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Abstract: Data-driven system identification procedures have recently enabled the reconstruction of
governing differential equations from vibration signal recordings. In this contribution, the sparse
identification of nonlinear dynamics is applied to structural dynamics of a geometrically nonlinear
system. First, the methodology is validated against the forced Duffing oscillator to evaluate its
robustness against noise and limited data. Then, differential equations governing the dynamics of
two weakly coupled cantilever beams with base excitation are reconstructed from experimental data.
Results indicate the appealing abilities of data-driven system identification: underlying equations are
successfully reconstructed and (non-)linear dynamic terms are identified for two experimental setups
which are comprised of a quasi-linear system and a system with impacts to replicate a piecewise
hardening behavior, as commonly observed in contacts.

Keywords: nonlinear dynamics; system identification; sparse regression; time series; geometric
nonlinearity; contact

1. Introduction

In recent decades, the impelling need to monitor and supervise machine and structures operations
has led to an increasing usage of sensors and measuring equipment. Time varying data are analyzed and
processed to obtain high fidelity models able to describe and ideally predict the system behavior under
varying excitations and boundary conditions [1–5]. To this end, many strategies have been developed
for system identifications generally based on linear theory, such as modal analysis [6–8]. It is superfluous
to note that, in a sense, all real systems are nonlinear and may be described by linear models only within
some restricted ranges of the governing parameters, or under particular conditions [9–11]. For example,
almost all engineering applications are constituted by jointed structures [12–16] where frictional
dissipation takes place [17,18]. Contact is mediated by roughness, which is well known to introduce
nonlinear stiffening behavior [19–22]. To limit, reduce, or suppress vibrations, frictional dampers are
usually adopted, which in many cases exploit dry friction, and stoppers are used [12]. Hence, in the
last decade, different nonlinear identification techniques have been proposed [23], among these
Brunton et al. [24] have recently suggested the sparse identification of nonlinear dynamics (SINDy)
approach to reconstruct the set of nonlinear ordinary differential equations (ODE) governing the
system dynamics. Taking vibration recordings as an input, SINDy outputs the ODE reconstruction,
i.e., a set of differential equations that describe the observed dynamics. Stender et al. [25] proposed
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an optimization technique which aims at automating the system reconstruction, enforcing further
sparsification of the reconstructed ODEs and at the same time reducing the error. They have tested this
approach extensively for a linear oscillator and for the free vibration of a Duffing oscillator.

In this work, SINDy will be used to reconstruct the dynamics of an externally-excited oscillator
which shows hardening stiffness nonlinearity. In the first part of the paper, time series will be obtained
numerically, integrating the equation of motion of a Duffing oscillator. Two scenarios, which are likely
to happen in practical cases, will be mimicked, i.e., (i) the case where only few states are measured,
and (ii) the case when noisy data are available. In the second part of the paper, the governing equations
will be reconstructed starting from the time series obtained measuring the vibrations of two cantilevers
which are weakly coupled and subjected to base excitation. Similarly to the Duffing oscillators,
these cantilevers have been designed to experience hardening behavior due to impact against two
stoppers. It will be shown that after some smoothing of the experimental data SINDy was able to
reconstruct the system dynamics with good accuracy.

2. Methods

The methods used to reconstruct analytical dynamic models and their governing equations from
time series with tools to optimize the identification of the system for the different configurations
studied in this work are now introduced.

Sparse Identification of Nonlinear Dynamics (SINDy)

The algorithm has been introduced by Brunton et al. [24] is named sparse identification of nonlinear
dynamics (SINDy); it is a method that allows the identification of nonlinear dynamical systems using
sparse regression and sparse representation, see Figure 1. It is based on the assumption of sparsity
of the observed dynamics: most physical systems can be described by governing equations that are
rather sparse in the high-dimensional space of possible nonlinear functions. Nonlinear dynamical
systems, as found in structural dynamics, can be represented as

.
x(t) = f(x(t)) (1)

where x(t) represents the state of the system at time t and the nonlinear function f(x(t)) represents the
dynamic constraints that define the equation of motion of the system. The function f often consists
only of a few terms, making it sparse in the space of possible functions. To determine function f
from data, a time history of x(t) is collected,

.
x(t) is measured or approximated numerically from

the states and they are collected in the matrices X =
[
xT

1 (t), . . . , xT
m(t)

]
and

.
X =

[ .
xT

1 (t), . . . ,
.
xT

m(t)
]
.

Next, an augmented library Θ(X), consisting of candidate nonlinear functions of X, is constructed;
it may consists of constants, polynomials (such as x1(t), x2

1(t), x1(t)·x2(t), x3
1(t), . . .), trigonometric

functions, and other terms. Each column of Θ(X) represents a candidate function for the right-hand
side of Equation (1). Only a few of these functions are active in each row of f, so a regression problem
is set up to determine the vector of coefficients Ξ = [ξ1, ξ2, ξ3, . . . , ξn] that determine which nonlinear
functions are active for each degree of freedom

.
X = Θ(X)Ξ (2)
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delayed samples of the measurements s(t୬). The embedding parameters are the delay d, derived 
from the first zero of the autocorrelation function of the time series, and the embedding dimension 
m, estimated with the false near neighbor (FNN) algorithm, that is a standard tool for determining 
the embedding dimension [27–29]. 

