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Abstract: Adhesive wear in dry contacts is often described using the Archard or Fleischer model.
Both provide equations for the determination of a wear volume, taking the load, the sliding path
and a set of material parameters into account. While the Fleischer model is based on energetic
approaches, the Archard formulation uses an empirical factor—the wear coefficient—describing
the intensity of wear. Today, a numerical determination of the wear coefficient is already possible
and both approaches can be deduced to a local accumulation of friction energy. The aim of this
work is to enhance existing energy-based wear models into the mixed lubrication regime. Therefore,
the pressure distribution within the contact area will be determined numerically taking real surface
topographies into account. The emerging contact area will be divided into one part of solid and a
second part of elastohydrodynamically lubricated (EHL) contacts. Based on the resulting pressure and
shear stress distribution, the formation of micro cracks within the loaded volume will be described.
Determining a critical number of load cycles for each asperity, a locally resolved wear coefficient will
be derived and the local wear depth calculated.

Keywords: adhesive wear; mixed lubrication; elastic half-space

1. Introduction

An increased application of low-viscosity lubricants in machine elements increasingly leads to
operating conditions in the mixed lubrication regime along with the risk for the occurrence of wear.
Since between highly loaded asperities small contact areas form, the material’s yield stress can be
reached quickly and micro welds may form [1]. The subsequent separation of surfaces can occur in
planes different from the original ones and material can be transferred from one body to the other.
Figure 1 illustrates this process, referred to as adhesive wear, for a pair of contacting spherical shaped
asperities—before (a), during (b) and after (c) the contact. The asperities are assumed to be subjected
to a (local) normal load f i and a relative velocity vrel.
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Abstract: Adhesive wear in dry contacts is often described using the Archard or Fleischer model. 
Both provide equations for the determination of a wear volume, taking the load, the sliding path 
and a set of material parameters into account. While the Fleischer model is based on energetic 
approaches, the Archard formulation uses an empirical factor—the wear coefficient—describing the 
intensity of wear. Today, a numerical determination of the wear coefficient is already possible and 
both approaches can be deduced to a local accumulation of friction energy. The aim of this work is 
to enhance existing energy-based wear models into the mixed lubrication regime. Therefore, the 
pressure distribution within the contact area will be determined numerically taking real surface 
topographies into account. The emerging contact area will be divided into one part of solid and a 
second part of elastohydrodynamically lubricated (EHL) contacts. Based on the resulting pressure 
and shear stress distribution, the formation of micro cracks within the loaded volume will be 
described. Determining a critical number of load cycles for each asperity, a locally resolved wear 
coefficient will be derived and the local wear depth calculated. 
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An increased application of low-viscosity lubricants in machine elements increasingly leads to 
operating conditions in the mixed lubrication regime along with the risk for the occurrence of wear. 
Since between highly loaded asperities small contact areas form, the material’s yield stress can be 
reached quickly and micro welds may form [1]. The subsequent separation of surfaces can occur in 
planes different from the original ones and material can be transferred from one body to the other. 
Figure 1 illustrates this process, referred to as adhesive wear, for a pair of contacting spherical shaped 
asperities—before (a), during (b) and after (c) the contact. The asperities are assumed to be subjected 
to a (local) normal load 𝑓௜ and a relative velocity 𝑣୰ୣ୪. 

 
Figure 1. Adhesive wear mechanism: (a) before contact; (b) during contact; (c) after contact [2]. 
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Figure 1. Adhesive wear mechanism: (a) before contact; (b) during contact; (c) after contact [2].
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Neglecting chemical effects, the occurring wear volume can be described inter alia by probabilistic
models, e.g., the Archard theory [3]. Archard as well assumes spherically shaped asperities with a
radius of r, such that at position i a circular contact area of Ai

R ≈ πr2 between a pair of contacting
asperities forms. He furthermore assumes this area to be so small that the occurring local pressure
pi immediately reaches the yield stress plim of the surface material. According to [4], the yield stress
can be equated with the surface hardness H, which H leads to the relation H = f i/Ai

R. Since each
asperity in contact is loaded by the yield stress, this relation holds for all contact spots. The volumes of
evolving wear particles can each be represented by the volume of a detached asperity, which equals a
hemisphere: Vi

w = 2/3πr3. Defining additionally a micro sliding path in the length of the asperity
diameter, Si

w = 2r, a local relative wear volume can be defined as:

