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Abstract: Rough and textured surfaces are of paramount importance for lubrication, both in nature and
in technology. While surface roughness relevantly influences both friction and wear, artificial surface
texturing improves the performance of slider bearings as an energy efficiency action. The simulation
of hydrodynamic lubrication by taking into account complex surfaces as boundaries requires the
use of computational fluid dynamics (CFD) software able to predict the pressure and the velocity
profile through the thickness of the fluid and at any point within the 3D domain. In the present
study, a CFD–smoothed particle hydrodynamics (SPH) code is applied to simulate hydrodynamic
lubrication for a linear slider bearing in the presence of a 3D rough surface, showing the capabilities
of CFD–SPH in modelling such complex interaction phenomena. Numerical assessments involve the
load capacity, the 3D fields of the velocity vector, and the pressure 3D field (both within the fluid
domain and at the fluid–plate interface).
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1. Introduction

Hydrodynamic lubrication is the lubrication regime featured by a fluid film continuously
interposed between interacting rigid solid surfaces and it represents a simplification of the
elasto-hydrodynamic lubrication, in case deformation of the surface (elasticity effects) is negligible.
Slider bearings are typically practical examples involving hydrodynamic lubrication. Slider bearings
are widely employed in electric machines, turbomachinery, internal combustion engines, electric
vehicles, hydraulic systems, medicine, automation, etc. Hereafter follows a brief introduction to
numerical modelling of bearings for hydrodynamic lubrication.

To predict the response of lubricants in the hydrodynamic lubrication regime, a rigorous treatment
of the fluid motion should consider the solution of the full Navier–Stokes equations, in which inertia,
body, pressure and viscous terms are included [1]. However, there is a class of flow condition known
as slow viscous motion in which the pressure and viscous terms prevail over the others, which leads to
the Reynolds equations for hydrodynamic lubrication. Moreover, further simplification of Reynolds
equations, to make them analytically solvable, is often put forward, by assuming only sliding motion
and fluid properties constant in space, in addition to avoiding side leakage. All of this, which sometimes
can be even further simplified by looking at the stationary regime, leads to a simple 1D differential
equation for the pressure field. In [2], it has also been demonstrated that it is possible to derive the
set of reduced equations for the classical lubrication approximation governing incompressible and
iso-viscous flows from the full Navier–Stokes equations specialized for flows in thin gaps and applying
dimensional analysis considerations.
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Based on the aforementioned theoretical framework, Williams and Symmons [3] developed a
1D computational fluid dynamics (CFD)-finite difference (FD) model to numerically reproduce the
pressure longitudinal profiles within the fluid film of a linear slider. Dobrica and Fillon [4] developed a
2D CFD-finite volume method (FVM) code, alternatively using Navier–Stokes equations and Reynolds’
equation for fluid films, and they validated it on the Rayleigh step bearings. They highlighted the
importance of modelling the inertia terms, neglected by Reynolds’ equation for fluid films. For step
bearings, Vakilian et al. [5] found that neglecting the inertia terms in the momentum equations is
responsible for underestimations at the leading edge and over-predictions at the trailing edge on the
pressure field.

Almqvist et al. [6] provided inter-comparisons between a FD model based on Reynolds’ equation
for fluid films and a commercial CFD-FVM code based on Navier–Stokes equations. Almqvist et al. [6,7]
also provided report analytical solutions on pressure longitudinal profiles, velocity vertical profiles,
friction force, and load-bearing capacity (the frictional coefficient is the ratio between these two forces)
for both a linear slider and the Rayleigh step slider, with null Dirichlet’s boundary conditions for
pressure. They also derived the optimal geometric configuration for a linear slider to maximize the
load capacity (e.g., [3]), also referred to as load-bearing capacity or load-carrying capacity. Further,
they analysed the effects of the surface roughness by means of the homogenization technique [8].

