for short-range adhesion∮

du0 σ(u0) ≈
∫ uc,lr

uc,nc
du0 σlr(u0) (30a)

≈ 3
2

(
4γ2E∗

π L

)1/3

u2/3
0

∣∣∣∣∣
uc,r

u0=uc,nc

(30b)

≈ 3
2

αc γ− 3
2

(
4γ2E∗

π L

)1/3

u2/3
c,nc (30c)

(for Morse) ≈ 3 γ

2

{
αc −

(
2 ρ̃√

π
ln

2
πρ̃2

)2/3
}

. (30d)

is obtained in a cycle going from non-contact to line ridge and back to non-contact.
In a more refined calculation, the “integration constant” 3 αc/2 can be replaced with a

more precise value for the lost energy in the continuum limit. The latter is best obtained
by integrating (numerically) the p(u0) curve that is reconstructed from the reference line
shown in Figure 7. Moreover, a correction of vint(uc,nc)− vint(uc,lr) due to the gained energy
while approaching the counterface in non-contact must be subtracted from the dissipated
energy to yield accurate estimates.

The second term on the r.h.s. of Equation (30c) is the main correction to the dissipated
energy that arises by replacing a zero-range with a finite-range adhesion. Unfortunately,
convergence of the computed dissipated energy is rather slow. For CZMs with a true cutoff
gc linear in ρ, the error disappears with ρ2/3 and thus with ∆a1/3. For the Morse potential,
this scaling is further impeded by corrections logarithmic in ρ. GFMD data confirm these
conclusions in Figure 11.
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Figure 11. Normalized dissipated energy γh/γ as a function of the dimensionless range of interaction
ρ/ρ0 with ρ0 =

√
γL/(4πE∗). The red and black dashed lines show the theoretical line derived from

Equation (30c)—plus the contribution γ(uc,nc)− γ(uc,r) for the Morse potential. Circles and squares
indicate GFMD results for Morse potential and cosine potential, respectively. The blue line gives the
asymptotic value derived from the analysis of the dashed line in Figure 8.
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Since optimizing prefactors is particularly important when convergence is slow, it
may be desirable to use other CZMs than the one based on the Morse potential. For a CZM
used to study not only (quasi-) statics, as in this work, but true dynamics, an additional
requirement would be that the stress is a continuous function of the interfacial separation.
This is because (strongly) discontinuous forces or stresses, as they occur in many CZMs
at small gc [4,5,13,14,17], violate energy conservation even for a symplectic integration
scheme [50]. This in turn is likely to lead to undesirable dynamical artifacts, e.g., when
modeling reciprocating motion. A simple CZM avoiding discontinuous forces is:

γcos(g) = −γ×


0 for gc < g
1
2{1 + cos(πg/gc)} for 0 < g < gc{

1− (πg/gc)
2/2
}

for g < 0.
(31)

Figure 11 reveals that the alternative CZM converges to its asymptotic value more
quickly than the Morse potential. Even more importantly, extrapolation to short-range
adhesion can be achieved already at relatively large interaction ranges. This is mainly
because the alternative CZM lacks the corrections in the second term on the r.h.s. of
Equation (30d) that are logarithmic in ρ̃.

4. Application to Uneven Surfaces

In this section, we explore to what extent the insights gained for adhesive hysteresis
and the modeling of adhesive hysteresis in ideally flat contacts extend to uneven surfaces.
To this end, we simulate adhesive contacts with Hertzian and nominally plane indenters.
While our initial motivation for these simulations was to explore how the continuum limit
can be approached in the most effective way, it is also possible to look at these calculations
as if the used CZMs had arisen from integrating out the effect of small-wave-length surface
undulations, i.e., from wave lengths much less than either the contact radius in a Hertzian
contact geometry or less than the short wave length cutoff in the simulation on nominally
flat surfaces.