Vi
w

Si
w

=
1
3
πr2 =

1
3

Ai
R =

1
3

f i

H
(1)

By the accumulation of all local relative wear volumes for the entire contact area and considering
the force equilibrium for all Z asperities,

∑Z
i=1 f i = FN (where FN is the total normal force working on

the considered system), the total relative wear volume can be given as:

Vw

Sw
=

Z∑
i=1

Vi
w

Si
w

=
1
3

Z∑
i=1

f i

H
=

1
3

K1
FN

H
(2)

The variable Sw is the total sliding path. The factor K1 takes into account that an instant formation
of wear does not occur for every contact. It thus constitutes a parameter for the probability of the
formation of wear or—in other words—for the intensity of wear. Finally, using the simplification
K = K1/3, the total wear volume Vw can be defined as:

Vw = K
FNSw

H
(3)

Equation (3) is known as the Archard equation and the factor K as the Archard wear coefficient.
The wear coefficient is usually determined empirically—for metals it extends in general over a range
from K = 10−8 to 10−1 [5].

Another model describing the adhesive wear mechanism was proposed by Fleischer [6].
The underlying theory is based on an energy perspective and takes the performed frictional work WR

into account:
WR = µFNSw (4)

The factor µ is the friction coefficient. The intensity of wear is described by the apparent frictional
energy density e∗R, which leads to the Fleischer wear equation:

Vw =
1
e∗R

WR (5)

Comparing Equations (3) and (5) it can trivially be derived, that the apparent frictional energy
density can be given as a function of the Archard wear coefficient and vice versa:

e∗R =
1
K
µH ↔ K =

1
e∗R
µH (6)

This work focusses on the numerical determination of the Archard wear coefficient K and
the numerical calculation of adhesive wear in local resolution (as it was already presented in [2]).
The pressure distribution, taking rough surfaces into account and being one of the main drivers for the
occurrence of wear, will be calculated for both dry and mixed lubricated contacts. In the latter case,
the force transmission from one body to the other through the asperity contacts is supported by an
evolving pressurized elastohydrodynamic fluid film.
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2. Calculation Method

2.1. Numerical Contact Model

The contact model is based on the elastic half-space theory [7] and the Hertz–Signorini–Moreau
condition. The latter describes the relationship between an arbitrary gap g between two surfaces
within the considered area and the corresponding pressure p. For dry contacts, the condition takes the
following form [5]:

g ≥ 0, p ≥ 0, p·g = 0 (7)

This condition states firstly, that an overlap of volumes cannot occur (g ≥ 0) and secondly, that
in case of a mechanical contact (g = 0) a pressure will evolve (p ≥ 0). The relationship between a
local pressure pi at position i (respectively a local force f i) and the resulting elastic deformation wk

at position k can be expressed using the influence matrix C = [Cik], which provides the relationship
between both variables [4]:

wk =
∑Z

k=1
Cik f i (8)

The number of asperities is Z. The number of elements contained in the influence matrix can
quickly become very large (Z2), especially for a finely resolved mesh. Due to the need for a high
resolution (if the surface roughness shall be taken into account) this issue is tackled by means of the
Method of Combined Solutions [8].

For mixed lubricated contacts, Equation (7) has to be adapted by the condition that occurring
gaps will be filled with pressurized lubricant (underlying an elastohydrodynamic pressure p j

EHL).
The pressures within the gaps support the asperity contacts in transmitting forces form one body to
the other, while at the same time separating the surfaces partwise from each other. Consequently,
the number of contacting asperities decreases as well as the mechanical pressures for each contact do.
According to the elastohydrodynamically lubricated (EHL) theory, a central film thickness hc for point
contacts can be given in the following form [9]:

hc = 2.69RU0.67G0.53W−0.067
(
1− 0.61e−0.73κ

)
(9)

