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Abstract: Hip-implants structured with anti-bacterial textures should show a low-friction coefficient
and should not leach hazardous substances into the human body. The surface of a typical material used
for hip-implants, namely Cobalt–Chrome–Molybdenum (CoCrMo) was textured with different types of
laser-induced periodic surface structures (LIPSS)—i.e., low spatial frequency LIPSS (LSFL), hierarchical
structures consisting of grooves superimposed with high spatial frequency LIPSS (HSFL) and Triangular
shaped Nanopillars (TNP)—using a picosecond pulsed laser source. The effect of LIPSS on
the wettability, friction, as well as wear of the structures, when slid against a polyethylene (PE) counter
surface and biocompatibility was analyzed. Surfaces covered with LSFL show superhydrophobicity
and grooves with superimposed HSFL, as well as TNP, show hydrophobic behavior. The coefficient of
friction (CoF) of LIPSS against a polyethylene (PE) counter surface was found to be higher (ranging
from 0.40 to 0.66) than the CoF of (polished) CoCrMo, which was found to equal 0.22. It was found
that the samples release cobalt within biocompatible limits. Compared to polished reference surfaces,
LIPSS cause higher friction of CoCrMo against PE contact. However, the wear of the PE counter surface
only increased significantly for the LSFL textures. For these reasons, it is concluded that LIPSS are not
suitable for a heavily loaded metal-on-plastic bearing contact.
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1. Introduction

At least 3% of the patients that require primary total hip arthroplasty surgery need a revision due
to severe prosthetic joint infections [1]. This leads to additional hospitalizations, costs and compromises
the patient’s health. Surface textures in the nano- and micrometer scale are observed in nature, that have
an antibacterial effect, such as butterfly wings and shark skin [2]. Anti-bacterial surface features must
be of the same order or slightly smaller than the bacteria size, in order to influence the adherence
behavior of the bacteria [3]. This effect is based on the reduction of the amount of available surface
for the bacteria cell to adhere to. Bacteria that most often cause prostheses related infections are
Staphylococcus aureus and Escherichia coli [4]. The characteristic dimensions of the bacteria are one to
three µm in diameter [5,6].

Cobalt–Chrome–Molybdenum (CoCrMo) is an alloy that is most often used for the bearing
surface of a hip implant, due to its high fatigue, wear and corrosion resistance [7]. In a metal-on-plastic
artificial hip joint, the CoCrMo femur head articulates against an polyethylene (PE) acetabulum cup.
The surface of the CoCrMo component is traditionally mirror polished [8].
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An established method to alter surface properties on the nano- to micrometer scale is laser
surface texturing using (ultra-) short laser pulses. Under specific conditions, this can lead to so called
laser-induced periodic surface structures (LIPSS). LIPSS are nanometer sized, regular patterned surface
textures and can improve tribological performance [9,10], wettability properties [10–15], anti-bacterial
properties [15–18] and cell-tissue growth [11].

In order to reduce infections, LIPSS having dimensions (periodicity and amplitude) about the size
of the bacterias on the CoCrMo material could improve the antibacterial performance of the CoCrMo
femur. However, hip-implants also should show a low-friction coefficient and should not leach
hazardous materials into the human body. Therefore, the aim of this study is to not only study
the formation of LIPSS on CoCrMo, but also study the tribological properties of CoCrMo on PE as well
as the wettability and the leaching properties of the textures. In this study, a picosecond pulsed laser is
used to create different types of LIPSS on CoCrMo surfaces. To the best of the authors knowledge, it is
the first report of hexagonally packed triangular nanopillar LIPSS produced with a picosecond laser
on CoCrMo. The tribological, wetting and leaching properties of different types of LIPSS on CoCrMo
are investigated and compared.