SINDy also requires state time derivatives that can be measured or generated numerically. As 
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by SINDy within prescribed boundaries and using the sequential quadratic programming (sqp) 
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Figure 1. Schematic illustration of the SINDy procedure. System states and their derivatives are
required as time series input. Then, a library of nonlinear candidate functions is compiled. The resulting
over-determined system of equations is solved by sparsity-promoting regression techniques to yield
a sparse reconstruction of the underlying dynamical system in terms of ordinary differential equations.
From ([25], Figure 1).

Here, the central idea is to solve the over-determined system of equations such that the coefficient
vector is sparse. Hence, contrary to classical least-squares solutions, small solution terms are erased
according to the sparsification parameter λ in an iterative fashion. As a result, each column ξk of Ξ

represents a sparse vector of coefficients determining which terms are active in the right-hand side for
one of the row equations

.
xk = fk(x) in Equation (1). Once Ξ has been determined, the reconstructed

set of each row of governing equations can be read directly from it

.
x̃k = Θ

(
xT

)
ξk ≈ fk(x) (3)

where Θ
(
xT

)
is a vector of symbolic functions of elements of X. Therefore, the overall model is

.
x̃ = ΞT

(
Θ
(
xT

))T
≈ f(x) (4)

Each coefficient vector ξ defines the linear combination of nonlinear functions for each state

.
x̃1 = ξ1,1θ1(x) + ξ1,2θ2(x) + . . .+ ξ1,kθk(x). (5)

Often, only a fraction of all states of a dynamical system can be measured during experiments; Taken’s
theorem [26] allows to reconstruct the full dynamics of a nonlinear system from a single time series.
The states in the reconstructed space are not, obviously, identical to states in the true phase space
but the reconstructed trajectories can be useful because they are topologically similar to the original
dynamics, so they have the same geometrical and dynamical properties of the measured dynamics.
The strategy for state-space reconstruction is the time-delay embedding, where a single time series
s(tn) is re-arranged in m-dimensional reconstruction-space vectors x(tn) from m time-delayed samples
of the measurements s(tn). The embedding parameters are the delay d, derived from the first zero
of the autocorrelation function of the time series, and the embedding dimension m, estimated with
the false near neighbor (FNN) algorithm, that is a standard tool for determining the embedding
dimension [27–29].
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SINDy also requires state time derivatives that can be measured or generated numerically.
As proposed in [24,25]. Total Variation Regularized Numerical Differentiation (TVRegDiff) [30] is used
to compute derivatives numerically without noise amplification.

SINDy tries to reconstruct the time series accurately, sometimes generating models of high
complexity that reproduce the given data perfectly but rely on a larger number of active functions than
the one of the actual underlying governing equation. Tools proposed by Stender et al. [25] are used to
improve and automate the identification of a sparse system with SINDy. The first algorithm introduced
finds a correct value of the sparsification parameter λ, on which the population of the coefficient matrix
Ξ depends; λ is varied between the full range of non-zero entries (NZE) of Ξ from NZE = 100% to
NZE = 0% and it selects the optimal value of the sparsification parameter λ that minimizes the error
between the input signal and the one obtained through time integration of the identified set of ODEs.
Then, an optimization is introduced to find values of coefficients that improve the reconstruction of the
system; this step consists of changing the values of non-zero entries found by SINDy within prescribed
boundaries and using the sequential quadratic programming (sqp) method [31] to find values that
reduce the error in the reconstruction further.

In this work, the forcing terms are directly appended to the library of nonlinear functions Θ(X) as
a column, instead of introducing an additional degree of freedom for time. In practical applications,
usually the forcing is a known quantity as it is measured as a time-dependent parameter, which is
reflected in the proposed setup.

3. Numerical Results

To investigate the opportunities and limitations of SINDy for geometrically nonlinear dynamical
systems, the forced Duffing oscillator is studied in a first step. The dimensionless governing
equation reads

..
x + 2ζ

.
x + x + βx3 = Γ cos(ρτ) (6)

where ζ denotes the linear damping coefficient, β denotes the cubic stiffness coefficient and Γ and
ρ denote the forcing amplitude and frequency, respectively,

..
x and

.
x the derivatives with respect to

the dimensionless time τ. Commonly, the equation of motion is transformed to a set of three first
order differential equation as an autonomous dynamic system by defining the forcing as an additional
system state. In this work, the forcing term are considered as an external, time-dependent input to the
system, such that by introducing x1 = x and x2 =

.
x a system of two first order ODE is obtained

.
x1 = x2

.
x2 = F(τ) − x1 −βx3

1 − 2ζx2
(7)

where F(τ) = Γ cos(ρτ). Hence, considering SINDy and the library of nonlinear ansatz function, the
forcing time series F(τ) is appended as a column to the library of functions Θ(X). In the following
numerical studies, if not stated differently, this set of parameters will be considered: β = 0.6, ζ = 0.1,
Γ = 1, ρ = 1.2, and initial conditions x1(τ = 0) = 0 and x2(τ = 0) = 0. For the time integration, i.e.,
the time series generation, a time span of τ ∈ [0, 50] and a fixed sampling time of ∆τ = 0.01 are selected.
The coefficients of the monomials as found in the analytical system now read and will be referred to as
the ‘reference values’ in the following sections.