R is a geometry parameter, U a velocity parameter, G a lubrication parameter and W a load
parameter. κ describes the ellipticity of the contact area. For rough surfaces, the film thickness is
treated as the distance between the median planes of the deformed asperities of respective contacting
surfaces. The case of mixed lubrication is defined by a fluid film, which is not sufficiently thick to
separate the surfaces completely from each other. Thus, parts of the surface will remain in contact but,
however, being supported by the elastohydrodynamic pressure. For contacting asperities, Equation (7)
keeps being valid, while for non-contacting parts (the gaps), the formation of an elastohydrodynamic
pressure is postulated. The lubricant pressure is assumed to follow the shape of the Hertzian pressure
distribution for smooth surfaces [10,11] and can be given for any specific point j within the contact
area as:

g j > 0 → p j
≈ p j

Hertz (10)

The resulting mean value g of all gaps (g j > 0) within the contact area equals the film thickness
and thus defines the distance between a pair of contacting bodies with rough surfaces:

g = hc (11)

Satisfying Equations (7), (10) and (11), a force equilibrium between the external normal force FN

and the sum of all solid ( f i
sol) and EHL ( f j

EHL) forces prevails:

FN = Fsol + FEHL =

nsol∑
i=1

f i
sol +

nEHL∑
j=1

f j
EHL (12)
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The number of contacting asperities is nsol and of non-contacting asperities (gaps) nEHL. The force
equilibrium and the film thickness hc are depicted in Figure 2.
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2.2. Numerical Wear Model

In order to develop a numerical wear model, the asperities are modelled as cubes, having an edge
length of d, Figure 3 (in accordance with a rectangular discretized half-space).
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As described before, the wear coefficient K can be understood as the probability for the detachment
of a single wear particle. It thus forms the reciprocal value of a number Nc of sustainable load cycles
and can be written as [3,12]:

K =
1

Nc
(13)

For a numerical calculation of Nc, the theory of Continuum Damage Mechanics is used, describing
the progressive weakening of solid materials under a cyclic shear stress τ [13–16]. In Figure 4 a control
volume, loaded by a cyclic shear stress τ is shown. The damaged area consists of several micro cracks,
depicted as black areas (dADm ), while the control area dA is represented in light gray.
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It is assumed that any load above a specific endurance limit τe will cause micro cracks within the
loaded volume. The ratio D of the damaged area

∑
dADn , defined by the normal vector m, to a cross

section dA can be expressed as [17]:

D(m) = k
∑

dADm

dA
∈ [0, 1] (14)

The factor k is a probability factor. For isotropic materials, the damage ratio is independent of
the normal direction m, which leads to D(m) = D. The damage propagation increases exponentially
and can be expressed as a function of the performed load cycles n [17]. If the endurance limit τe is not
reached, no damage propagation will occur:

D(n) = Dn =

{
1− (1−Dn−1) Bn , if τ > τe

Dn−1, else
(15)

The parameter Bn describes the amount of damage propagation and can be given as follows [18]:

Bn =

(
τe
L

)1+M
+

( 3τf
4L

)(
τe
L

)1+M

τ
L(1−Dn−1)

+
( 3τf

4L

)(
τe
L

)1+M (16)

The parameter L is the hardening coefficient, M the hardening exponent and τf the true failure
stress [18]. If after n cycles a critical value Dn = Dc is reached, the number of load cycles performed
equals the critical number: n = Nc.

The validity of the model was proved by Beheshti et al. in [18] by a comparison of predicted wear
coefficients and experimental results as a function of the friction coefficient. In Figure 5, the comparison
for aluminum 6061-T6 is depicted, while the experiments where conducted on a pin-on-disk test.
The tests were conducted with a pin (diameter 8 mm) made of aluminum in contact with a disk made of
stainless steel (SS 304, diameter 100 mm). The sliding velocity was set within a range of 30–120 mm/s,
the normal load in a range from 3–30 N. The test duration was 2–5 h. The amount of wear was obtained
by weighing the pin before and after the test.
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Applying the aforementioned model to all contacting asperities, the wear coefficient can be
determined in local resolution. Therefore it is assumed, that the asperity i is loaded by a cyclic shear
stress τi, which is the product of the local pressure and the friction coefficient:

τi = µ
f i
sol

Ai
R

= µpi
sol (17)
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Thus, the local wear coefficient is instantly a function of the local shear stress. Assuming an
incremental wear path in the length of Si

w = d (element edge length) and an incremental wear volume
of Vi

w = d3 (volume of a cubic element), the local relative wear volume now takes the form:

Vi
w = Kid3

→
Vi

w

d2 = Kid (18)

Here, the probability (or wear-) coefficient Ki is considered in local resolution. Rearranging the
equation and using the relationship Vi

w = zi
wd2, the local wear depth can be expressed as zi

w = Kid.
Taking additionally the number of load cycles nload into account, the cumulative wear path can be
considered. The locally resolved wear depth can finally be given in the form of a vector:

zi
w = Kidnload → zw = Kdnload (19)

2.3. Calculation Algortihm

The simulation follows the algorithm depicted in Figure 6. The left side shows the calculation of
the pressure distribution, which follows an iterative approach. The first step is to read the material,
geometry and load parameters. Based on this, the Hertzian pressure distribution is calculated and the
discretized mesh is defined. For the determination of the pressure distribution the influence matrix is
calculated. Depending on the fluid and the EHL parameters, a film thickness hc is calculated. Before
the calculation starts, an initial guess of the solid body overlap is estimated and imprinted on the
system. Taking the micro geometry and the solid body overlap into account, the gap distribution is
calculated based on the elasto-plastic half space. Within the Hertzian contact area a mean value g
of the gap distribution is determined. If the deviation between g and the film thickness hc exceeds
a specific limit ε, the solid overlap is updated (increased in case of g/hc > 1 and decreased in case
of g/hc < 1) and the calculation will be repeated. If the deviation is small enough, the mean gap is
assumed to be equal the EHL film thickness and the iteration is finished. Finally, the calculation of the
solid pressure distribution follows, the local wear coefficient is calculated and the wear distribution is
determined (right side of Figure 6).
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3. Simulation Results

3.1. Model System

Although the presented contact and wear models have been developed to describe wear in
machine elements like bearings or gears, for investigations into the wear mechanism it is more suitable
to abstract the geometry to a simplified model system. Thus, characteristic contact geometries and
loading situations of rolling element bearings have been transferred to a model contact consisting of
two discs. The material is bearing steel 100Cr6 (AISI52100). The discs are pressed together by a normal
force of FN = 6850 N. Each disc has a radius of 60 mm and is driven independently from the other
with different circumferential velocities (v1 and v2). Thus, in the contact area an entrainment velocity
of v = 1/2 (v1 + v2) = 5 m/s and a relative velocity of vrel = v2 − v1 = 0.5 m/s evolve, depicted in
Figure 7.
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Disc 1 is additionally equipped with a crowning radius of 100 mm. The contact and load parameters
lead to a Hertzian pressure of pHertz = 1875 MPa. The root mean squared (RMS) roughness Rq of the
discs is 458 nm. The dynamic viscosity of the lubricant is η = 44.2 mPas. The entrainment velocity is
responsible for the formation of an EHL film, which takes a value of 552 nm, respectively a specific film
thickness of λ = hc/Rq = 1.21. The contact area is discretized into 3010× 1410 square elements with an
edge length of d = 2 µm. According to the half-space theory, the surface geometries of both discs are
projected to one resulting (combined) model surface, which contacts to an opposing flat elasto-plastic
half-space surface. In Table 1 the material, geometry and simulation parameters are listed.

Table 1. Material, geometry and simulation parameters [18,19].

Material Parameters Crowning disc 2 r2,2 ∞

Young’s Modulus E 210 GPa Root mean squared
(RMS) roughness Rq 458 nm

Poisson’s ratio ν 0.3 Simulation Parameters

Flow pressure pflow 7.13 GPa Normal force FN 6850 N
Cycl. hard. exponent M 6.22 Hertzian pressure pHertz 1875 MPa

Hard. modulus H 3.44 GPa Entrainment velocity v 5 m/s
True failure stress τf 2.59 GPa Relative velocity vrel 0.5 m/s
Endurance limit τe 0.77 GPa Duration t 60 min
Critical Damage Dc 0.5 Film thickness hc 552 nm
Dyn. viscosity η 44.2 mPas Rel. film thickness λ 1.21

Geometry Parameters Friction coeff. (solid) µ 0.12

Radius disc 1 r1,1 60 mm Element width d 2 µm
Crowning disc 1 r1,2 100 mm Elements in x-dir. M 3010

Radius disc 2 r2,1 60 mm Elements in y-dir. N 1410
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3.2. Simulation of Gap and Pressure Distributions