2. Materials and Methods

2.1. Laser Setup and Material

Figure 1a shows the experimental laser setup schematically. It consists of a pulsed Yb:YAG
disk laser source (TruMicro 5050 of Trumpf GmbH, Ditzingen, Germany) emitting a laser beam
with a wavelength of 1030 nm, maximum pulse frequency of 400 kHz, pulse energies up to 125 µJ
and a fixed pulse duration of 6.7 ps. The fluence profile of the focal laser spot is nearly Gaussian
(M2 < 1.3). The polarization of the laser beam exiting the laser head is linear. Besides exposing
the material to linear laser polarization, also a quarter wave plate was included in the setup to achieve
circular polarization, which may lead to triangular shaped LIPSS textures. The beam was focused on
the surface of the samples, using a telecentric Fθ lens (Ronar of Linos GmbH, Göttingen, Germany)
with a focal length of 80 mm, resulting in a focal spot with an e−2-diameter of d = 33.6 ± 1.6 µm
(see Section 2.2.1).

The samples consists of polished CoCrMo discs with a diameter of 25 mm and a thickness of 3 mm.
The surface roughness (Ra = 0.003 ± 0.0003 µm, Rq = 0.004 ± 0.0004 µm) of the discs was measured
with an atomic force microscope (NX10, Park Systems Corp., Suwon, South Korea). manufacturer‘s
headquarters. The beam was scanned over the substrate using a galvoscanner (intelliSCAN14 of
ScanLab GmbH, Puchheim, Germany) at normal incidence in air, see Figure 1b. Different shapes
and sizes of LIPSS were produced by adjusting the type of polarization (linear or circular) and by
adjusting the laser peak fluence (F0) and the number of overscans of the laser spot over the surface
(NOS). The scan velocity of the laser spot (v), the laser pulse frequency ( fF) and the spatial pitch between
laser pulses on the surface (∆x, ∆y) were kept constant in this study at v = 2 m/s, fF = 1000 Hz
and ∆x = ∆y = 5 µm, respectively, see Figure 1b. This yields a geometrical pulse-to-pulse overlap (OL)
in both, x- and y-direction, of OL = 1 − v/(d · fF) ≈ 0.85. All samples were cleaned in an ultrasonic
bath with ethanol for 20 min and dried in ambient air after laser treatment. Table 1 shows the chemical
composition of the samples.

Table 1. Cobalt–Chrome–Molybdenum (CoCrMo) alloy composition in weight percent, the composition
is balanced (Bal.) with Cobalt.

Element Co Cr Mo Ni Si; Mn; Fe

wt % Bal. 27 − 30 5 − 7 ≤2 ≤1
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(a) (b)

Figure 1. Schematic representations of the laser setup and the scanning trajectory of the laser spot.
(a) Schematic representation of the laser setup; λ/2: half-wave plate; BSC: beam splitter cube; BD:
beam dump; λ/4: quarter-wave plate (optional). (b) Scanning trajectory of the laser spot; fF: pulse
frequency; v: scan velocity; d: beam diameter; OL: geometrical pulse-to-pulse overlap; NOS: number of
overscans; ∆x, ∆y: geometrical pitch between subsequent laser pulses in x- and y-direction.

2.2. Analysis Tools

2.2.1. Laser Beam Characterization

The laser power was measured using an thermopile power sensor (PM30 of Coherent,
Santa Clara, CA, USA) with a measurement uncertainty of ±1%, connected to a readout unit
(FieldMaxII-TOP of Coherent, Santa Clara, CA, USA). The focal spot diameter 33.6 ± 1.6 µm (e−2)
was measured using a laser beam characterization device (MicroSpotMonitor of Primes GmbH,
Pfungstadt, Germany).

2.2.2. Surface Morphology Dimensions

Laser-induced surface structures were analyzed using a scanning electron microscope (JSM-7200F,
Jeol, Tokyo, Japan). From SEM micrographs, the periodicity of LIPSS areas were analyzed with the help
of a 2D fast Fourier transform (FFT) algorithm using a MATLAB [19] script. Details of the script are
reported in our earlier work [20].

The roughness of the surface textures was analyzed by means of an atomic force microscopy (NX10,
Park Systems Corp., Suwon, South Korea) in true non-contact™ mode using a non-contact cantilever
(PPP-NCHR, 125 × 30 × 4 µm, Tip < 10 nm, Park Systems Corp., Suwon, South Korea). The roughness
parameters that were extracted from these measurements are used to characterize the surface by means
of root mean square surface area roughness (Rq), average surface area roughness (Ra), maximum peak
height (Rp), maximum valley depth (Rv), skewness (Rsk), kurtosis (Rku) and the ratio between the real
surface area and the projected area (σ).