4.1. Application to Hertzian Contacts

We consider a Hertzian contact with radius of curvature Rc and contact modulus E∗,
which define the units for length and pressure, respectively. The interfacial energy density,
as defined in Equation (3), is assigned the value of γ = 0.59× 10−3 E∗ Rc. This choice
makes the critical contact radius at the pull-off instability be roughly 10% of the radius of
curvature, which was also used as the linear size of the periodically repeated simulation
cell. This way, the contact radius is small compared to half a cell dimension, so that the
periodic boundary conditions have a marginal effect on the contact, while, at the same
time, a Fourier-based code remains efficient. Using the definition of the Tabor parameter
µT as in Equation (8) of Ref. [51], the relation between µT and µρ is

µT = 2 µρ

(
γ

RcE∗

)1/6√
nx, (32)

which turns out to be µT ≈ 0.579 · µρ
√

nx for the used parameters. This relation is useful to
know for our later analysis. Moreover, we define the displacement such that a flat elastomer,
which touches the indenter in its most extreme point is assigned a (mean) displacement of
u0 = 0.

Figure 12 compares the displacement-driven force-distance dependence in approach
and retraction for different choices of µρ and varying mesh sizes ∆a = L/nx. Qualitatively
different types of behaviors are produced by using different numerical values for µρ in
Equation (11): (a) If µρ is small, i.e., less than 0.5, the only observed instabilities are
collective jump-into and jump-out-of contact. In this case, the hysteresis compared to
the exact solution is strongly underestimated at a coarse discretization, however, the true



Lubricants 2021, 9, 17 19 of 30

hysteresis is approached when increasing nx. (b) As µρ increases to values around unity,
small-scale instabilities occur, which are related to individual rings of (coarse-grained)
atoms. The correct hysteresis is still approached, because instabilities on the compressive
branch become smaller with increasing nx. (c) As µρ increases to 1.5, the computed
dissipated energy in a compression/decompression cycle starts to depend quite sensitively
on how far the system is compressed, e.g., if it is compressed to a zero displacement or to a
zero load. For µρ = 1.5, it is not clear if convergence to the continuum limit can be reached.
(d) For even larger µρ, small-scale instabilities dominate and both pull-off force, as well as
dissipated energy no longer converging to the correct values as the mesh size is decreased.
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Figure 12. Typical traction-separation curves for adhesive Hertzian indenters with different discretization nx and different
scaling factors µρ determining the range of interaction through Equation (11). (a) µρ = 0.5, (b) µρ = 1, (c) µρ = 1.5, and
(d) µρ = 2. The used cell dimension L was identical to the radius curvature Rc.

The results presented in Figure 12 resemble, to a significant degree, simulations of
contacts involving a curved ridge to which a single-sinusoidal undulation is added, see
Figures 5–7 in Ref. [46]. In those figures, the force-displacement relation also transits from
subtle perturbations of a smooth JKR dependence to violent zig-zag motion. Differences
are that our undulations arise from discreteness effects while those in Ref. [46] are due
to continuous undulations. Moreover, spacings between discontinuities are irregular in
our case but regular in Ref. [46], as our system is two-dimensional, in which case, rings
of discretization points have irregular spacings, which, moreover, become smaller and
smaller the greater the distance from the symmetry axis.

An interesting feature revealed in Figure 12 is that the JKR separation curve can be
approximated quite well with Tabor parameters as small as µT ≈ 1.6, as evidenced by
the nx = 32 curve in Figure 12a. In fact, for µT = 4, both the dependence of contact area
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and of displacement on load are almost indistinguishable from the exact JKR solution [8]
when using large nx but fixed µT. However, the approach curve is still relatively crude
even when the Tabor parameter is as large as µT ≈ 10, i.e., for the (nx = 256, µρ = 1) data
set shown in Figure 12b. This confirms a previous analysis by Ciavarella et al. [24], who
found a similar dependence of the hysteresis loop on the Tabor parameter as we do, e.g.,
approximately 50% “error” at µT = 5 as can be deduced from their Fig. 7.

To further discuss the ramifications of Figure 12, it is useful to know that the critical
contact radius in a load-driven separation is ac ≈ 0.1278 Rc for the parameters used,
which reduces to roughly half that value of ac ≈ 0.06315 Rc in a displacement-driven
separation. Thus, to obtain estimates within approximately 20% accuracy for pull-off stress
and dissipated energy density, the length into which the elastomer is discretized should not
exceed ac/10 for the given value of γ/E∗Rc = 0.5859× 10−3. This is a finer discretization
than for non-adhesive contacts, where we observe an error of order 10% in the normal
displacement for a linear mesh size of ∆a = ac/5.