.
x1 = 1·x2

.
x2 = 1·F− 1·x1 − 0.6·x3

1 − 0.2·x2
(8)

This dynamical system will be used to simulate numerically different scenarios that are likely to
be encountered during experimental testing: (a) missing information about all active degrees of
freedom resulting from a continuum which is measured by a fixed number of sensors and (b) noise
contamination from the testing environment and the measurement chain.
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3.1. Complete Phase Space Information Available

In an optimal setting, all the states of the unknown dynamical system would be accessible and
measured without any noise. Hence, the time series of displacement x1(τ) and velocity x2(τ) and their
derivatives

.
x1(τ) and

.
x2(τ) are first computed numerically from integrating the Duffing Equation (6)

and then provided to SINDy as inputs. Using a library Θ(X) of monomials up to order p = 3,
a sparse dynamical system is reconstructed (see Figure 2) as described in Section 2. Table 1 reports
the coefficients identified using SINDy and the reference coefficients from the analytical model in
Equation (8). In fact, SINDy reconstructs the reference coefficients perfectly. Hence, also the evolution
of the trajectories computed from the reconstruction is identical to the ones of the analytical model.Lubricants 2019, 7, x FOR PEER REVIEW 5 of 17 
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Figure 2. Comparison of input and identified time series using polynomials up to order p = 3. As the
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Table 1. Comparison of coefficients for the system of equations used in the analytical model to
generate the input time series and the system identified by SINDy using polynomial order p = 3 and
λ = 9.8168 × 10−18.

Analytical Model SINDy Results
.
x1

.
x2

.
x1

.
x2

1 0 0 1 0 0
x1 0 −1 x1 0 −1
x2 1 −0.2 x2 1 −0.2
x2

1 0 0 x2
1 0 0

x1x2 0 0 x1x2 0 0
x2

2 0 0 x2
2 0 0

x3
1 0 −0.6 x3

1 0 −0.6
x2

1x2 0 0 x2
1x2 0 0

x1x2
2 0 0 x1x2

2 0 0
x3

2 0 0 x3
2 0 0

F 0 1 F 0 1

3.2. Noise-Contaminated Data

After testing the forced Duffing oscillator using clean—i.e., non-noisy time series—the model
reconstruction performance under several levels of additive noise is studied. The time series of all
system states are computed numerically from the Equation (7) and then noise is added to states and
derivatives independently before giving them as inputs to SINDy. X = [x1; x2] and

.
X =

[ .
x1;

.
x2

]
are

the state matrix and its derivatives. The dimension of each matrix is N× 2, where N is the number of
observations for each time series and 2 is the number of degrees of freedom. To obtain noisy data,
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ηZ is added to X and to
.
X; Z is a matrix whose dimensions are N× 2, where each column is made of

N normally distributed random numbers with zero mean value and unit standard deviation, while
η represents the noise magnitude. Different values of η were studied to evaluate the quality of the
reconstructions made by SINDy for increasing levels of noise. The signal-to-noise ratio (SNR) is
defined as

Pclean =
1
N

N∑
i=1

x2
cleani

(9)

Pnoise =
1
N

N∑
i=1

x2
noisei

(10)

SNRdB = 10 log10
Pclean

Pnoise
(11)

where xclean is the noiseless signal, xnoise is the added noise, N is the number of observations and the
SNR is expressed in decibels. As an error metric the difference in the signals’ standard deviations is
used. If xrec is the reconstructed time series, the mean values are

xclean =
1
N

N∑
i=1

xcleani (12)

xrec =
1
N

N∑
i=1

xreci (13)

So, their standard deviations are

σclean =

√∑N
i=1(xcleani − xclean)

2

N− 1
(14)

σrec =

√∑N
i=1(xreci − xrec)

2

N− 1
. (15)

The resulting error metric reads

error =
σrec

σclean
·100%. (16)

Figure 3 displays the corresponding time domain representations of the noiseless data, of the
noisy input data and the resulting dynamics of the reconstructed system given by the coefficients
identified by sparse regression for η = 0.08 (SNR = 22.33). The noiseless and reconstructed time series
agree very well. SINDy turns out to be rather robust against considerable amounts of noise in the time
series. The salient feature of the dynamical system—i.e., the hardening stiffness of polynomial order
3—is successfully reconstructed in the system identification, see Table 2.
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Figure 3. Comparison of noiseless time series computed integrating equations 8, input time series with
noise ηZ and time series identified by SINDy for η = 0.08 (SNR = 22.33) resulting in error = 3.9%.

Table 2. Coefficients of equations 8, rounded at the forth digits after the decimal point, identified by
SINDy for η = 0.08.