2.2.3. Contact Mechanism and Friction Parameters

The wear of the samples was characterized in a wear test in which the textured sample was
exposed to a polyehtylene (PE) ball (diameter of 9.5 mm) sliding over the surface in BCS as lubricant,
in order to simulate the human body environment. The sample discs are clamped in a Universal
Mechanical Tester (UMT, Bruker, Billerica, MA, United States). The PE ball was pressed against
the sample surface and moved in a reciprocate fashion for 104 min with 11 mm/s and a normal
load of 0.5 N (18 MPa contact pressure) [21]. The normal force and the shear force are measured
and the coefficient of friction during steady state of the wear test was calculated. The wear of
the PE ball surface is analyzed by observing the wear diameter with a confocal microscope (S Neox,
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Sensofar, Terassa, Spain). The wear of the textures is investigated with a SEM (see Section 2.2.2)
and energy-dispersive X-ray spectroscopy (EDS) analysis in the same SEM system.

2.2.4. Contact Angle Measurement

The wettability of the textures was characterized by means of a contact angle measurement device
(SCA20, DataPhysics Instruments GmbH, Filderstadt, Germany). The sample surfaces were wiped
with isopropanol and dried under ambient conditions prior to analysis. Next, a droplet of water
of 5 µL was deposited on the surface and the angle between the surface and the droplet was measured.
Three measurements were conducted for each sample.

2.2.5. Biocompatability

The substrates were sterilized by immersing them in ethanol for 15 min. A simulated body fluid
(SBF) solution was made according to the instructions of Kokubo et al. [22]. That is, salts were dissolved
in de-ionized water such that a solution was created with ion concentrations similar to that of blood
plasma. The pH value of SBF (7.40) is comparable to the pH of human blood plasma, which ranges
from 7.2 to 7.4. The substrates were immersed in 40 mL of SBF solution at 37 ◦C in a shaking incubator
(160 rpm). The ion release was analyzed after 1, 7, 14, 21 and 26 days respectively. Inductively
Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) (Optima 5300 dual view, PerkinElmer Inc.,
Waltham, MA, USA) was used to analyze the leaching properties.

3. Results and Discussion

3.1. Surface Structures Processed with Linear Polarization

Two types of surface textures were processed using linear polarized laser irradiation, by applying
increasing peak fluence levels and various number of overscans during the laser processing. These two
types are low spatial frequency LIPSS (LSFL, see Figure 2) and hierarchical structures composed of
micro-grooves and superimposed LSFL (see Figure 3).

Figure 2. Scanning electron microscope (SEM) micrographs of low spatial frequency laser-induced
periodic surface structures (LSFL) processed on CoCrMo with a laser peak fluence of F0 = 1.67 J/cm2

and number of overscans NOS = 1 ((a) 1000× magnification; and (b) 10,000× magnification).
(c) 2D-fast Fourier transform (FFT) map of the SEM micrograph (a). The spatial periodicity of the LSFL is
Λ ≈ 800 nm. The arrow in micrograph (a) indicates the direction of the E-field of the laser polarization.

The periodicity of the LSFL in Figure 2 was found to equal Λ ≈ 800 nm and are perpendicular
to the E-field of the laser polarization direction, which is typical for LSFL on metals [23]. LSFL on
the sample are spread homogeneously over the processed surface of 5 × 5 mm2.

Figure 3 shows SEM micrographs of hierarchical structures processed on CoCrMo with NOS = 5
and various peak fluence levels. It can be observed in this figure, that with increasing peak fluence
levels, the periodicity of the micro grooves increases from ΛGrooves ≈ 3.55 µm at a peak fluence
level of F0 = 1.82 J/cm2 to ΛGrooves ≈ 7.9 µm at F0 = 7.07 J/cm2. The formation of micro-grooves
and micro-bumps is attributed to an increased heat accumulation during processing [24–26].
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The periodicity ΛLSFL ≈ 920 nm of the LSFL in Figure 3 was constant for all fluence levels within
the fluence range studied. It is known that the LSFL periodicity increases with increasing fluence levels
up to a certain fluence level, after which the periodicity does not vary with the fluence [27,28].