The results of the simulation of the gap distribution for a dry and a mixed lubricated contact are
depicted in the following Figures 8 and 9. In Figure 8 the side view (XZ view) of the deformed surface
geometry between the combined surface (black) and the half-space surface (zero line) for a dry contact
is shown. The gap height g (in z-direction) is given in µm on the ordinate, while the abscissa shows
the x-direction along the long half-axis. The latter is normalized to the Hertzian contact length aHertz.
On the top right corner, the corresponding undeformed surface is depicted keeping the aspect ratio
constant. The numerically calculated film thickness is hc = 587 nm (for mixed lubrication), which is
marked by a blue dotted horizontal line. Because of numerical deviations the calculated film thickness
differs slightly from the analytical solution of 552 nm.
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Figure 9 shows the corresponding results for mixed lubrication. It can be seen, that due to the
supporting effects of the EHL pressure the deformation and the number of contacting asperities has
significantly decreased.

In the following Figures 10–12 the simulation results for the pressure distribution are depicted.
In each figure, the results for a dry contact are shown on the left side, results for mixed lubrication on
the right. In both cases, only the occurring pressures for contacting asperities are drawn, meaning that
the EHL pressures are blanked out. Figure 10 shows the top (XY) view of the contact zone. The abscissa
again shows the x-direction along the long half-axis (aHertz) of the contact zone, while the ordinate
shows the y-direction along the short half-axis (bHertz). Both axes are normalized to the respective
Hertzian contact length. It can be seen, that the dry contact fills out almost the entire Hertzian contact
area (denoted in red dotted line), while the mixed contact area does not. Furthermore, a cyclic waviness



Lubricants 2020, 8, 16 9 of 15

can be identified, which corresponds to a waviness of the surface along the x-direction due to the
manufacturing process.Lubricants 2020, 8, 16 9 of 15 
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Figure 12. Pressure simulation results—YZ view. (a) Dry contact. (b) Mixed lubricated contact.

For the case of a dry contact, the sum of all local forces leads to FN,dry = FN,sol,dry ≈ FN, an EHL
part does not exist (see Equation (12)):

FN,sol,dry =
∑nsol

i=1
f i
sol = 6, 847 N, FN,EHL,dry = 0 N (20)

FN,dry = 6, 847 N (21)

Slight deviations from the input values occur due to numerical approximations.
For the mixed lubricated contact, the sum of all local solid forces is:
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FN,sol,mix =

nsol∑
i=1

f i
sol = 603 N (22)

Thus, the percentage P of the force, transmitted through asperity contacts is much lower, than in
the case of a dry contact: P = FN,sol,mix/FN = 8.80%. The remaining part of the total force, FN,EHL,mix,
has to be transmitted by the lubricant film:

FN,EHL,mix = FN − FN,sol,mix = 6247 N (23)

In Figure 11 the pressure distribution is shown in the XZ view. The abscissa now shows the long
half-axis (aHertz) and the ordinate shows the normalized pressure p/pHertz. The red dotted line depicts
the corresponding Hertzian pressure distribution for smooth surfaces. In both cases (dry and mixed),
a multitude of asperities reaches the yield stress, why the maximum achievable normalized pressure is
limited to Pflow ≈ 3.8. The pressure density is much higher in the case of the dry contact, as it also can
be observed in Figure 10.

Finally, Figure 12 shows the pressure distribution in YZ view. The abscissa now shows the short
half-axis (bHertz).

3.3. Simulation of Wear Distribution

The simulation of the adhesive wear follows the model presented in Sections 2.2 and 2.3. The shear
stress and thus the friction coefficient and local pressure have large impacts on adhesive wear. While
the local pressure can be calculated numerically as shown in the previous chapter, the determination
of the (solid) friction coefficient is still difficult. To illustrate the influence of both parameters on the
wear coefficient, a parameter study was carried out. Varying the (local) pressure in a range of 3500
to 8000 MPa and the friction coefficient in a range of 0.10 to 0.20 leads to wear coefficients of up to
1.3× 10−3 (while the minimum value for the wear coefficient was set to Kmin = 1.0× 10−8, according
to [5]). In Figure 13 the corresponding curves are depicted.
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Figure 13. Wear coefficient as a function of the friction coefficient and the (local) pressure.