Rahmani et al. [9] presented an analytical approach based on Reynolds’ equation for asymmetric
partially textured slider bearings with surface discontinuities, to optimize the choice of the textures
parameters with respect to the load capacity and the friction force.

Papadopoulos et al. [10] used a 2D CFD-FVM code to optimize micro-thrust bearings with
surface texturing by means of numerical inter-comparisons. Fouflias et al. [11] used a commercial
CFD-FVM code to simulate bearings with pockets/dimples and surface texturing, providing model
inter-comparisons on steady-loads for different designs.

Paggi and Ciavarella [12] carefully investigated the role of roughness in contact mechanics, and
Paggi and He [13] analysed the evolution of the free volume trapped between rough surfaces in contact,
an essential parameter for the transition from hydrodynamic lubrication and mixed-lubrication regimes.

Gropper et al. [14] discussed a detailed review on hydrodynamic lubrication of textured surfaces,
including (multi-scale) roughness effects and cavitation. Hajishaflee et al. [15] adopted a 2D CFD-FVM
model to reproduce elasto-hydrodynamic lubrication problems for rolling element bearings, including
cavitation effects. Snyder and Braun [16] proposed a perturbed Reynolds equation (PRE)-FD model.
This is based on the representation of perturbed quantities (film thickness and pressure) within
Reynolds’ equation and provides three separated differential equations for static pressure, dynamic
pressure associated with stiffness and dynamic pressure associated with damping.

Henry et al. [17] reported an experimental analysis for the start-up of thrust bearings under a
transient regime. Mixed lubrication occurs before the stationary regime, which is, instead, characterized
by hydrodynamic lubrication. This study highlights the importance of the texture geometry features in
the formation of the fluid films and the reduction of the transient time to reach the lubrication regime,
which minimizes the damage (stress concentrations over surface roughness peaks can lead to wear
debris which deteriorate the bearing performance).

Pusterhofer et al. [18] presented a CFD-FVM model for modelling surface effects under
hydrodynamic lubrication. On the use of Reynolds models for fluid films, they stated: “for structured
surfaces the fluid flow cannot be represented correctly, due to the assumptions made when deriving
the Reynolds equation” [18]. Their model was based on Navier–Stokes equations, was applied to a
3D rough lubrication gap at the micro-scale, and was coupled with a Reynolds-based model working
at a coarser scale. They noticed that Navier-Stokes equations allows for the simulation of surface
induced effects and that, “used in the classical sense, the Reynolds equation takes into account only
the macroscopic geometry . . . hydrodynamic effects because of the microscopic surface structure are
not taken into account” [18]. Furthermore, the authors reported that “when the surface profile shows
strong height changes, which can cause velocity changes in height direction . . . the Reynolds equation
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is no longer valid to describe the flow through the rough gap” [18]. The authors highlighted the
advantage of Navier-Stokes equations in providing greater detail of the fluid dynamics fields with
respect to Reynolds models for fluid films, thus enabling to assess the effects of structured and textured
surfaces under hydrodynamic lubrication.

Wang et al. [19] presented a parametric model for the optimization of groove texture profiles
to improve the hydrodynamic lubrication performance of thrust bearings in terms of load capacity,
friction coefficient and temperature rise.

Yildiran et al. [20] presented a 2D CFD-boundary element method (BEM) model for hydrodynamic
lubrication, also including the representation of re-entrant textures. They highlighted the effects of
roughness in inducing the so-called Stokes microscopic regime of lubrication. They also stated that
in the “Stokes regime employing Stokes equations is essentially required” [20]. Stokes equations
are a simplification of Navier–Stokes equations. At the same time, Stokes equations represent a
generalization of Reynolds equations for fluid films because they permit a full 3D non-homogeneous
and non-isotropic representation of the stress tensor gradients (and the volume forces).

Fernandez del Rincon et al. [21] proposed a gear transmission model to simulate the stress tensor
field and the meshing forces under the hydrodynamic lubrication regime at low torques. The role
played by the lubricant is also relevant in optimizing the gear acoustic performance (to minimize noise
and provide an overall reduction of the noise vibration harshness effect).