Figure 3. SEM micrographs of hierarchical structures processed on CoCrMo with NOS = 5 and various
peak fluence levels at two different magnifications ((a–c) 1000×; and (d–f) 10,000×). (g–i) 2D-FFT maps
of the micrographs of the processed areas (a–c). The periodicity of the micro-grooves ΛGrooves increases
with increasing peak fluence levels. The periodicity of the LSFL features are constant at ΛLSFL ≈ 920 nm
for all micrographs. The arrow in micrograph (a) indicates the direction of the E-field of the laser
polarization.

3.2. Surface Structures Processed with Circular Polarization

Triangular nanopillars (TNP), hexagonally packed, can be produced by exposing the surface
to either circular polarized ultra-short laser pulses [13], or to double-pulsed (bursts of pulses),
linear cross-polarized, ultra-short laser pulses [29,30]. These types of structures might be preferred
over LSFL for the aimed application, since TNP are symmetric in three directions, whereas LSFL
are symmetric in only one direction. Because hip joints rotate with respect to the x-, y- and z-axis,
the tribological characteristics of the bearing should ideally be equal in any direction.

The physical phenomena behind the formation of triangular LIPSS are still under debate [13,29,30].
e.g., Fraggelakis et al. [30] proposes that the convection flow of the molten material layer as a cause
for this type of LIPSS, whereas Liu et al. [29] claims the 2D nanotriangle structures develop due to
the interference of surface plasmon polaritons (SPP’s) with the incoming laser light. Since Liu et al.
applied cross-polarized, time delayed double-pulses, these authors argue that the first pulse induces
SPP’s and the interference with the laser light leads to transient, spatially periodic meta-gratings
of a modified refractive index on the surface with a wave vector parallel to the laser polarization.
Further, they claim that the second cross-polarized pulse also induces SPP’s at the surface due to
surface roughness with a wave vector parallel to the laser polarization. The latter SPP then interferes
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with the transient refractive index meta grating of the first pulse and could diffract into two SPP’s with
different wave vectors. The interference of the laser light with these three SPP’s in different directions
leads to ablation of a hexagonal pattern, resulting in triangular shaped nanostructures.

Figure 4 shows SEM micrographs of surface structures processed on CoCrMo with circular
polarization with NOS = 1 and increasing peak fluence levels. It can be observed from Figure 4a,
that LSFL with a periodicity of about ΛLSFL ≈ 860 nm form at a peak fluence level of F0 = 2.87 J/cm2.
This structure may be an indication that the polarization is not perfectly circular, but actually elliptically
polarized with the main axis perpendicular to the processed LSFL. It can also be observed in Figure 4a,
that “interruptions” of the LSFL features start to appear in the direction and the periodicity of
the hexagonal shapes, see Figure 4a and the indicated frequencies on the 2D-FFT map of Figure 4a.
Further it can be recognized when comparing Figure 4a,b, that these “interruptions” are indeed
a surface morphology “proceeding” the formation of grooves in two different directions, which then
form the triangular nanopillars if the fluence is increased. At a fluence level of F0 = 5.23 J/cm2,
regular TNP are formed, which become less regular and less pronounced for higher fluence levels,
see Figure 4c. When comparing the laser processing conditions and groove periodicities between
the hexagonal nanopillars with earlier studies (see Table 2), it becomes evident, that the hexagonal
pattern processed either with single pulses of circular polarization or with cross polarized pulses with
linear polarization origin from the same physical phenomena. Hence, the physical explanation of
the origin for those patterns has to apply for each case of laser processing condition listed in Table 2.
The physical explanation of hexagonal nanopillars exceeds the scope of this paper.

Table 2. Comparison of laser processing parameters and groove periodicity of hexagonal nanostructures with
earlier studies.