We next quantify the effect of mesh size on the pull-off force Fpull and on the energy,
Vhys =

∮
du0F(u0), dissipated in a single c/d cycle. Due to the presence of micro-scale in-

stabilities during contact, Vhys does not have a unique value but depends on the maximum
displacement during the compression cycle. We chose it to be the displacement at which
the normal load, needed to keep the elastomer at a fixed center-mass, disappeared. In other
words, Vhys corresponds to be the gray-shaded areas in Figure 12 below the x-axis times
the maximum JKR tensile force to which Fpull was normalized. Results for Fpull and Vhys
are shown in Figure 13.
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Figure 13. (a) Maximum tensile force Fpull and (b) dissipated energy Vhys as a function of the mesh size ∆a. Fpull and Vhys

are normalized to the values deduced from the JKR solution, while ∆a is normalized to the critical JKR contact radius in a
displacement driven separation.

The adhesive Hertzian indenter shows similar behavior as the flat-on-flat geometry in
the following ways: the dissipated energy converges noticeably slower to its asymptotic
value than the pull-off force. The scaling factor µρ has to be sufficiently small in order for
convergence to the correct values to be reached. For large µρ, results are quite insensitive
to the mesh size ∆a. For Hertzian contact geometries, we did not repeat the simulation by
replacing the default Morse expression for the surface energy, γ(g), with γcos(g). However,
we are certain that convergence to the continuum limit can been reached more quickly with
this alternative form.

We note that it can be difficult to judge if the use of a given µρ > 0.5 is not too
“aggressive”. The data for µρ = 1.5 show the correct trends in the sense that the Fpull
decreases and Vhys increases with decreasing mesh size ∆a. However, neither asymptotic
quantity converges to its exact value, which can be deduced from the JKR solution, even
if errors are not large. Thus, to be sure about the asymptotic values, either µρ has to be
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chosen sufficiently small from the beginning, or it has to be set to two different numbers,
which then yield identical asymptotics.

4.2. Application to Nominally Plane Contacts

Our final simulations are concerned with nominally flat but randomly rough surfaces.
Their topography has been described numerous times in the literature [40,52–55], which is
why we abstain from explaining the terms needed to define a height spectrum. It should
suffice to state that we used a smooth roll-off with L/λr = 4 and λr/λs = 16, where λr and
λs are the roll-off wavelength and short-wavelength cutoff, respectively. The height profile
was rescaled to make the root-mean-square height gradient unity. The surface energy was
set to γ = 0.3578 E∗ Rc ḡ3, which is close to being large enough to make the surface locally
sticky for a Tabor parameter of µT = 1 according to the criterion proposed by Pastewka and
Robbins (PR) [39] and assuming the PR criterion was worked out correctly in Ref. [51]. The
PR criterion states that self-affine surfaces start to be sticky when the surface energy exceeds
γPR = E∗Rc ḡ3µ3/7

T . Here, ḡ is the root-mean-square height gradient, and Rc = 2.12 λs is a
measure for the local surface curvature, as defined in Eq. (6) of Ref. [51]. Additional surface
specifications are a root-mean-square height of 5.2 λs and a maximum height difference of
∆hmax = 21.6 λs between the highest and lowest point in the simulation cell.

Compression/decompression cycles were run for different scaling factors µρ. Figure 14
reveals similar trends for the randomly rough surface as for the Hertzian indenter: When
µρ is large, the hysteresis is overestimated. In this case, the lost energy in a c/d cycle is
insensitive to the mesh size ∆a and the continuum limit cannot be reached by decreasing
∆a. The continuum limit can only be approached when µρ is below a critical value. In that
case, the hysteresis is initially rather small and approaches the short-range-adhesion limit
quite slowly, while the pull-off force converges much more quickly.

Two additional interesting observations can be made in Figure 14 pertaining to tech-
nical issues. First, while the µρ = 2 set of simulations presumably does not reach the
exact continuum limit for εc ≡ ∆a/λs → 0, it produces quite similar results as the µρ = 1
systems at their finest considered discretization of εc = 1/16. Thus, it seems as though the
optimum choice for µρ for the specific problem is just a nudge less than two. Second, the
largest considered range of interaction, i.e., ρ = 0.235 hrms (for µρ = 0.5 and λs/∆a = 4), is
relatively small compared to the root-mean-square height and only 4% of ∆hmax. Yet, the
energy hysteresis is rather small. Thus, using interaction ranges that are small compared
to ∆hmax or even to hrms is no generally valid criterion for the interaction range to be in
the short-range limit. A relative close approach to short-range-adhesion limit requires the
range of adhesion to be reduced to ρ ≈ 0.03 hrms for our system. The combination of µρ = 1
and λs & 32 ∆a appears to be in that limit.

