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Abstract: In metal-forming processes, the use of lubricants for providing desirable tribological
conditions at the tool–workpiece interface is critical to increase the material formability and prolonging
tool life. Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting
the environment from contamination have renewed interest in developing environmentally-friendly
lubricants derived from alternative sources such as vegetable oils. In the present study, the rheological
and tribological behavior of coconut oil modified with nanoparticle additives was experimentally
evaluated. Two different nanoparticle additives were investigated: Silicon dioxide (SiO2) and copper
oxide (CuO). For the two conditions, nanoparticles were dispersed at different concentrations within
the coconut oil. The effects of concentration and shear rate on the viscosity were evaluated and
the experimental data was compared with conventional models. A custom-made tribotester was
used to evaluate the effect of concentration on the tribological performance of the nano-lubricants.
The experimental results showed that wear volume loss was lowered by 37% and 33% using SiO2

and CuO nanoparticles, respectively. Furthermore, the addition of SiO2 and CuO nanoparticles
decreased the coefficient of friction (COF) by 93.75% and 93.25%, respectively, as compared to coconut
oil without nanoparticles.

Keywords: coconut oil; nanoparticles additives; nano-lubricant; rheological behavior; friction
coefficient; wear

1. Introduction

Recently, due to environmental issues, there has been a growing concern regarding the use of
mineral oils as lubricants. This concern has promoted research into biodegradable lubricants such
as vegetable oils, since vegetable oils do not contaminate or pollute. Furthermore, vegetable oils
possess many sought out properties such as good lubrication in contact area, high flash point, high
biodegradability, and low volatility [1–4]. The high polarity of vegetable oils allows them to be useful
boundary lubricants [3].

Coconut oil is considered one of the most stable oils. Coconut oil belongs to the lauric oils
group. Lauric acid is the most abundant fatty acid found in coconut oil. One of the main drawbacks
of vegetable oils is poor oxidation and thermal stability [5]. Therefore, at higher loads, there is a
performance drop in the lubricants. Nanoparticles have been used as friction modifiers due to their
extremely small size, which allows them to slide into the two metals’ contact area. This allows
the nanoparticles to act as a rolling bearing in the interface [6]. Other proposed mechanisms for
nanoparticles in lubricants include protective film, mending effect, and polishing effect, which are
all shown in Figure 1. The addition of nanoparticles helps with the wear and friction properties
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of the lubricant. Silica and copper oxide nanoparticles are efficient at room temperature, therefore
no induction period is needed to see improvement in tribological properties. Peng and co-workers
analyzed the tribological properties of SiO2 in liquid paraffin using a ball-on-ring wear tester, and
they demonstrated that SiO2 helped lower wear and friction when compared to the base paraffin [7].
The main issue is compatibility of the nanoparticles and the base oil. Over long periods of time, the
nanoparticles tend to sediment, making their tribological properties diminish [8].
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Figure 1. Nanoparticle effect at the friction surface.

The rheological properties of SiO2 and CuO suspensions have a major role in the metal forming
process. Viscosity is the most meaningful parameter for describing the rheological properties
of suspensions.

The objective of this study was to evaluate the rheological and tribological behaviors of coconut
oil modified by the addition of SiO2 and CuO nanoparticles at different concentrations. The effects
of thus concentration and shear rate on the viscosity was evaluated, and the experimental data were
compared with conventional models, namely the power law and the Cross equation. The coefficient of
friction (COF) under sliding conditions was evaluated by a block-on-ring test and wear volume loss by
crossed-cylinder wear testing.