Schvarts [22] analysed the effect of the microscopic roughness at the macro-scale under the mixed
lubrication regime, where the solid surfaces are partially separated by the fluid, partially in direct
contact by means of their asperities.

Recent generalizations and improvements of Reynolds’ fluid film models concerning the indirect
integration of additional features (e.g., surface roughness, slip conditions, non-Newtonian rheology,
turbulence) have been devoted to overcome some of their intrinsic simplified model assumptions.
On the other hand, the CFD codes are not limited by the above shortcomings and also permit the
simulation of more complex features (e.g., transport of solid elements, particles and pollutants; erosion
of the solid components; computation of the dynamics of the solid components depending on the fluid
dynamics fields such as 2-way coupling), but are more complex and computationally demanding.

With respect to the state-of-the-art on CFD modelling for bearings, mostly based on 2D codes
or Reynolds’ simplified equation, the present study uses a 3D CFD code with all the terms of the
Navier-Stokes equations for incompressible fluids with uniform viscosity. It also provides validations
on local quantities (pressure and velocity profiles) and it is able to simulate complex 3D surfaces.
The reference code for this study is the Free/Libre and Open Source Software (FOSS) CFD-smoothed
particle hydrodynamics (SPH) code SPHERA (RSE SpA) [23], which assesses the load-bearing capacity,
the 3D fields of the velocity vector u = (u, v, w), and the pressure 3D field both within the fluid domain
and at the fluid–solid interfaces of a linear slider with a complex 3D surface introduced as boundary.

SPH is a mesh-less CFD method, whose computational nodes are represented by numerical
fluid particles. Among the various numerical methods, SPH has several advantages: a direct
estimation of free surface and phase/fluid interfaces; effective simulations of multiple moving bodies
and particulate matter within fluid flows; direct estimation of Lagrangian derivatives (absence of
non-linear advective terms in the balance equations); effective numerical simulations of fast transient
phenomena; no meshing; simple non-iterative algorithms (in case the “weakly compressible” approach
is adopted). On the other hand, SPH models are affected by the following drawbacks, if compared with
mesh-based CFD tools: computational costs are slightly higher due to a larger stencil (around each
computational particle), which causes a high number of interacting elements (neighbouring particles)
at a fixed time step (nonetheless SPH codes are more suitable for parallelization); local refining of
spatial resolution represents a current issue and is only addressed by few, advanced and complex SPH
algorithms; accuracy is relatively low for classical CFD applications where mesh-based methods are
well established (e.g., confined mono-phase flows). Detailed reviews on SPH assets and drawbacks are
reported in [24]. Nevertheless, SPH models are effective in several, but peculiar, application fields. Some
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of them are here briefly recalled: flood propagation [25,26]; sloshing tanks [27]; gravitational surface
waves [28]; hydraulic turbines [29]; liquid jets [29]; astrophysics and magneto-hydrodynamics [30];
body dynamics in free surface flows [31]; multi-phase and multi-fluid flows; sediment removal from
water reservoirs [32]; and landslides [33,34].

In this article, the SPH formulation, whose mathematical and numerical formulations have
been thoroughly described in [35] and validated in relation to benchmark fundamental solutions
for hydrodynamic lubrication (uniform slider and a linear slider over flat-surface configurations),
is applied to the simulation of the hydrodynamic lubrication regime for a linear slider bearing on a
3D microscopically rough surface. The effect of surface roughness in lubrication has been carefully
investigated in the boundary lubrication regime, where surfaces are in contact and the friction coefficient
is very high. However, even in the full-film hydrodynamic lubrication regime, friction may still be
influenced and reduced by tailoring surface topographies. Even though there is no direct contact,
the lubricant pressure may lead to stress concentrations high enough to cause fatigue, leading to
excessive wear in the form of spalling in highly loaded situations [2]. In such cases, roughness can also
affect the friction coefficient and, therefore, it is worth investigating its effect. Moreover, the simulation
of full-film lubrication over textures arising from natural surfaces can also lead to important discoveries
useful to design bio-inspired bearing solutions to further reduce friction and related energy losses.