While the just-made observations are merely methodological in nature, two additional
observations can be made with a potential value for our understanding of adhesive hys-
teresis. First, signs for adhesion on approach become smaller as the range of adhesion is
reduced, while the opposite is the case on retraction. In fact, for the simulation in which
µρ = 1 and λs = 64 ∆a, see Figure 14b, signs of adhesive traction have essentially disap-
peared on approach, but are clearly visible on retraction. For this trend to be fully revealed,
the adhesion must be made very short ranged, i.e., the local Tabor parameter must be equal
to or exceed a value of µT ≈ 4 in our setup. Second, contact hysteresis appears to correlate
quite well with the PR criterion. The longest interaction range leads to γ = 0.672 γPR. This
is just a little below the surface energy at which the PR criterion claims stickiness, and
the hysteresis is very small indeed. As the mesh size is decreased, hysteresis becomes
noticeable. Thus, the transition between sticky and non-sticky occurs coincides with a
surface energy that is close to γPR.
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Figure 14. Typical traction-separation curves for a randomly rough indenter using different discretization nx and different
scaling factors µρ of rough indenter determining the range of interaction through Equation (11). (a) µρ = 0.5, (b) µρ = 1,
(c) µρ = 2 and (d) µρ = 4. For the given system, the range of adhesion is ρ ≈ 0.235 hrms

√
∆a/λs/µρ and the local Tabor

parameter µT = 0.672 µρ
√

λs/∆a, where nx is the number of grid points in each spatial direction. Local discontinuities in
the stress-displacement curves are due to small-scale instabilities, such as the quasi-discontinuous contact loss or contact
formation of contact at maxima or saddle points in the (relative) height topography.

Of course, the just-reported correlation between contact hysteresis and the prediction
by the PR criterion may merely be a coincidence. However, previous simulations, in which
γ was varied rather than the range of adhesion also indicate a transition from sticky to
non-sticky at the point, where the reduced surface energy was united [51]. In that work,
the transition was observed in the contact area relaxation function, which went from
underdamped at γ/γPR < 1 to critically damped as γ/γPR approached unity. Yet, system
sizes in this and in former work may be too small to draw valid conclusions in favor
of the PR criterion. In contrast, the flawed contact-geometries in so-called bearing-area
models (BAMs) would render BAM-model arguments against it questionable. Since the
PR criterion is a controversially discussed topic in its own right, we postpone its in-depth
discussion to the future, in particular in light of the convincing arguments, simulations,
and experiments against its validity [12,25,26].

For completeness’ sake, we do not want to leave it unmentioned that previous studies
found similar traction-displacement dependencies for nominally flat surfaces. This in-
cludes, but is supposedly not limited to, early pioneering simulations by Carbone et al. [56]
and recent work by Radhakrishnan and Akarapu [57], both finding significant contact
hysteresis. However, these two studies considered one-dimensional contact lines, which
have a relatively large emphasis on long wavelength undulations, making hysteresis more
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easily observable than for two-dimensional interfaces. In contrast, the simulations by
Joe et al. [11,12] were concerned with the more-difficult-to-treat two-dimensional interfaces,
but this time for adhesion that was long-ranged on the scales of the short-wavelength-cutoff,
which again is simpler to treat than short-range adhesion.

In the context of randomly rough surfaces, we do not want to leave it unmentioned
either that the maximum system size used in the recent finite element (FE) study [57] was
16,384 grid points, while our largest simulations, which were run (for six weeks) on a 5-year-
old commodity computer, contained 8192 × 8192 grid points, which is 4096 times the size
of what appears to be manageable using FE methods. These numbers might indicate that
mass-weighting GFMD [35] is an efficient method for adhesive boundary-value problems.