2. Materials and Methods

2.1. Nano-Lubricants Preparation

In the present study, SiO2 and CuO nanoparticles from US Research Nano Co. (Houston, TX,
USA) were dispersed in commercially available coconut oil in different concentrations to formulate the
nano-lubricants. The main properties of the lubricant and selected nanoparticles are shown in Table 1.
Density of the oil was measured on a weight to volume basis using a 25 mL flask and an Mettler Toledo
XS205DU electronic balance (Mettler-Toledo LLC, Columbus, OH, USA) to an accuracy of 0.01 mg.
The morphology of the particles was verified using Field Emission Scanning Electron Microscope
(FE-SEM) ZEISS SIGMA VP (Carl Zeiss SBE, Thornwood, NY, USA). Nano-lubricants were prepared by
the adding of 0.25, 0.50, 0.75, 1.00, and 1.25 wt % nanoparticles into the vegetable lubricant, followed
by ultrasonication for 5 min with a 120-Watt sonic dismembrator with a frequency of 20 kHz to ensure
uniform dispersion and good suspension stability.
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Table 1. Material properties.

Material Properties
Lubricant

Coconut oil Density (40 ◦C): 0.92 g/cm3

Viscosity (40 ◦C): 26 mPa·s
Nanoparticles

Silicon dioxide Chemical formula: SiO2, Purity: 99.5%
Particle size: 20–30 nm

Copper oxide Chemical formula: CuO, Purity: 99%
Particle size: 30–40 nm

Specimens
Blocks AISI 304 steel, dimensions: 14 × 6.35 × 6.35 mm, hardness: 128 HRB

Cylinders AISI 304 steel, d = 12.7 mm, l = 14 mm, hardness: 60 HRC
Rings AISI 52100 steel, d = 40 mm, hardness: 60 HRC

2.2. Rheometer

The rheological properties of SiO2 and CuO nanoparticles in coconut oil were evaluated by means
of a commercial rheometer HAAKE RS 150 RheoStress (Haake Instruments, Inc., Paramus, NJ, USA)
with a special plate (double parallel plates) spindle. The distance between upper and lower plates
was 0.5 mm and 0.9 mL of the testing sample was placed on the plate. In this study, viscosities were
studied at 22 ◦C, which was controlled during the measurements. The viscosity and shear stress of all
samples were set from 10 to 120 s−1.

2.3. Tribological Characterization

Sliding wear tests were performed using a custom made tribotester with two different
configurations: A block-on-ring configuration to determine COF based on ASTM G-077-05 [9],
and a crossed-cylinder configuration to determine volumetric wear under extreme pressures based on
ASTM G-83-96 [10]. A schematic diagram of the tribotester is shown in Figure 2. For the experiments,
an oil bath chamber fixture was used. Basic characteristics of the materials are shown in Table 1. For the
two configurations, nano-lubricants were placed in the oil bath chamber allowing constant lubrication,
while the test ring rotated, covering it in lubricant due to centrifugal forces. All tests were run at a
temperature of 25 ◦C, and 300 rpm, during 1800 s. For the block-on-ring experiments, a load of 40 N
(corresponding to a contact pressure of ~106 MPa) was used. For the crossed-cylinder configuration,
nano-lubricants with SiO2 and CuO with all concentrations were tested at 25 N, corresponding to a
contact pressure of ~1.4 GPa. Wear was determined gravimetrically using an Mettler Toledo XS205DU
electronic balance (Mettler-Toledo LLC, Columbus, OH, USA) to an accuracy of 0.01 mg. Prior to the
gravimetric measurement of wear, cylinders were washed in soapy water, thoroughly rinsed in water,
cleaned ultrasonically in ethanol for 20 min, and then left in an atmosphere-controlled room for 24 h to
dry and thermally stabilize. Weight loss was converted into volume loss using the specific density of
8 g/cm3 for AISI 304 steel cylinders. The friction force was continuously recorded during each test. The
sliding tests were repeated three times for reliability and reproducibility.



Lubricants 2019, 7, 76 4 of 12

Lubricants 2019, 7, x FOR PEER REVIEW 4 of 12 

 

 
Figure 2. Tribotester schematic diagram. 

2.4. Surface Characterization  

Morphology of the wear scars on the worn specimens and their surface roughness were analyzed 
with a Field Emission Scanning Electron Microscope (FE-SEM) ZEISS SIGMA VP (Carl Zeiss SBE, 
Thornwood, NY, USA) and a Dektak XT surface profilometer (Bruker Nano Inc., Tucson, AZ, USA). 