Within this work a friction coefficient of µ = 0.12 is assumed such that the calculated wear
coefficient lies within an interval of Ki

∈

[
1× 10−8, 1.5× 10−5

]
. The simulated test duration is 60 min.

While the mean values of all local wear coefficients do not differ significantly for the dry and the mixed
lubricated case (Kdry = 9.05 × 10−6, Kmix = 8.56 × 10−6), the number of asperities in contacts does:
nsol,dry = 18, 846, nsol,mix = 1766. In order to derive a characteristic parameter, describing the intensity
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of wear for each considered system, the mean value K can be multiplied by the respective number of
contacting asperities:

Idry = Kdry nsol,dry = 0.171 (24)

Imix = Kmix nsol,mix = 0.015 (25)

The factor I shall here be referred to as the wear intensity factor. The ratio between both, the
mixed lubricated and the dry factor, is 8.77% and thus of a similar magnitude to the percentage of
force, transmitted through asperity contacts (8.80%).

Figure 14 depicts the simulation results for the wear depth zw (according to Equation (19)) for the
dry contact. It shows a section through the XZ plane, while the total wear volume is distributed evenly
over the entire circumference of the discs. The wear depth (depicted in black color) for both contacting
bodies is projected to the half-space, depicted in gray color. The abscissa is showing the x-direction
along the long half-axis (aHertz) of the contact zone, while the ordinate shows the wear depth. It can be
seen, that the occurring wear spreads over the entire contact zone, although areas of high work density
(i.e., high product of relative velocity and pressure) show a significantly higher density of wear (here:
in the central area, where the amount of pressure is the largest). The maximum peaks reach values of
zw,max,dry = −40.2 µm, which are not shown within the scale due to a better resolution of the figure.
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In Figure 15 the corresponding wear for the mixed lubricated contact is shown. It is trivial,
that a reduction of solid forces due to the formation of a supporting fluid film leads to a reduction of
wear. As already shown, the wear intensity factor is significantly lower in case of the mixed regime.
The occurring wear decreases in general, while the maximum wear in particular decreases to a value of
zw,max,mix = −10.6 µm.
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4. Conclusions and Outlook

Within the presented work, simulation results for a dry and a mixed lubricated contact have been
shown and compared. The wear depth has been determined by calculating a pressure distribution,
taking a rough surface geometry into account, and subsequently calculating a locally resolved and
energy-based wear coefficient. It has been shown that the cumulative force, transmitted by contacting
asperities can be reduced by an evolving elastohydrodynamic film, followed by a significant reduction
of wear. The results show a high accumulation of wear for specific spots of single sharp asperities,
while it is assumed not to correspond to real systems. It should be noted, that it is possible to avoid
this numerical fault by updating the contact geometry after each load cycle, such that the pressure
distribution will adapt the new geometry and the high pressure regime will relocate to less-worn
areas. The disadvantage of this approach is the strongly increasing computing time. The calculation
of the pressure distribution takes by far the majority of the entire calculation time. In addition,
the creation of wear-resistant chemical layers, built up by chemical additives, may be taken into account
in future works.

Besides the pressure, the coefficient of friction is the main driver for the amount of the calculated
wear coefficients. In this work, the coefficient of friction is assumed to be 0.12, which involves huge
uncertainty. Further work is therefore focused on the numerical and experimental determination of the
friction coefficient.