Wavelength [nm] Pulse Duration Pulse Frequency [kHz] Polarization Period between Grooves Reference

1030 7 ps 400 Circular, non-burst pulses 0.83 λ This study
1032 310 fs 250 Circular, non-burst pulses 0.84–0.98 λ [13]
710 50fs 1 Linear, cross-polarized bursts of pulses 0.89 λ [29]

1030 350 fs 100 Circular, opposite direction of rotation
& Linear, cross-polarized bursts of pulses 0.85 λ [30]

High spatial frequency LIPSS (HSFL) were found between the formed LSFL in Figure 4a
and the triangular nanopillars in Figure 4b,c, with a periodicity of ΛHSFL ≈ 80 nm. Liu et al. [29]
processed triangular nanopillars with two consecutive, cross-polarized pulses with a pulse duration
of 50 fs and with a time delay of 1.2 ps on tungsten in air and in vacuum. In the latter study, HSFL
were not observed when processing tungsten in air, but have been observed when processing tungsten
at low pressures of 10−3 Pa. It was claimed, that the formation of HSFL is attributed to a slower
cooling rate of the molten, liquid material layer at lower pressures. In the latter case, less air exists in
the experimental environment, to transfer the heat from the molten layer to. Therefore, heat remains
in the molten layer for a longer period of time and the cooling rate decreases. Thus, when the liquid
material cools down, there is more time for shrinking and film fragmentation of the melt into HSFL
then when processing in air. Compared to the latter study, the pulse duration of the laser used in
this work, is in the order of two magnitudes larger. Hence, more heat is introduced into the lattice,
which might explain the occurrence of HSFL between LSFL and triangular nanopillars when processed
in air.
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Figure 4. SEM micrographs of surface structures processed on CoCrMo using circular polarized laser
radiation at NOS = 1 and various peak fluence levels at two different magnifications ((a–c) 3000×;
and (d–f) 15,000×). (g–i) 2D-FFT maps if the micrographs of the processed areas (a–c). The periodicity
of the LSFL in (a) is about ΛLSFL ≈ 860 nm. The periodicity of the nanopillars is constant in the same
range ΛTNP ≈ 860 nm. The arrow in micrograph (a) indicates the direction of the E-field of the
laser polarization.

3.3. Surface Morphology Dimensions

Three laser-textured surface patterns were chosen, based on their morphologies and uniformity,
for the study of wettability properties, tribological performance and anti-bacterial behavior, see Figure 5.
The laser parameters used to create these structures are listed in Table 3.

Table 3. Surface structures to be functionally evaluated processed with a pulse frequency of f = 400 kHz
and a laser scanning velocity of 2 m/s.

Texture Structure Types Peak Fluence F0 (J/cm2) NOS Laser Polarization Figure

LSFL LSFL 1.67 ± 0.01 1 linear 2a,b, 5b
Grooves Grooves + LSFL 2.84 ± 0.01 5 linear 3a,d, 5c

TNP hexagonal Nanopillars + HSFL 5.23 ± 0.01 1 circular 4b,e, 5d

The roughness parameters of these surface textures are listed in Table 4. As can be concluded
from this table, the roughness parameters of these surfaces vary. Hence, significant differences in
the functional properties (wetting, wear, biocompatibility) of these textures are expected. The higher
value of Ra indicate that Grooves are more rough than a surface covered with only LSFL. Compared to
the polished CoCrMo surface, the square root surface roughness Rq increases significantly due to

laser-texturing. Quantitavely, 23 times Rpolished
q in the case of nanopillars and up to 130 times Rpolished

q

in the case of grooves.
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(a) (b)

(c) (d)

Figure 5. AFM micrographs of a CrCoMo surface: unprocessed (a), LSFL (b), grooves with
superimposed LSFL (c) and triangular nanopillars (d). (a) AFM micrograph of polished CrCoMo
sample. (b) AFM micrograph of LSFL. (c) AFM micrograph of Grooves + LSFL. (d) AFM micrograph
of Triangular Nanopillars.

Table 4. Geometrical properties of the of the surface structures to be functionally evaluated.