.
x1

.
x2

1 0 0
x1 0 −0.8789
x2 1.0484 −0.1930
x2

1 0 0
x1x2 0 0
x2

2 0 0
x3

1 0 −0.5698
x2

1x2 0 0
x1x2

2 0 0
x3

2 0 0
F 0 0.9719

The SINDy reconstruction is repeated 10 times for each value of amplitude η (to account for the
random noise matrix generation) and for several values of the noise magnitude to study how the
error in the reconstruction increases with noise. Figure 4 depicts the evolution of the error measure
(displayed as percentage) along the SNR level by box plots. The center mark labels the median
value of the underlying distribution, while the lower and upper bounds of the box indicate the
25th and 75th percentiles, respectively. The dashed lines, so-called whiskers, indicate minimum and
maximum values. Increasing the level of noise through the parameter η the quality of the reconstruction
decreases and the terms of the governing equation found differ more and more from the real ones.
Additionally, the number of non-zero reconstruction terms increases along the noise level. The error
falls below 5% for SNR ≈ 24.
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number of motions can be measured. Time-delay embedding [25,26] is used to enrich the univariate 
data such that the phase space is reconstructed using the embedding dimension m = 3, delay d =

Figure 4. Box plots of reconstruction error computed for several values of noise indicated by the SNR.
The test has been iterated 10 times for each value of η. MATLAB function ‘randn’ is used to compute
the matrix Z used to add noise to data. The value of SNR plotted for each η is the logarithm of the
mean value of SNR of the 10 repetitions.

3.3. Missing Data

For the last test with time series computed numerically from the Duffing equation, only the time
series of displacement x1 are assumed as known, such as in any real experiment where only a limited
number of motions can be measured. Time-delay embedding [25,26] is used to enrich the univariate
data such that the phase space is reconstructed using the embedding dimension m = 3, delay d = 127
to unfold the attractor in new trajectories qm. Generally, this procedure is a transformation into a new
space, and hence the ODEs reconstructed from those data will not match the ones from the original—i.e.,
physical—phase space of the Duffing equation. Hence, only qualitative comparisons can be made on
the coefficients and the geometry of the attractors. Supposing not to know the governing equations,
it is not possible to compute the derivatives of the states qm analytically, so they are computed
numerically using regularized derivatives as implemented in TVRegDiff [30]. Finally, the states and
their derivatives are given as inputs to SINDy to reconstruct the system in the reconstructed phase
space basis, see Figure 5.
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Figure 5. Reconstruction with only displacement time series known: (a) comparison between the
state q1 in the artificial state space given as input to SINDy and its reconstruction; (b) real attractor
obtained with x1 and x2 computed from equation 8; and (c) attractor identified by SINDy in the
artificial state-space.

SINDy finds linear, cubic and forcing terms as displayed in Table 3. Hence, SINDy is conceptually
able to reconstruct sets of ODEs from time-delay embedded dynamics. The loss of information that
comes along with partial data, i.e., the availability of only a single state, cannot be compensated for
completely by the phase space reconstruction. This behavior becomes visible in the various non-zero
coefficients for a system that should only exhibit cubic characteristics. The identified system shows
a similar attractor as the time-delay embedded trajectories, i.e., the system identification can be
considered successful.
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Table 3. Coefficients, larger than 10−1 and rounded at the fourth digit after the decimal point, found by
SINDy in the identification of the governing equations starting from q1.

.
q1

.
q2

.
q3

1 0 0 0
q1 1.1031 0 −0.4030
q2 −0.8584 −0.1500 1.2676
q3 0.7764 −0.9365 −1.0250
q2

1 0 0 0
q1q2 0 0 0
q1q3 0 0 0

q2
2 0 0 0

q2q3 0 0 0
q2

3 0 0 0
q3

1 −0.3479 0 0
q2

1q2 −0.4947 0.2294 0
q2

1q3 0 −0.6968 0.2865
q1q2

2 −0.5320 0.5367 −0.1640
q1q2q3 −0.4146 0.2067 0

q1q2
3 0 −0.8243 0.1716

q3
2 0 0 0

q2
2q3 −0.1414 0 0.3861

q2q2
3 −0.2189 0 0.2982

q3
3 0 −0.3376 0.3467

F 0.8772 −0.6184 0.8348

4. Investigation of Experimental Data

In the previous paragraph, SINDy was used to reconstruct the governing equations of a Duffing
oscillator. Three scenarios were studied, i.e., (i) when full phase space information are available, (ii) when
some states are missing and (iii) when the data are altered by noise. In this section, the governing
equations will be reconstructed starting from the time series measured in a double cantilever system that
is subjected to base excitation. The experimental test rig mimics the Duffing behavior as, above a certain
vibration amplitude, the cantilever impact two stoppers, placed symmetrically with respect to the
beam axis, which give them a piecewise linear hardening behavior.

4.1. Experimental Setup

The physical system is constituted of two clamped-free cantilevers coupled to each other by
a slander connection and with masses attached at the tip of each blade and subjected to base excitation,
see Figure 6. The structure was machined by means of electric erosion from a 1.5 mm thick aluminum
sheet. Moreover, two masses of 32.75 g each were glued at the tip of each beam in order to reduce the
frequency of the first and the second bending mode of the structure. The dimensions of the system are
indicated in Figure 6a.
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Figure 7. Test rig for geometrically nonlinear structural dynamics of weakly coupled oscillators. Panel 
(a) depicts the stoppers near one of the two beams, while panel (b) shows the platform connected to 
the shaker. 