3. Results 

3.1. Morphology 

Morphology of the nanoparticles is shown in Figure 3. CuO nanoparticles with particle sizes 
between 50 and 300 nm can be observed in Figure 3a. A SEM micrograph of SiO2 nanoparticles is 
shown in Figure 3b. The morphology of the SiO2 nanoparticles was fairly spherical, with particle sizes 
between 25 and 35 nm. 

 

Figure 3. SEM micrographs of (a) CuO nanoparticles, and (b) SiO2 nanoparticles. 

3.2. Rheological Properties of Nanofluids 

The rheological behavior of coconut base oil is shown in Figure 4. In this figure, the viscosity 
decreases at first, and after a shear rate of 50 s−1, the viscosity remains constant. Therefore, the 
viscosity experiences shear thinning before approaching a constant. Figures 5 and 6 present viscosity 
at different concentrations of SiO2 in coconut oil. For concentrations of 0.75% and lower, the viscosity 
steadies out at lower values when compared to coconut without additives. For concentrations above 

Figure 2. Tribotester schematic diagram.

2.4. Surface Characterization

Morphology of the wear scars on the worn specimens and their surface roughness were analyzed
with a Field Emission Scanning Electron Microscope (FE-SEM) ZEISS SIGMA VP (Carl Zeiss SBE,
Thornwood, NY, USA) and a Dektak XT surface profilometer (Bruker Nano Inc., Tucson, AZ, USA).

3. Results

3.1. Morphology

Morphology of the nanoparticles is shown in Figure 3. CuO nanoparticles with particle sizes
between 50 and 300 nm can be observed in Figure 3a. A SEM micrograph of SiO2 nanoparticles is
shown in Figure 3b. The morphology of the SiO2 nanoparticles was fairly spherical, with particle sizes
between 25 and 35 nm.
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3.2. Rheological Properties of Nanofluids

The rheological behavior of coconut base oil is shown in Figure 4. In this figure, the viscosity
decreases at first, and after a shear rate of 50 s−1, the viscosity remains constant. Therefore, the viscosity
experiences shear thinning before approaching a constant. Figures 5 and 6 present viscosity at different
concentrations of SiO2 in coconut oil. For concentrations of 0.75% and lower, the viscosity steadies out
at lower values when compared to coconut without additives. For concentrations above 0.75% SiO2,
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the viscosity is greater than the base oil and it experiences shear thinning behavior until the end. It is
evident that viscosity is dependent of the concentration of SiO2 in coconut base oil.
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Rheological behavior for coconut oil with CuO nanoparticles is shown in Figures 7 and 8.
As concentration of CuO increases, the viscosity decreases. Initially, the viscosity displays some shear
thinning as indicated by the power law index of less than one when fitting data into empirical models.
At higher shear rates, the viscosity remains constant. Therefore, concluding that viscosity behavior of
the nano-lubricant is dependent of the concentration.
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3.3. Rheological Models

3.3.1. Power Law Model

The simplest model to represent viscosity versus shear rate behavior is the power law. The power
law consists of two parameters, which help express viscosity (η) as shown in Equation (1):

η = K
( .
γ
)n−1

(1)

where K represents the consistency coefficient and n the power law index. When n < 1, it represents
shear thinning behavior, when n = 1 it represents a Newtonian fluid, and when n > 1 it represents
shear thickening behavior. The power law-fitted equations are shown in Figures 5 and 7.

3.3.2. Cross Model

To further improve the empirical model, the Cross model can be used. Equation (2) represents the
Cross model.

η =
η0 − η∞

1 +
(
K

.
γ
)n + η∞ (2)

where η0 represents viscosity at a very low shear rate, η∞ represents infinite viscosity, K is consistency
index, and n is the flow behavior index [11].

The Cross equation-fitted data for coconut base oil with SiO2 and CuO are shown in Figures 6
and 8, respectively. The parameters for the empirical models are shown in Table 2, along with the
root-mean-square error (RSME) and the error sum of squares (SSE).

Table 2. Regression parameters for 1.25% SiO2 and 1.00% CuO concentrations in coconut base oil.