Parameter Polished LSFL Grooves TNP

Periodicity (nm) - 800 3550; 920 (LSFL) 860
Rq (µm) 0.004 ± 0.0004 0.163 ± 0.029 0.519 ± 0.130 0.092 ± 0.008
Ra (µm) 0.003 ± 0.0003 0.132 ± 0.026 0.423 ± 0.111 0.077 ± 0.007
Rp (µm) 0.010 ± 0.007 0.293 ± 0.082 1.038 ± 0.198 0.192 ± 0.030
Rv (µm) −0.011 ± 0.007 −0.387 ± 0.113 −0.825 ± 0.321 −0.177 ± 0.023
Rsk (-) −0.118 ± 0.038 −0.319 ± 0.488 −0.013 ± 0.455 0.038 ± 0.216
Rku (-) 0.356 ± 0.812 −0.351 ± 0.859 −0.789 ± 0.306 −0.847 ± 0.308

σ (-) 1.005 1.328 1.752 1.307

As can be observed in Table 4, the dimensions of the chosen surface structures are indeed in
the range of the sizes of the bacterias S. aureus and E. coli, which potentially gives these structures
anti-bacterial properties [3].

3.4. Wetting Properties

When anti-bacterial properties of surfaces found in nature are studied, a correlation between
hydrophobicity and anti-bacterial behavior is found [2,31,32]. Since LIPSS have been found
to be hydrophobic [10–15] and also anti-bacterial [15–18], hydrophobicity is used in this paper
as an indication of anti-bacterial behavior.

The three surface textures (see Figure 5) show hydrophobic behavior compared to the untextured,
mirror polished surface, which shows a water contact angle of (82.7◦ ± 0.7◦, see Table 5).
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Table 5. Contact angles of chosen surface structures.

Surface Structure Polished LSFL Grooves TNP

Contact angle (◦) 82.7 ± 0.7 151 ± 2 141.1 ± 0.2 133 ± 2

The LSFL surface is superhydrophobic for water, whereas the contact angle of the mirror polished
CoCrMo substrate is hydrophilic. The surfaces denoted Grooves and TNP are both hydrophobic,
but less so than LSFL, as is shown in Table 5. The hydrophobicity of the textured surfaces is subject to
variability due to the formation of oxide layers after laser micromachining over time. The polished
sample will oxidize rapidly to a protective layer of CoO, Cr2O3 and MoO3 [33–36]. For example,
it was shown by Huerta–Murillo et al. [37], that the contact angles of laser textured titanium alloys
increase over a time period of five weeks from about 90◦ to 130◦. The contact angles in this study were
measured after seven weeks for LSFL and Grooves and after 12 days for TNP. However, a positive
effect of surface texturing (irrespective of morphological class) was seen on the hydrophobic behavior
of the surfaces, in line with results found in literature [12,13,15].

The influence of the surface roughness on the contact angle can be described by either Wenzel [38],
where it is assumed that the total surface will be in contact with the liquid, or by Cassie [39],
where different materials or a combination of trapped air and a solid will be in contact with the liquid.
In case of Wenzel the relation between the apparent contact angle (CA) θa and the intrinsic CA θi is
given by

cos(θa) = σ(cos θi), (1)

where σ is the ratio between the true surface area and the projected area. In case of hydrophilic surfaces
an increase of the roughness will result in a decrease of the CA and in the case of hydrophobic surfaces
an increase of the roughness will result in an increase of the CA.

In case air might be trapped due to surface morphology the contact angle according to
Cassie–Baxter [39] is defined as

cos(θCB) = σCB f (cos θi) + f − 1. (2)

In this equation, θCB is the apparent contact angle, f is the fraction of the projected area of
the surface that is wet by the liquid and σCB is the roughness ratio of the wet area. This shows,
that an increasing amount of trapped air, which means a smaller ratio f , will lead to an increase of
the apparent contact angle.

This indicates that the measured contact angles on the CrCoMo samples due to laser processing
can be explained by the increase of the ratio between the real surface area and the projected area σ

and a reduction of the wetted area due to LIPSS [40,41]. Nonetheless, the contact angles are highly
dependent on the formation of additional oxide layers. Interpretation of the origin of the hydrophobic
properties would require a more thorough study of this surfaces.