2. Linear Slider Bearing on a 3D Natural Rough Surface

A linear slider is a system of two flat plates under relative motion and a fluid film between
them. The slider is linear because the average film depth h (m)—i.e., the fluid depth after filtering
the micro-scale roughness—varies linearly with the distance from the plate edges. Herein the upper
plate is mobile, whereas the lower plate is still and it is given by a complex (non-flat) 3D rough
surface. The upper plate is featured by a leading edge (i.e., its most upstream face) and a trailing edge
(i.e., its most downstream face). The slope angle between the mobile plate of the particular bearing of
this study and the horizontal is α = 0.568◦. This value is relevant as h << L (a hypothesis of Reynolds’
equation for fluid films), where L (m) is the bearing length.

To demonstrate the applicability of SPH in simulating hydrodynamic lubrication with complex
rough boundaries, a strip of a tomato leaf acquired using the confocal profilometer Leica DCM3D
available in the MUSAM Lab of the Multiscale Analysis of Materials (MUSAM) research unit of the
IMT School for Advanced Studies Lucca has been used as the lower boundary, see also the open
data project Wiki Surface [36]. This rigid tomato leaf is representative of a textured surface with
geometrical complexity and roughness scale comparable with the artificial textures used to optimize
linear sliders. Grid interpolator software [37] has been used to elaborate the original tomato leaf
surface as a grid-based data interpolator with modifications on the spatial resolution and the despiking
procedure, as described in the following Figures 1–3.

Values greater than a positive threshold or smaller than a negative threshold have been discarded,
being considered out-layers affected by profilometer measurement errors. The thresholds are provided
as input data in terms of normalized variables. The upper threshold is tu = mz + ntu·σz, where mz (m) is
the average height, σz = 1.81 × 10−5 m the height standard deviation and ntu = 3.5 a non-dimensional
input factor. Analogously, the lower threshold is tl = mz − ntu·σz, with ntl = 3.5. The interpolation
influence radius provided as an input normalized influence radius (rin = 10). A Shepard interpolation
has been carried out, with the distance exponent provided as an input datum (ed = 6). The despiking
procedure described above allows the outliers of the raw surface to be filtered (Figures 2 and 3).
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For the CFD simulation, the initial fluid velocity uf,0 (m/s) has been set as the average velocity of 
the solid plates. As the lower plate is still, then uf,0 = us,1/2, where “s,1” denotes the upper plate. The 
reference velocity U* = us,1 = 50 m/s determines a Reynolds number (Re = ca. 100) which guarantees a 
laminar regime within most of the bearing film (far enough from the mobile plate edges and the 
roughness elements). Omitting gravity is equivalent and alternative to replacing pressure with the 
reduced pressure (i.e., the difference between pressure and its hydrostatic component). The domain 
is laterally confined by vertical solid walls, where a boundary treatment scheme is applied [23]. 

The domain length and width selected for the simulation were Ldom = 8.48 × 10−4 m and Wdom = 4.2 
× 10−5 m, respectively. The domain depth is Hdom = 9.5 × 10−5 m. The slider length was L = 4.24 × 10−4 m. 
The initial position of the plate barycentre was represented by the horizontal coordinates xCM,0 = 