Model Configuration K n R2 η0 η∞ RSME SSE

Power Law Coconut Oil w/1.25% SiO2 93 0.8174 0.9192 N/A N/A 1.748 116.1
Cross Equation Coconut Oil w/1.25% SiO2 271.1 0.9029 0.9841 370 37.27 0.7658 22.87

Power Law Coconut Oil w/1.00% CuO 31.01 0.9619 0.3370 N/A N/A 0.8914 527.7
Cross Equation Coconut Oil w/1.00% CuO 12.69 0.9847 0.4055 500 25.7 0.8426 471.7
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Using the coefficient of determination (R2), the better empirical model was found to be the Cross
equation. This is due to that, at higher shear rate values, the lubricants behave in a nonlinear fashion.
Therefore, the parameters of η0 and η∞ are needed to express this behavior.

3.4. Tribological Results

The tribological performance of coconut oil as a lubricant was evaluated with and without
nanoparticles. The effect of nanoparticle concentration on the friction force with respect to time is
shown in Figure 9. It was found that the friction force can be significantly reduced by the addition
of nanoparticles into the coconut lubricant. The best results were obtained with the concentration of
1.25 wt % for SiO2 nanoparticles and 0.50 and 1.00 wt % for the CuO nanoparticles.
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Figure 10 shows the COF average values determined during tribological tests under block-on-ring
configuration. The coefficient of friction was calculated using Equation (3):

µ = F/N (3)

where µ is the coefficient of friction, F is the average friction force measured by the sensor during the
steady state, and N is the normal force being applied. It is noted that the addition of SiO2 and CuO
nanoparticles lowers the coefficient of friction, which is in agreement with Peng and co-workers [7].
It was found that SiO2 nanoparticles at 1.25 wt % in coconut oil reduces the coefficient of friction
by 93.75%, compared to the base oil, as shown in Figure 10a. On the other hand, the addition of
CuO nanoparticles at 0.5 and 1.00 wt % decreases the coefficient of friction by 93.25% and 86.25%
respectively, compared to the coconut oil without additives.
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Figure 11 shows the mean volumetric wear produced with the coconut nano-lubricants when
they were evaluated under extreme pressure (EP) using a cross-cylinder configuration.
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increases antiwear ability, which can be confirmed by these SEM images. Surface polishing has been 
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Figure 11. Mean volumetric wear of AISI 304 cylinders lubricated with coconut oil modified with
(a) SiO2 and (b) CuO nanoparticles.

From Figure 11, it can be observed that the addition of SiO2 and CuO nanoparticles to the coconut
oil decreased the volumetric wear in the AISI 304 stainless steel specimens during testing. In the case of
the SiO2 nanoparticles as lubricant additives, the 1.25 wt % concentration reduced the volumetric wear
by 37.03% compared to the base oil, as shown in Figure 11a. Figure 11b shows the volumetric wear
produced by coconut oil using different concentrations of CuO nanoparticles as an additive. It can be
observed that with 1.00 wt % concentration of CuO nanoparticles as an additive, the volumetric wear
decreased by 33.32% when compared to coconut as lubricant without additives.

Two possible nanoparticle effects may contribute to the reduction of the coefficient of friction
and wear. One is the rolling effect of nanoparticles, illustrated in Figure 1A. In some researches with
various material pairs [12,13], a rolling effect of the nanoscale particles could be expected under certain
conditions such as surface roughness and hardness of the material pairs and particles. This effect can
reduce both the frictional force and the wear rate. Another assumption is a nanoscale polishing effect,
shown in Figure 1D. With appropriate size, hardness, and volume content, nanoparticles can polish
the counterpart surface in a very fine scale [14]. As a result, the coefficient of friction and the wear rate
can be reduced.