3.5. Tribological Properties

The measured coefficient of friction (CoF) of the textured CoCrMo surfaces are listed in Table 6.
The CoF of TNP with the hexagonal TNP is significantly lower than those of LSFL and Grooves.
The friction coefficient of polished CoCrMo with 0.5 N (18 MPa), 11 mm/s and BCS lubricant was
0.22 ± 0.07. The friction coefficients of the textured surfaces are thus significantly higher than the CoF
of the polished surface, due to the surface topograhphy changes.
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Table 6. Coefficient of friction and polyethylene (PE) wear diameter of chosen surface structures.

Surface Structure Polished LSFL Grooves TNP

Coefficient of friction [-] 0.22 ± 0.07 0.66 ± 0.05 0.62 ± 0.09 0.40 ± 0.07
PE wear diameter [mm] 0.8 ± 0.1 3.7 ± 0.26 1.3 ± 0.03 0.8 ± 0.04

Figure 6 shows SEM micrographs of the LSFL structure after the wear test. From this figure it
can be observed that the surface morphologies on the CoCrMo surface remain intact during the given
wear test. After 104 min of sliding the PE sphere over the LSFL textured surface with a 18 MPa load,
11 mm/s speed and BCS lubricant, the PE ball had a volume loss of 43 mm3. This is nearly 9.5% of
the total sphere volume. Hence, it can be concluded that LSFL cannot be used as a bearing surface
of a hip joint, since in the end of high loading, it reduces the durability of the hip joint significantly.
The other two textures lead to noticeably less wear on the PE ball, see Table 6. The CoF of LSFL was
also higher than that of Grooves and TNP. However, the difference between the CoF LSFL and Grooves
is much smaller than the wear PE experiences against LSFL and Grooves. The fact that LSFL show
a higher hydrophobicity (see Table 5) may influence the wear rate as well. High friction in a joint will
lead to more heat generation, which may cause performance degradation of the joint. However, no
maximally defined CoF is stated for a hip joint. The wear recorded for TNP is actually very close to
that found on the polished surface.

(a) (b)

Figure 6. SEM micrographs of LSFL structure after wear test. (a) SEM image LSFL. (b) SEM image LSFL.

The wear conditions of the UMT, which are 18 MPa, 11 mm/s, reciprocal movement, are not
comparable to the wear conditions in a natural hip joint, approximately 7.8 MPa and 21 mm/s during
normal gait and rotational movement in all directions [21]. Since the surface structure TNP shows
a periodicity in three directions (see Figure 4), instead of one in the cases of LSFL and Grooves, and also
shows the lowest CoF and PE wear very close to the polished surface, TNP is the most promising
candidate for a potential anti-bacterial surface structure on an artificial hip-joint.

3.6. Biocompatibility

Lutey et al. [15] showed that LSFL and TNP performed best on anti-bacterial properties regarding
E. coli and S. aureus on stainless steel. A bacterial count reduction of 99.8% and 99.2% was found for
E. coli and 84.7% and 79.9% was found for S. aureus, for the LSFL and TNP, respectively. Grooves
(in [15] defined as Spikes) on the other hand, do not show improvement in anti-bacterial properties.
However, to estimate the leaching of hazardous elements of the CoCrMo alloy into the human body,
LSFL textured CoCrMo samples were used to perform a leaching test.

Release of Cobalt (Co) ions from the CoCrMo substrate may have an adverse affect on the patient’s
health. The Medicines and Healthcare products Regulatory Agency recommended a 7 µg/L threshold.
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Concentrations above that threshold can be toxic for the patient [42]. Due to the increased surface
area of the textured samples, when compared to the polished samples, textured samples may cause
a higher ion release rate of Co and Ni ions. Chromium (Cr), Molybdenum (Mo) and Nickel (Ni) are
also toxic in certain concentrations, but to the best of the authors knowledge no medical standardized
regulations exist on acceptable concentration levels. The release of ions can be studied by means of
a leaching experiment.