Figure 6. Panel (a) depicts the technical drawings with all relevant dimensions in (mm) and panel (b)
depicts an isometric illustration of the two beams with added masses at the tips. The beams will be
clamped at their upper end. (c) rigid stoppers indicated by arrows near one beam of the system; panel
(d) shows an isometric view of the whole assembly with the forcing indicated by an arrow.

The hardening behavior is introduced through two rigid stoppers, which are placed symmetrically
with respect to the cantilever rest position so that the impacts are experienced for both positive and
negative displacements, see Figure 6c,d. Above a certain vibration amplitude the beams touch the
stoppers which instantaneously reduce the cantilever free vibration length causing a step increase in
the cantilevers stiffness. The two beams are clamped to an ideally rigid frame, which is connected
to a shaker. Figure 7 shows the test rig and the cantilever with an accelerometer mounted on its tip.
The shaker excited the rigid frame at different frequencies and for different magnitudes of the forcing
level; first the linear regime where the vibration amplitude is smaller than the gap, such that no impact
happens, will be considered, and secondly the nonlinear regime where the amplitude is large enough
for at least one cantilever to touch the stoppers. The time-domain measurements are obtained through
accelerometers attached to the base and to the tips of the two beams.
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(a) depicts the stoppers near one of the two beams, while panel (b) shows the platform connected to
the shaker.

In the linear case (Figure 8a), i.e., when there is no contact between the blades and the stoppers,
both blades oscillate in phase and with a 90◦ phase shift with respect to the excitation. The oscillations are
mono-harmonic with a maximum acceleration of 9 m/s2. The noise contamination is low, which results
in smooth time series of the accelerations. Three different states can be distinguished in the nonlinear
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regime—i.e., panel (b)—only the first cantilever touches the stoppers and vibrates with a much higher
amplitude with respect to the second cantilever (a factor ∼ 5), panel (c) is similar to (b) but with the
vibration localized on the second cantilever and panel (d) where both the cantilever touch the stoppers.
Similarly to the linear case, when both the cantilevers touch the stoppers, they oscillate in phase and
with a 90◦ phase shift with respect to to the excitation. In contrast to the linear case, higher accelerations
are measured, up to 95 m/s2. These contacts result in vibro-impact-type dynamics that become visible
in the fluctuations about a mono-harmonic carrier oscillation in Figure 8d. Notice that for all panels the
excitation frequency is f = 12.3 Hz and the base acceleration amplitude amax = [1.93, 1.52, 1.37, 1.43]
m/s2 respectively for panels (a,b,c,d). Those measurements clearly show that nonlinear localization
and solution multiplicity may appear in nonlinear systems experiencing hardening type stiffness
nonlinearities, as it was shown in [32,33], and in nonlinearly damped structures [34,35].
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measurement for the first beam, while the red lines are the same quantities for the second one. Blue 
lines depict the base acceleration, which for panel (a, b, c, d) respectively has amplitude 𝑎௠௔௫ =[1.93, 1.52, 1.37, 1.43] m/s2 and frequency 𝑓 = 12.3 Hz. 

Next, SINDy is employed to identify the governing equations of the experimental system 
through sparse regression. In the current setup, accelerations are measured at the tips of the two 
beams and of the base. It was chosen not to numerically integrate the accelerations to arrive at the 

Figure 8. Accelerations measured in time-domain. Panel (a) displays the linear regime, i.e.,
without contact to the stoppers (base acceleration amplitude amax = 1.93 m/s2), panel (b) depicts the
localized state when just one beam touch the stoppers (base acceleration amplitude amax = 1.52 m/s2),
while the panel (c) displays the case when only the second beam vibrates in large amplitudes (base
acceleration amplitude amax = 1.37 m/s2). Panel (d) depicts the homogeneous state when both beams
touch the stopper (base acceleration amplitude amax = 1.43 m/s2). All panels show in black measurement
for the first beam, while the red lines are the same quantities for the second one. Blue lines depict the
base acceleration, which for panel (a, b, c, d) respectively has amplitude amax = [1.93, 1.52, 1.37, 1.43]
m/s2 and frequency f = 12.3 Hz.

Next, SINDy is employed to identify the governing equations of the experimental system
through sparse regression. In the current setup, accelerations are measured at the tips of the two
beams and of the base. It was chosen not to numerically integrate the accelerations to arrive at the
corresponding velocities and displacements, as the measurements are noise-contaminated to a certain
degree. Instead, the acceleration was used as state input to the system identification. Owing to the
partial availability of data, embedding has to be performed anyway, which transforms the data from
physical space to the embedding phase space spanned by q1, ..., m, which unfortunately is not directly
interpretable in terms of physical coefficients.