Finally, we note that our results for long-range adhesion resemble those by Joe et al. [11,12],
who identified an elegant and yet elaborate way to integrate out the effect of short-
wavelength roughness. We find that the results that we obtain can be fit reasonably well
with the superposition of two exponential functions, in which the prefactor is strongly
reduced w.r.t. that of the microscopic interaction law and the length scales appearing in the
exponentials of the microscopic law are substantially increased. These results, which are
presented in Figure 15, are not very sensitive to the precise choice of the local interactions,
i.e., similar coarse-grained force-displacement curves are obtained for a microscopic Morse
potential and the easier-to-use alternative CZM defined in Equation (31), as long as their
Tabor parameters are similar.
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Figure 15. Measured cohesive zone-law resulting from a simulation between, for approach (red
circles) and retraction (blue crosses). The full line is a fit to the mean value of the compression and
decompression curve, which assumes two exponential functions. Compressive stress is expressed
in units of the (fitted) maximum tensile stress, and the mean gap ug is stated in units of the height
standard deviation.

5. Conclusions and Outlook

The three main aims of this paper were (i) to provide a comprehensible theoretical
framework describing the formation and failure (brittle fracture) of an adhesive, periodi-
cally repeated interface under constant normal stress and the subsequent energy hysteresis,
(ii) to deduce generally applicable rules for the construction of cohesive zone models
from the theoretical framework, and (iii) to apply the schemes obtained for the contact
between two ideally flat surfaces to uneven surfaces. This last point includes rules for
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how to extrapolate dissipation computed with relatively long-ranged adhesion to shorter-
ranged adhesion.

A particular focus of our work was the much overlooked approach to contact and the
question at what separation an initially flat elastomer approaching a substrate with short
but finite-range adhesion becomes unstable to the formation of surface undulations. This
happens when the negative curvature of a cohesive-zone model (CZM) exceeds qE∗/2,
where q is the wavenumber associated with a surface undulation. The ramification for
the numerical modeling is that a mesh size should not exceed the scale within which an
elastomer would want to ripple during the approach to contact, which leads to the condition

max
{
−γ′′(g)

}
.

E∗

∆a
, (33)

∆a being the mesh size of an element into which the surface is discretized. This inequality
can be used to either define the mesh size or to (re)define the CZM. In this work, we used
it to set the range of interaction ρ in a CZM whose functional form was that of the Morse
potential, which yields the proportionality ρ ∝

√
γ∆a/E∗. Using a proportionality factor

of µρ = 0.5, see also Equation (11), no undesired instabilities show on the approach curve,
while they do occur for µρ = 1.

The usual procedure when modeling adhesive contacts is to ask the question at what
tensile stress a mesh element is going to detach [5,13,58]. The common argument is that
it does so when the energy released during the detachment process exceeds the work of
adhesion, which in turn leads to the condition σmax

tens ≈
√

2E∗γ/∆a, which—when applied
to a continuous, twice differentiable CZM—can be readily translated to Equation (33).
Table 1 gives a summary of choices made by different authors, however, translated to the
proportionality factor µρ used for the Morse potential.

Table 1. Values for µρ implicitly used in different cohesive zone models.

Model Year µρ

Dugdale [4] (1960) 0.798
Hillerborg [15] (1976) 0.5

Irwin [16] (1997) 0.886
Falk et al. [17] (2001) 0.532
Hui et al. [18] (2003) 1.09

Popov et al. [19,20] (2015) 0.729

A compromise needs to be made when choosing the prefactor µρ. For the approach
curve, the proportionality factor is chosen at best as small as possible. However, when it is
made too small, artificial instabilities and thus energy hysteresis ensue that are not present
on the continuum solution. Unfortunately, if the proportionality factor is above a critical
value, the continuum solution cannot be reached even for ∆a→ 0. Thus, a relatively safe
choice should be to set the prefactor, such that a flat-on-flat geometry reveals no undesired
instabilities. It appears as if excellent choices have been made in the literature so that the
range of interaction is made small enough to lead to the (almost) best possible convergence,
while being large enough to converge to the correct value.