To that end, polished CoCrMo as well as LSFL textured CoCrMo samples were immersed in
simulated body fluid (SBF, see Section 2.2.5) for nearly four weeks. Ion release was measured after 1, 7,
21 and 26 days. All samples were analyzed for the presence of Co, Cr, Mo and Ni elements by means
of atomic emission spectroscopy analysis. No significant concentrations of Cr, Mo and Ni were found
for any of the samples. Traces of Co were found in the SBF samples of the polished and the textured
CoCrMo samples, see Figure 7. A gradual release of Co can be observed during the first two weeks for
both polished and textured CoCrMo. After one day of immersion, the Co ion concentration is slightly
higher for textured CoCrMo. Interestingly, there is no significant difference between the textured
and untextured sample observed after one week and three weeks of immersion. After two weeks of
immersion a larger Co concentration is found for polished CoCrMo and after four weeks of immersion
the textured samples give a higher concentration, 27 ± 3 ppb vs. 17 ± 1 ppb. It was expected that
the concentration of cobalt in the SBF would increase in time as more and more cobalt leaches from
the surface into the fluid, until the equilibrium state is reached. The decrease in cobalt concentration
of the untextured sample after 14 days could be explained by a change in pH due to a change in ion
concentration in the SBF. The pH change could influence the equilibrium of Co ions. No precipitation
of any element was observed at any point during and after the experiment. Unfortunately, the pH
was not measured after the experiment. The difference in cobalt concentration after four weeks of
immersion between polished and textured CoCrMo could be explained by the difference in surface area.
According to Leyssens et al. [42], levels of Co lower than 300 µg/L will not cause health complications
for individuals. The levels of Co in this study measured during 26 days of immersion, are well below
this threshold. In the body the CoCrMo surface will be slightly larger. However, in the patients body,
larger amounts of bodily fluids are present, and the human body does process low concentrations
of Co [43]. However, it is questionable if this test can be compared with levels measured in patients.
There are many factors which effect the leaching behavior of surfaces. To the best of our knowledge,
no research on leaching of CoCrMo in SBF or similar circumstances has been conducted so far.

Figure 7. ICP-AES analysis of cobalt ion release of polished and LSFL textured CoCrMo samples in
ppb as a function of time.

4. Conclusions

In this study, surface textures of nano and micrometer scale were produced on polished
Cobalt–Chrome–Molybdenum alloy (CoCrMo) surfaces, using an infrared picosecond pulsed laser
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source. It was shown that the shape and size of the surface features can be controlled by adapting
the laser fluence, the number of overscans of the laser spot over the surface and the type of polarization.
To evaluate the wetting, tribological and leaching properties of laser-textured surfaces, three different
types of textures were homogeneously produced on a large area (larger than the laser beam diameter),
namely: low spatial frequency LIPSS, hierarchical grooves with superimposed low spatial frequency
LIPSS, and triangular hexagonally packed nanopillars. The tribological behavior and the wettability of
these three textures on CoCrMo were compared to a polished (i.e., untextured) CoCrMo surface. It was
found that the textured surfaces caused higher friction in a CoCrMo-against-PE reciprocating contact
compared to a polished reference. Moreover, only the LSFL textured surface showed a significantly
higher wear of the PE counter surface. Furthermore, it was found that the hydrophobicity of the surface
increases significantly due the micro-machined textures. Additionally, the biocompatibility of a LSFL
textured surface on CoCrMo was compared to a polished CoCrMo surface. Both polished and textured
surfaces release cobalt ions over a period of four weeks, but are still well below critical threshold levels
reported in literature. Although, long term leaching experiments are recommended.

Based on the experimental conditions and results of this study, it is concluded that the laser
textured surfaces on CoCrMo are not suitable for bearing surfaces in a metal-on-plastic contact. It is
recommended to repeat the wear experiments at lower contact pressures, comparable to the conditions
found in the hip joint, to study the friction and wear of PE under realistic conditions. The wear
resistance, the antimicrobial activity and the effect on human cells of the processed surface textures
would have to be investigated more thoroughly. It is recommended to look into other, possibly static,
applications for antibacterial LIPSS surface textures on CoCrMo, e.g., dental implants.
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FFT Fast Fourier transformation
SPP surface plasmon polaritons
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SBF simulated body fluid
CA contact angle
ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy
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