Lubricants 2019, 7, 64 13 of 18

4.2. Experimental Study 1: Forced Vibration of the Beams without Impacts

In the first analysis of the linear configuration—i.e., blade dynamics without stopper impact—a
high-precision reconstruction model is obtained for linear ansatz functions and a two-dimensional
embedding of the acceleration time series of the first blade, see Figure 9 and Table 4. Since both blades
oscillate in phase with infinitesimal differences, they are considered to be uncoupled. Hence, only the
dynamics of a single blade are being studied. The reconstructed model exhibits a simple, hence sparse,
structure where the excitation E is acting on the second DOF. To confirm the assumption of linear
dynamics as stated initially and identified in the first model, also ansatz functions of higher order
were studied. However, these higher order terms vanish, compare Figure 10 and Table 5, in the
reconstruction. In fact, the dynamics observed in the first study represent a linear dynamic system
with external forcing.
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Table 5. Coefficients found by SINDy for the experimental study 1 using second-order polynomials.

.
q1

.
q2

1 0 0
q1 0 248.52
q2 −77.28 0
q2

1 0 0
q1q2 0 0

q2
2 0 0

E 0 829.74

4.3. Experimental Study 2: Forced Vibrations of the Beams with Single-Sided Impact

In the second scenario, localized vibrations are observed, such that the blades need to be understood
as being coupled. First trials using the embedded states of both blades and the excitation into account
failed to produce sparse and precise ODEs. Even for different polynomial orders, temporal sampling,
higher embeddings, and other tuning knobs of the SINDy indentification procedure, these issues
remained. As a solution, relative motions are computed as the difference between each blade and
the excitation. To deal with the vibro-impact like dynamics and the resulting amplification of the
derivatives, spectral filtering was applied to the measured signals to filter out higher-frequency
content above 50Hz. The resulting accelerations are embedded in two dimensions and fed to SINDy,
which results in a successful reconstruction model, see Figure 11 and Table 6. The most precise model
is obtained for first-order polynomials, which results in a rather fully populated coefficient matrix.
q1 and q2 stem from the blade that touches the stoppers. The governing equations for these states
are fully connected to all other states, while the not-touching states q3 and q4 show a sparse ODE
pattern. Similar behavior was found for the case where the high-amplitude vibrations are localized in
the second blade.Lubricants 2019, 7, x FOR PEER REVIEW 14 of 17 
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.
q1

.
q2

.
q3

.
q4

1 −39.99 40.85 0 0
q1 −151.77 105.29 5.61 11.70
q2 −208.70 166.99 22.60 0
q3 −134.32 −301.13 −36.63 111.20
q4 −720.61 536.55 0 27.76
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Essentially, the signal pre-filtering and successive SINDy system identification allows to capture
the main vibration behavior in the form of the forced vibration of the blades. Hence, also the identified
set of ODEs is comprised of linear terms while the complete system including the contacts is nonlinear.
The contact-induced impact excitations are not covered here and remain as a subject for future work.

4.4. Experimental Study 3: Forced Vibration of the Beams with Both-Sided Impact

Finally, the case of uniform motion with contact of both blades is studied. Analogously to
experimental study 1, the signals show almost no phase shift between the two blades such that again
only the motion of the first blade is studied (the blades vibrate in-phase). Again, spectral pre-filtering
was necessary for a successful application of SINDy. Best results were obtained from simple ansatz
functions of first order, see Figure 12 and Table 7. The main vibration mode is met with good agreement,
and hence represents a smoothed version of the measured dynamics.
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Table 7. Coefficients, rounded at the second digit after the decimal point, found by SINDy in the
identification of the governing equations starting from q1.

.
q1

.
q2

1 0 −48.98
q1 0 36.46
q2 −77.98 −48.83
E 0 3.09 × 103

Compared to experimental study 1—i.e., the case of non-touching blades—the ODE for the first
DOF is very similar with respect to structure and numeric values. The ODE for the second state is fully
populated for the touching case considered here, thus representing more complex dynamical behavior
that has to be captured by SINDy.

5. Discussion and Conclusions

The sparse identification of nonlinear dynamics (SINDy) approach has been used to reconstruct
the governing equation of systems with nonlinear stiffness behavior and impacts. In the first part of the
paper the equation of motion of a Duffing oscillator were integrated numerically. Contrary to the case
when the full phase space information are available, in real experiments it is expected that (i) not all
the states of the system can be measured and (ii) noisy data are usually available. These two scenarios
have been simulated numerically showing that for missing data, by using time delay embedding,
SINDy was able to reconstruct the system dynamics in a satisfactory manner. The drawback of the
embedding procedure is that it is difficult to physically interpret the obtained governing equations.
In case of noisy data, it has been shown that the reconstruction turns to be less accurate as noise is
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increased. Nevertheless, for moderate noise level (SNR greater than about 20) a faithful reconstruction
of the governing equations was obtained with excellent results for SNR > 30.

In the second part of the paper the data obtained from an experimental test rig constituted by two
cantilevers subjected to base excitation and impacts were considered. The measured accelerations were
used to reconstruct the system dynamics and, after some smoothing operations, the time series were
provided to SINDy which reconstructed the system dynamics with a good degree of approximation.

In conclusion, this preliminary study showed that SINDy could be beneficial in the future to
reconstruct the dynamics of highly nonlinear systems even in presence of highly nonlinear impulsive
forces, or when, in practical situations, not all the states are measured, and those which are measured
are affected by measurements noise. SINDy performed well in these situations, hence this tool may
be important in practical engineering applications. Based on the promising results obtained in this
preliminary study, we are working to improve our experimental set-up so that not only accelerations
but also displacements will be measured in the future. This will permit to deep dive into the differential
equations reconstructions starting from experimentally measured time series and physically interpret
the reconstructed equations. Even if the fundamental oscillation has been captured also for real systems
with impacts, further work is needed to allow SINDy to capture the high frequency content introduced
by impulsive forces.