The trouble of Equation (33), as it comes to modeling adhesion in the zero-range or
continuum limit, is that the range of adhesion can only be chosen as ρ ∝

√
∆a. This poor

scaling is particularly problematic for the determination of adhesive hysteresis, because
the lost energy density γhys scales only with ρ2/3, so that γhys has corrections that cannot
disappear more quickly than with O( 3

√
∆a), which for a two-dimensional surface implies

an O( 6
√

N) converge with the number of grid points N = (L/∆a)2. We believe that it is
this poor scaling as to why even a world-leading adhesion simulator like Pastewka [41]
abstained from making a direct comparison of approach and retraction of an elastomer from
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a randomly rough tip and instead has resorted to Persson’s contact-mechanics theory [38]
to rationalize the observed compression/decompression hysteresis.

A common solution to reducing the continuum-corrections during the approach is
to simulate adhesion directly only during retraction, which, however, requires a contact
shape optimization to be done, in particular, during the formation of the contact. Such an
approach is relatively “cheap” for bodies of high symmetry, such as bodies of revolution.
However, it would be prohibitively expensive when applied to irregular surface structures.
Moreover, modeling adhesive interfaces with discontinuous stress-displacement relations
could scarcely be applied to time-dependent problems, such as bulk visco-elastic hysteresis,
which can add to adhesive losses.

The findings for flat-on-flat geometries also apply to uneven surfaces, where the
adhesive energy hysteresis γhys scales similarly unfavorably with mesh size for Hertzian
and randomly rough contacts as for flat-on-flat geometries. In particular, we confirmed
that quite large Tabor parameters of µT distinctly exceeding ten, are needed to model the
approach curve for an adhesive Hertzian indenter [24], while the retraction curve can be
modeled quite accurately with a Tabor parameter as small as µT = 2 or even µT = 1.

In our simulations, the elastomer’s surface facing the indenter was displacement
controlled, which is difficult to achieve experimentally due to bulk elasticity and the
compliance of the loading apparatus. However, this mode of operation should be seen as a
bonus allowing additional insight into the dynamics of adhesion to be gained. For example,
a critical (tensile) stress σc can be determined, at which the elastomer’s surface flattens
out upon retraction in addition to the maximum tensile stress, or, pull-off stress, which is
measured when the retraction is load driven. Moreover, it may be useful to know the tensile
stresses in the simulation of adhesive process during detachment processes, since any local
grid point in an adhesive simulation is always in between being displacement and load-
driven so that knowledge of the tension as a function of separation is often needed even at
those separations that would be macroscopically unstable in a load-driven operation.

Our outlook on pull-off forces between randomly rough surfaces suggests that inte-
grating out roughness effects at the small scales reduces not only the adhesion to be used
in a cohesive-zone model but also increases the rate of interaction. Both effects combined
substantially reduce the stiffness of the contact problem. A true challenge, however, will be
to coarse grain the cohesive-zone models so that adhesive hysteresis, including preload
effects on the pull-off force, as observed, for example, in structured micro pillars [47], can
be modeled. This would allow for the effective simulation of stress-sensitive adhesives.
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Abbreviations

The following abbreviations are used in this manuscript:
Θ(x) heaviside step function
α relative linear dimension of contact
ᾱ relative linear dimension of non contact
δ(x) Dirac delta function
γ(z) distance-dependent surface energy
hstd height standard deviation
λr,s wavelength of rolloff and cutoff
µrho proportionality coefficient
µT Tabor parameter
ρ range of interaction
ρ̃ range of interaction in units of γ/u0
σ0 mean stress
σ(r) stress in real space
σ̃(q) Fourier transform of the stress
E∗ contact modulus
Fpull pull-off force
FJKR

pull pull-off force in JKR model
N number of grid points
L linear system size
Jα(x) Bessel function of the first kind
Rc (characteristic) radius of curvature
Vela, int elastic or interfacial energy
∆a linear mesh size
Vhys energy hysteresis
VJKR

hys energy hysteresis in JKR model
â relative contact area
ac contact radius
g(r) interfacial separation, or, gap, as function of in-plane coordinate
nx,y number of unit cells in x or y direction
p pressure
pc critical pressure
p̃ pressure in unit of γ/u0
q in-plane wave number
qr,s roll-off and cut-off wave number
q in-plane wave vector
u0 mean displacement
ũ0 mean displacement in units of

√
γL/E∗

ug mean gap
u(r) displacement in real space
ũ(q) Fourier transform of the displacement
vela, int elastic or interfacial energy density
v̂ela, int elastic or interfacial energy density normalized to contact area