3.5. Worn Surface Characterization

To improve the understanding of the wear mechanisms of the sliding surfaces, Figure 12 provides
SEM micrographs of the wear scars produced during wear testing. Figure 12a presents a SEM
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micrograph of the wear scar produced during the wear test lubricated with coconut oil without
additives. A rough surface can be observed, with several grooves and deep furrows uniformly
distributed on the contact area. A SEM micrograph of the wear scar produced with coconut oil
enhanced with 1.25 wt % of SiO2 nanoparticles is shown in Figure 12b. The wear track presents grooves
and furrows, as well as some localized pits. Figure 12c shows a SEM micrograph of the wear scar
produced with coconut oil enhanced with 1.0 wt % CuO nanoparticles. Using CuO nanoparticles
at an optimum concentration, the wear scar shows shallow and smooth micro-grooves, along with
shallow furrows which are formed by the small nanoparticles. Unlike the two previous conditions,
micro-pitting was found in the wear scar.Lubricants 2019, 7, x FOR PEER REVIEW 10 of 12 
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Figure 12. SEM Micrographs of wear scars produced during wear tests lubricated with (a) coconut oil,
(b) coconut oil with SiO2 nanoparticles at 1.25 wt %, and (c) coconut oil with CuO nanoparticles at
1.0 wt %.

The change in the morphology of the wear scars produced by the nano-lubricants can be attributed
to the polishing effect. The mechanism of the nanoparticles polishing reduces friction and increases
antiwear ability, which can be confirmed by these SEM images. Surface polishing has been reported
for sliding tests by Chang, et al. [15] in the SEM observations of nano-TiO2 as an additive. Such a
polishing effect was also confirmed by Peng et al. [16] when nano-SiO2 and Al nanoparticles [17] were
used as lubricant additives.

Surface roughness profiles of the wear scars produced during wear testing are shown in Figure 13.
The surface roughness profile of the wear scar produced during the wear test lubricated with coconut
oil without additives is shown in Figure 13a. From the roughness profile, numerous asperities and a
mean surface roughness value (Ra) of 0.855 µm can be seen. Figure 13b shows the roughness profile
of the wear scar produced using coconut oil with SiO2 nanoparticles at 1.25 wt %. With the addition
of SiO2 nanoparticles at 1.25 wt %, there was a decrease in the roughness compared with coconut oil
without additives, resulting in a Ra value of 0.217 µm. After the wear test using coconut oil with the



Lubricants 2019, 7, 76 11 of 12

addition of 1.0 wt % CuO nanoparticles, the surface roughness on the wear scar resulted in a Ra value
of 0.178 µm, as shown in Figure 13c.Lubricants 2019, 7, x FOR PEER REVIEW 11 of 12 
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Figure 13. Surface roughness profiles of wear scars produced during wear tests lubricated with
(a) coconut oil, (b) coconut oil with SiO2 nanoparticles at 1.25 wt %, and (c) coconut oil with CuO
nanoparticles at 1.0 wt %.

The reduction of the surface roughness of the wear scars produced by the nano-lubricants confirms
the presence of the polishing effect, illustrated in Figure 1D. The polishing effect is known as a
lubrication mechanism present when the roughness of the lubricating surface is reduced by abrasion
assisted by nanoparticles [6]. Similar results were obtained by previous experimental studies [2,18,19]
where, for all nano-lubricants, the tendency of reduced surface roughness was attributed to the
polishing effect exhibited by nanoparticles.

4. Conclusions

The rheological behavior and tribological performance of coconut oil with nanoparticles as
lubricant additives have been discussed in this paper. Based to the research conducted, it can be
concluded that:

• Nano-lubricant rheological behavior is dependent of concentration. For SiO2 nanoparticles in
coconut base oil, viscosity increased at higher concentrations. For CuO nanoparticles, the viscosity
decreased as the concentration of CuO increased in coconut base oil.

• Friction-reduction properties of coconut oil were enhanced by the addition of SiO2 and
CuO nanoparticles.

• There exists an optimum concentration of CuO nanoparticles (0.5%) at which the coefficient of
friction is the least.

• As the SiO2 nanoparticle concentration increases, the COF decreases up to a 1.25% concentration.
• Surface analyses via SEM and profilometry confirmed the surface enhancement of the worn

surfaces via the polishing effect produced by the nanoparticle additives.
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