Author Contributions: A.P. and M.S. conceived the study. F.F. conducted the experimental investigations. M.D.
and M.S. did the numerical investigations. M.D., A.P., and M.S. wrote the manuscript. M.C. and N.H. supervised
the project. All authors reviewed the work up to its final form.

Funding: A.P. is thankful to the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for
funding the project PA 3303/1-1. M.C. is supported by the Italian Ministry of Education, University and
Research (MIUR) under the Departments of Excellence grant no. L.232/2016. M.S. is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through grant no. Ho 3852/12-1. This work
was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer
392323616 and the Hamburg University of Technology (TUHH) in the funding programme Open Access Publishing.

Acknowledgments: The authors thank Loic Salles (Imperial College London), Aurélien Grolet (ENSAM Lille),
Jeanne Auvray (Centrale Marseille) and Alessandra Vizzaccaro (Imperial College London) for funding, designing
and setting up the rig from which the vibration measurements were obtained.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Ondra, V.; Sever, I.A.; Schwingshackl, C.W. A method for non-parameteric identification of nonlinear vibration
systems with asymmetric restoring forces from a resonant decay response. Mech. Syst. Signal Process.
2019, 114, 239–258. [CrossRef]

2. Ondra, V.; Sever, I.A.; Schwingshackl, C.W. A method for detection and characterisation of structural
nonlinearities using the Hilbert transform. Mech. Syst. Signal Process. 2017, 83, 210–227. [CrossRef]

3. Pesaresi, L.; Stender, M.; Ruffini, V.; Schwingshackl, C.W. DIC Measurement of the Kinematics of a Friction
Damper for Turbine Applications. In Dynamics of Coupled Structures; Conference Proceedings of the Society
for Experimental Mechanics Series; Springer: Cham, Switzerland, 2017; Volume 4, pp. 93–101.

4. Kurt, M.; Chen, H.; Lee, Y.; McFarland, M.; Bergman, L.; Vakakis, A. Nonlinear system identification of the
dynamics of a vibro-impact beam: Numerical results. Arch. Appl. Mech. 2012, 82, 1461–1479. [CrossRef]

5. Stender, M.; Oberst, S.; Tiedemann, M.; Hoffmann, N. Complex machine dynamics: Systematic recurrence
quantification analysis of disk brake vibration data. Nonlinear Dyn. 2019, 98, 1–15. [CrossRef]

6. Ewins, D.J.; Gleeson, P.T. A method for modal identification of lightly damped structures. J. Sound Vib.
1982, 84, 57–79. [CrossRef]

7. Farrar, C.R.; James III, G.H. System identification from ambient vibration measurements on a bridge.
J. Sound Vib. 1997, 205, 1–18. [CrossRef]

8. Agbabian, M.S.; Masri, S.F.; Miller, R.K.; Caughey, T.K. System identification approach to detection of
structural changes. J. Eng. Mech. 1991, 117, 370–390. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2018.05.010
http://dx.doi.org/10.1016/j.ymssp.2016.06.008
http://dx.doi.org/10.1007/s00419-012-0678-5
http://dx.doi.org/10.1007/s11071-019-05143-x
http://dx.doi.org/10.1016/0022-460X(82)90432-1
http://dx.doi.org/10.1006/jsvi.1997.0977
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:2(370)


Lubricants 2019, 7, 64 17 of 18

9. Massi, F.; Baillet, L.; Giannini, O.; Sestieri, A. Brake squeal: Linear and nonlinear numerical approaches.
Mech. Syst. Signal Process. 2007, 21, 2374–2393. [CrossRef]

10. Brunetti, J.; D’Ambrogio, W.; Fregolent, A. Dynamic substructuring with a sliding contact interface.
Dyn. Coupled Struct. 2018, 4, 105–116.

11. Stender, M.; Tiedemann, M.; Hoffmann, L.; Hoffmann, N. Determining growth rates of instabilities from time-series
vibration data: Methods and applications for brake squeal. Mech. Syst. Signal Process. 2019, 129, 250–264. [CrossRef]

12. Brake, M.R. (Ed.) The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing
Predictive Models for Structural Dynamics; Springer: Berlin/Heidelberg, Germany, 2017.

13. Tiedemann, M.; Kruse, S.; Hoffmann, N. Dominant damping effects in friction brake noise, vibration and
harshness: The relevance of joints. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 728–734.
[CrossRef]

14. Padmanabhan, K.K.; Murty, A.S.R. Damping in structural joints subjected to tangential loads. Proc. Inst.
Mech. Eng. Part C Mech. Eng. Sci. 1991, 205, 121–129. [CrossRef]

15. Stender, M.; Papangelo, A.; Allen, M.; Brake, M.; Schwingshackl, C.; Tiedemann, M. Structural design with
joints for maximum dissipation. Shock Vib. Aircr. Aerosp. Energy Harvest. Acoust. Opt. 2016, 9, 179–187.