Figure 1. Rigid tomato leaf 3D surface. (a): surface elaborated without despiking. (b): surface
elaborated with despiking. Top view. The violet rectangle on the bottom of the right panel denotes
the strip used for the smoothed particle hydrodynamics (SPH) simulation (this strip is featured by the
lowest trend among the leaf strips thus minimizing the maximum film thickness between the bearing
plates). The black circumferences on the right panel delimit two examples of regions where despiking
effects are more relevant.
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For the CFD simulation, the initial fluid velocity uf,0 (m/s) has been set as the average velocity
of the solid plates. As the lower plate is still, then uf,0 = us,1/2, where “s,1” denotes the upper plate.
The reference velocity U* = us,1 = 50 m/s determines a Reynolds number (Re = ca. 100) which guarantees
a laminar regime within most of the bearing film (far enough from the mobile plate edges and the
roughness elements). Omitting gravity is equivalent and alternative to replacing pressure with the
reduced pressure (i.e., the difference between pressure and its hydrostatic component). The domain is
laterally confined by vertical solid walls, where a boundary treatment scheme is applied [23].

The domain length and width selected for the simulation were Ldom = 8.48 × 10−4 m and
Wdom = 4.2 × 10−5 m, respectively. The domain depth is Hdom = 9.5 × 10−5 m. The slider length was
L = 4.24 × 10−4 m. The initial position of the plate barycentre was represented by the horizontal
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coordinates xCM,0 = 0.35·Ldom = 2.968 × 10−4 m, yCM,0 = Wdom/2 = 2.1 × 10−5 m. The above length
scales are chosen to impose that the sliding lasts enough to dynamically establish stationary conditions,
to reproduce all the roughness elements of the fixed plate, the fluid film and the mobile plate, and to
avoid useless computational demand. The upper plate inclination (with respect to the horizontal)
is expressed by the slope angle α = 9.91 × 10−3 rad (0.568◦). The dynamic viscosity of the fluid is
µ = 319 × 10−3 Pa·s, representative of the motor oil “SAE 40” at ambient conditions, being the oil
density equal to ρ = 900 kg/m3. This lubricant is still before the sliding of the mobile upper plate over
the fixed plate of the bearing. The upstream and downstream fluid frontiers were modelled as open
boundaries. The vertical and longitudinal monitoring lines for the profiles were located along the
domain centreline (y = Wdom/2).

The spatial resolution for the present problem is defined by dx = 1.6 × 10−6 m, hSPH/dx = 1.3 and
dx/dxs = 2, where hSPH is the SPH influence length, dx is the spatial resolution, the subscripts “f” and
“s” represent the fluid and solid SPH particles, respectively.

Results are reported in terms of non-dimensional quantities for pressure p (Pa), velocity magnitude
and time t (s):

p∗ ≡
ph2

µUL
, U∗ ≡

∣∣∣us,1
∣∣∣+ ∣∣∣us,2

∣∣∣, T ≡
2tU∗

h0
(1)

where p* is defined as normalized pressure and h0 (m) is the representative oil depth (here equal to its
minimum value), with h0/L = 1/25 L represents the upper plate length and h0 is the minimum non-null
value of h—i.e., the mobile upper plate and the rough bottom plate are never in direct contact):

ε ≡
h0

L
<< 1; p ∝ ε−2, ε→ 0 (2)

with the upper plate width equal to the domain width.
The following results refers to the final time step, which is equal to the physical time and

representative of stationary conditions (T = 16.9, i.e., t = 3.00 × 10−6 s). Considering both the extremely
small ratios of the involved length scales and the temporary unavailability of the best machine
architecture usually adopted by the code, the simulation lasted 23.4 h on 68 cores Intel Xeon Phi7250
(Knight Landings, Intel, Santa Clara, CA, USA) at 1.4 GHz.

Figure 4 shows a lateral view of a representative 3D field of the x-component of the normalized
velocity. No-slip conditions are well reproduced at both the fixed frontier and the plate bottom.
Within the confined fluid area, the velocity horizontal gradient depends on the local oil depth and the
proximity to the edges of the mobile plate.
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Figure 4. Linear slider on a processed rigid tomato leaf. Non-dimensional velocity 3D field (lateral
view). T is the non-dimensional time defined within the text. The upper plate moves towards right.