Appendix A

The analytical treatments of the defect patterns presented in this section are not fully
from first principles, i.e., from using solely the stress-displacement relation introduced later
in Equation (A5). The spatial stress and displacement profiles observed in the simulations
for thin and thick ridges, respectively, enter the calculations. Both profiles turn out to be
proportional to

√
1− (x/ac)2. Meaningful approximations to this proportionality yield

similar results, i.e., functions that are zero for |x| > ac), while symmetric, positive, and
continuous otherwise. Numerical constants in the final results change only slightly.
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Appendix A.1. Thin-Ridge Limit

In this section, we derive an expression for the asymptotic v̂(α→ 1) dependence for
thin ridges, starting from the (known or rather observed) stress profile σ(x) in a thin ridge.
Towards this end, we calculate the mean gap u0 from σ(x) and then equate u0σ0/2 with
the work done by the indenter to deform the elastic body.

The stress in the thin ridge satisfies

σ(x) =
4σ0

π

√
1− (x/ac)2 Θ(ac − x). (A1)

For the following calculations, we chose the domain such that 0 < 2x ≤ L and
placed the ridge symmetrically around x = 0, so that only the cosine Fourier transform of
stress σ̃c(q) and displacement fields ũc(q) are needed. Here, ac = ᾱL/2 is the half-length
dimension of thin ridge. The following convention for the Fourier transform is used

σ(x) = ∑
n=0,1,...

σ̃c cos(qn x) (A2)

σ̃(qn) =
2− δn,0

L

∫ L/2

−L/2
dx σ(x) cos(q x) (A3)

with qn = n/(2πL). Thus,

σ̃c(qn) = 2 (2− δn,0) σ0
J1(qnac)

qnac
. (A4)

Using the general relation for the Fourier transforms of stress and displacement,

σ̃(qn) =
qn E∗

2
ũ(qn), (A5)

which is valid for (frictionless) semi-infinite solids, the mean separation between the two
surfaces is obtained as

u0 =
1
L

∫ L/2

−L/2
dx{u(0)− u(x)} (A6a)

= ∑
n 6=0

ũc(qn) (A6b)

=
8 ac σ0

E∗ ∑
n 6=0

J1(qnac)

(qnac)2 (A6c)

≈ 4σ0L
πE∗

∫ ∞

πᾱ
dq′

J1(q′)
q′2

(A6d)

≈ 4σ0L
πE∗

{
− ln(πᾱ)

2
+ c
}

for πᾱ� 1, (A6e)

where the constant c was deduced numerically to be c ≈ 0.30797. In Equation (A6), J1(x)
denotes a Bessel function of the first kind, for which J1(x) ≈ x/2 when x � 1. This
approximation proves useful to determine the prefactor of the ln(πᾱ) term. Moreover, the
∑n f (qn) was approximated with an integral L

2π

∫ ∞
0 dq f (q).

Equation (A6e) can be solved for σ0 so that using vela = u0 σ0/2

vela =
π

−4 ln(πᾱ) + 8c
E∗u2

0
L

(A7)

is obtained.
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Appendix A.2. Thick-Ridge Limit

For the thick-ridge limit, we proceed similarly as for the thin-ridge limit. However, we
now chose the center-of-mass of the non-contact pattern to coincide with x = 0 and define
āc as half of the non-contact width. Moreover, we now observe the displacement to satisfy

u(x) =
4u0

π

√
1− (x/āc)2 Θ(āc − x). (A8)

Using the cosine Fourier transform, the results for the stress obtained in Appendix A.1
can be used again, so that

ũc(qn) = 2 (2− δn,0) u0
J1(qnac)

qnac
. (A9)

Thus, the elastic energy stored in the defect pattern is

vela =
E∗

4 ∑
n=1,2,...

qn ũ2
c(qn) (A10a)

= 4E∗u2
0 ∑

n=1,2,...

J2
1 (qnac)

qna2
c

(A10b)

≈
2 E∗u2

0 L
π a2

c

∫
dq′

J2
1 (q
′)

q′
(A10c)

=
E∗u2

0 L
2 π a2

c
(A10d)

Since ac = (1− α) L/2, it follows that

v̂ela =
2

π(1− α)2 . (A11)
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