16. Papangelo, A.; Ciavarella, M. Effect of normal load variation on the frictional behavior of a simple Coulomb
frictional oscillator. J. Sound Vib. 2015, 348, 282–293. [CrossRef]

17. Tonazzi, D.; Massi, F.; Baillet, L.; Brunetti, J.; Berthier, Y. Interaction between contact behaviour and vibrational
response for dry contact system. Mech. Syst. Signal Process. 2018, 110, 110–121. [CrossRef]

18. Tonazzi, D.; Massi, F.; Culla, A.; Baillet, L.; Fregolent, A.; Berthier, Y. Instability scenarios between elastic
media under frictional contact. Mech. Syst. Signal Process. 2013, 40, 754–766. [CrossRef]

19. Shi, X.; Polycarpou, A.A. Measurement and modeling of normal contact stiffness and contact damping at the
meso scale. J. Vib. Acoust. 2005, 127, 52–60. [CrossRef]

20. Hess, D.P.; Wagh, N.J. Evaluating surface roughness from contact vibrations. J. Tribol. 1995, 117, 60–64.
[CrossRef]

21. Papangelo, A.; Hoffmann, N.; Ciavarella, M. Load-separation curves for the contact of self-affine rough
surfaces. Sci. Rep. 2017, 7, 6900. [CrossRef]

22. Massi, F.; Berthier, Y.; Baillet, L. Contact surface topography and system dynamics of brake squeal. Wear
2008, 265, 1784–1792. [CrossRef]

23. Noël, J.P.; Kerschen, G. Nonlinear system identification in structural dynamics: 10 more years of progress.
Mech. Syst. Signal Process. 2017, 83, 2–35. [CrossRef]

24. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of
nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [CrossRef]

25. Stender, M.; Oberst, S.; Hoffmann, N. Recovery of differential equations from impulse response time series
data for model identification and feature extraction. Vibration 2019, 2, 25–46. [CrossRef]

26. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick: Lecture
Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381.

27. Oberst, S.; Lai, J.C. A statistical approach to estimate the Lyapunov spectrum in disc brake squeal. J. Vib.
2015, 334, 120–135. [CrossRef]

28. Abarbanel, H.D.I.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical
systems. Rev. Mod. Phys. 1993, 65, 1331–1392. [CrossRef]

29. Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction
using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [CrossRef]

30. Chartrand, R. Numerical Differentiation of Noisy, Nonsmooth Data. ISRN Appl. Math. 2011. [CrossRef]
31. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin, Germany, 2006.
32. Papangelo, A.; Fontanela, F.; Grolet, A.; Ciavarella, M.; Hoffmann, N. Multistability and localization in forced

cyclic symmetric structures modelled by weakly-coupled Duffing oscillators. J. Sound Vib. 2019, 440, 202–211.
[CrossRef]

33. Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N. Dark solitons, modulation instability and
breathers in a chain of weakly nonlinear oscillators with cyclic symmetry. J. Sound Vib. 2018, 413, 467–481.
[CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2006.12.008
http://dx.doi.org/10.1016/j.ymssp.2019.04.009
http://dx.doi.org/10.1177/0954407014536378
http://dx.doi.org/10.1243/PIME_PROC_1991_205_099_02
http://dx.doi.org/10.1016/j.jsv.2015.03.026
http://dx.doi.org/10.1016/j.ymssp.2018.03.020
http://dx.doi.org/10.1016/j.ymssp.2013.05.022
http://dx.doi.org/10.1115/1.1857920
http://dx.doi.org/10.1115/1.2830607
http://dx.doi.org/10.1038/s41598-017-07234-4
http://dx.doi.org/10.1016/j.wear.2008.04.049
http://dx.doi.org/10.1016/j.ymssp.2016.07.020
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.3390/vibration2010002
http://dx.doi.org/10.1016/j.jsv.2014.06.025
http://dx.doi.org/10.1103/RevModPhys.65.1331
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://dx.doi.org/10.5402/2011/164564
http://dx.doi.org/10.1016/j.jsv.2018.10.028
http://dx.doi.org/10.1016/j.jsv.2017.08.004


Lubricants 2019, 7, 64 18 of 18

34. Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M. Multiple spatially localized dynamical
states in friction-excited oscillator chains. J. Sound Vib. 2018, 417, 56–64. [CrossRef]

35. Papangelo, A.; Grolet, A.; Salles, L.; Hoffmann, N.; Ciavarella, M. Snaking bifurcations in a self-excited
oscillator chain with cyclic symmetry. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 108–119. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jsv.2017.11.056
http://dx.doi.org/10.1016/j.cnsns.2016.08.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Numerical Results 
	Complete Phase Space Information Available 
	Noise-Contaminated Data 
	Missing Data 

	Investigation of Experimental Data 
	Experimental Setup 
	Experimental Study 1: Forced Vibration of the Beams without Impacts 
	Experimental Study 2: Forced Vibrations of the Beams with Single-Sided Impact 
	Experimental Study 3: Forced Vibration of the Beams with Both-Sided Impact 

	Discussion and Conclusions 
	References