Figure 5 reports a representative lateral view of the 3D field of the normalized pressure. The leading
edge and the trailing edge are locally featured by an over-pressure stagnation region and an
under-pressure zone, respectively. The normalized pressure field is strongly perturbed by the
asperities of the bottom complex surface.



Lubricants 2019, 7, 103 7 of 12
Lubricants 2019, 7, x 7 of 12 

 

 

Figure 5. Linear slider on processed a rigid tomato leaf. 3D field of the normalized pressure within 
the fluid sub-domain (lateral view). T is the non-dimensional time defined within the text. The upper 
plate moves towards right (higher x values). 

Figure 6 shows a representative 3D view of the field of the x-component of the normalized 
velocity. The 3D effects (dependence on the y-coordinate), due to the complex shape of the bottom 
surface, are relevant. The field of the y-component of the normalized velocity is not reported because 
it is negligible (with respect to the x-component) since the stationary regime is achieved. Figure 7 
shows a representative 3D view of the field of the z-component of the normalized velocity. The 
absolute value of the biggest positive value is 50% of the velocity scale and occurs at the leading edge. 
The absolute value of the smallest negative value is 24% of the velocity scale and occurs at the trailing 
edge. Figure 8 reports a representative 3D view of the normalized velocity both in terms of vector 
field and scalar absolute value. This example image integrates the information coming from the three 
velocity components simulated all over the fluid domain and demonstrates the importance of 
simulating the vertical component of the velocity vector, especially near the leading and trailing 
edges of the mobile plate. 

Figure 9 reports a representative 3D view of the normalized pressure field at the interface 
between the oil and the upper plate. The presence of a complex 3D bottom surface introduces local 
fluctuations of the pressure field along the x-axis as local perturbations to the parabolic shape of the 
pressure longitudinal profiles (Figure 11a): at the micro-scale the roughness elements represent 
obstacles featured by stagnation zones on the upstream faces and under-pressure regions on the 
downstream faces. 

Comparing Figures 4–9, one notices that the 3D effects are mitigated with z. By contrast with the 
codes based on the simplified Reynolds’ equation for fluid films, this SPH code can represent the time 
and space evolution of the velocity vector, not just the stationary regime for the x-component of 
velocity. 

 
Figure 6. Linear slider on a processed rigid tomato leaf. 3D field of the x-component of the non-
dimensional velocity (3D view). 

Figure 5. Linear slider on processed a rigid tomato leaf. 3D field of the normalized pressure within the
fluid sub-domain (lateral view). T is the non-dimensional time defined within the text. The upper plate
moves towards right (higher x values).

Figure 6 shows a representative 3D view of the field of the x-component of the normalized velocity.
The 3D effects (dependence on the y-coordinate), due to the complex shape of the bottom surface,
are relevant. The field of the y-component of the normalized velocity is not reported because it is
negligible (with respect to the x-component) since the stationary regime is achieved. Figure 7 shows a
representative 3D view of the field of the z-component of the normalized velocity. The absolute value
of the biggest positive value is 50% of the velocity scale and occurs at the leading edge. The absolute
value of the smallest negative value is 24% of the velocity scale and occurs at the trailing edge.
Figure 8 reports a representative 3D view of the normalized velocity both in terms of vector field and
scalar absolute value. This example image integrates the information coming from the three velocity
components simulated all over the fluid domain and demonstrates the importance of simulating
the vertical component of the velocity vector, especially near the leading and trailing edges of the
mobile plate.

Figure 9 reports a representative 3D view of the normalized pressure field at the interface between
the oil and the upper plate. The presence of a complex 3D bottom surface introduces local fluctuations
of the pressure field along the x-axis as local perturbations to the parabolic shape of the pressure
longitudinal profiles (Figure 11a): at the micro-scale the roughness elements represent obstacles featured
by stagnation zones on the upstream faces and under-pressure regions on the downstream faces.