Furthermore, an experimental validation of the wear model on real machine elements will be the
subject of future works. As already shown in [2], wear in machine elements shows several effects, which
are not considered in this paper. Nevertheless, experiments were already carried out on thrust roller
bearings in [2] and show a basic agreement of experimental and simulation results. The experimental
part was conducted using an FE8 test rig [20], Figure 16.
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In this test rig, two test bearings (2) are mounted on a common shaft, while the housing washers
are fixed in the housing. The shaft is radially supported by two cylindrical roller bearings and driven
by an electric motor. A static axial load is applied through a cup spring assembly (1) such that both test
bearings are subjected to the same load. The test lubricant was a mineral oil (viscosity ν40 = 186 cSt
at 40 ◦C). The investigations were carried out at low relative speeds between the contacting bodies,
so that the film thickness ratio was also low (λ = 0.07). Three load cases with axial loads of 25, 37.5 and
50 kN were defined, resulting in Hertzian pressures of 1028, 1216 and 1383 MPa, respectively. For each
load case (LC) a test with a constant shaft speed of 7.5 min−1 was conducted. Each test duration was
80 h (36, 000 shaft revolutions). The resulting experimental wear volume was determined by tactile
measurement of the profile before and after each test. The corresponding simulations were conducted
without consideration of an EHL film and assuming a friction coefficient of µ = 0.18.
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In Figure 17 the results of the experiments are shown on the left side (a) and for the simulations
in the middle (b). The left half of each picture is the inner part of the washer/roller contact. In this
region negative slip occurs, while on the outer part (right half) positive slip occurs. In load case 1, little
to no wear can be observed. In load case 2, a wear depth of around 5 µm in the area of the negative
slip occurred, while in the area of positive slip considerably less wear can be observed. In load case 3,
the wear depth is around 10 µm. The simulation results show that the amount of wear can be calculated
in the right order of magnitude, but the correct prediction of the local amounts is still difficult. Two
of the reasons may be the missing consideration of additional wear mechanisms, like abrasive wear,
and the missing consideration of the influence of positive/negative slip.
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List of Symbols

Ai
R Micro contact area at pos. i

(
m2

)
Ki Archard Wear coefficient at pos. i

aHertz Hertzian contact length (m) P Normalized pressure
a1, . . . , a4 Parameter (film thickness) Pflow Normalized flow pressure
Bn Damage propagation after n load cycles p Pressure (Pa)
bHertz Hertzian contact width (m) pi Pressure at pos. i (Pa)
C Influence matrix (m/N) pHertz Hertzian pressure (Pa)
D Damage variable pi

Hertz Pressure acc. to Hertz at pos. i (Pa)
Dc Critical damage plim Flow pressure (Pa)
Dn Damage variable after n load cycles pi

sol Solid pressure at pos. i (Pa)
d Element length (m) R Geometry parameter
dA Cross section

(
m2

)
Rq RMS roughness (m)

E Young’s modulus (Pa) r Asperity radius (m)

e∗R App. frict. energy density
(
Nm/m3

)
r1,1, r1,2 Radius disc 1, plane 1/2 (m)

f i Normal force at pos. i (N) r2,1r2,2 Radius disc 2, plane 1/2 (m)

f j
EHL

Solid force at pos. i (N) Sw Sliding path (m)

f i
sol EHL force at pos. i (N) Sw Sliding path vector (m)

FN Normal force (N) Si
w Micro sliding path at pos. i (m)

Fsol Solid force (N) t Duration (h)
FN,sol,dry Solid force, dry contact (N) U Velocity parameter
FN,sol,mix Solid force, mixed contact (N) Vw Wear volume

(
m3

)
FEHL EHL force (N) Vi

w Micro wear volume at pos. i
(
m3

)
FN,EHL,dry EHL force, dry contact (N) v Entrainment velocity (m/s)
FN,EHL,dry EHL force, mixed contact (N) v1 Circumferential velocity body 1 (m/s)
G Lubrication parameter v2 Circumferential velocity body 2 (m/s)
g Gap (m) vrel Relative velocity (m/s)
gi Gap at pos. i (m) wi Deformation at pos. i (m)

g Mean gap (m) W Load parameter
H Surface hardness (Pa) WR Frictional work (Nm)

hc Film thickness (m) Z Number of asperities
I Wear intensity factor zi

w Wear depth at pos. i (m)

i, j, k, l Position i, j, k, l zw Wear depth vector (m)

L Hardening coefficient η Dynamic viscosity (Pas)
M Hardening exponent, λ Specific film thickness

Number of elements in x-direction κ Ellipticity
m Normal vector µ Friction coefficient
N Number of elements in y-direction ν Poisson’s ratio
Nc Critical number of load cycles τ Shear stress (Pa)
n, nload Number of load cycles τe Endurance limit
nEHL Number of non-contacting asperities τf True failure stress
nsol Number of contacting asperities τi Shear stress at pos. i (Pa)
K Archard Wear coefficient

∑
dADn Damaged area

(
m2

)
K Archard Wear coefficient vector
K1, k Probability factor
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