Comparing Figures 4–9, one notices that the 3D effects are mitigated with z. By contrast with
the codes based on the simplified Reynolds’ equation for fluid films, this SPH code can represent the
time and space evolution of the velocity vector, not just the stationary regime for the x-component
of velocity.
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Figure 9. Linear slider on a processed rigid tomato leaf. 3D field of the normalized pressure within the
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The simulation reference system is defined by the axis orientation of Figures 4 and 6 (with the
origin located at the lower left corner in the plan view—i.e., non-null values are used for the horizontal
coordinates x and y−). At the same time, in order to monitor the simulated profiles, a local reference
system is assumed with non-dimensional spatial coordinates, as explained below.

Figure 10 shows the projection of the absolute value of the non-dimensional 3D velocity field on
different planes parallel to the flow direction at different heights z. On these planes, the components of
the 3D velocity vector field are characterized by a significant inhomogeneity along each one of the three
directions aligned with the Cartesian axes. It is observed that as the z coordinate increases, the velocity
field along the corresponding plane is more affected by the velocity of the upper mobile plate.

Figure 11a reports the normalized pressure longitudinal profile, from the inlet section (leading
edge, X = 1) to the outlet section (trailing edge, X = 0) of the slider. Within these sections, the 2D
pressure field is not imposed, but dynamically simulated until stationary conditions are achieved.
The pressure field at the reference plot refers to the surface body particles representing the fluid–body
interface (inclined monitoring line). The other three plots are monitored within the fluid domain at
different non-dimensional heights Z = (z − zbot)/h: Z1 = 1, Z2 = 0.5, Z3 = 0 (horizontal monitoring lines;
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zbot is the local height of the lower plate). Results are plotted only within the bearing region (i.e., the
portion of the fluid film laying between the upper plate and the bottom). The higher the position of the
monitoring line (far from the asperities of the complex surface) the smoother the normalized pressure
profile is. The two upper profiles are affected by a more pronounced estimation in the normalized
pressure maxima at the leading edge. These two profiles provide very close results: some discrepancies
are visible around the leading edge where the relative distance of these monitoring lines is maximum.
By contrast with the analytical solutions (e.g., [6]) and the codes based on the simplified Reynolds’
equation for fluid films, this SPH code can simulate non-null vertical gradients of the pressure field (as
in [38]), it takes into account the inertial effects due to the fluid-structure interactions at the leading
and the trailing edges, and the profile concavity is directed upward.
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Figure 11b shows two vertical profiles of the x-component of the normalized velocity. The numerical
probes are located at X1 = 0.74 and X2 = 0.98, where X is the non-dimensional distance from the trailing
edge (x − x0)/L and x0 (m) is the x coordinate of the trailing edge of the upper mobile plate at a fixed
time. The concavity of the parabolic profile (directed downwards) increases as long as the monitoring
position is located at a further distance from the leading edge. This feature is similar to what happens
for a linear slider bearing over a flat bottom surface, where analytical solutions do apply. However,
by contrast with the analytical solutions and the codes based on the simplified Reynolds’ equation for
fluid films, the concavity of the velocity profile close to the leading edge is directed downward. As for
linear sliders over a flat bottom (and the results from Reynolds’ equations for fluid films), the vertical
profile of the horizontal velocity is quadratic in z and it depends on x.

As the spatial discretization of the numerical pressure profile is uniform, the numerical
non-dimensional load-bearing capacity LC is estimated as the average of the normalized pressure
values over the mobile plate bottom (the squared parentheses represent an SPH estimation):

〈LC〉 ≡
〈lc〉
µUL2

h2

=
h2

µUL2

∑
i=1,N

ps,idxi =
1
N

∑
i=1,N

p∗s,i (3)

where N represents the number of surface body particles along the centreline of the mobile plate
bottom. The estimated non-dimensional load-bearing capacity for the above simulation is LC = 0.026.

3. Conclusions

A computational fluid dynamics–smoothed particle hydrodynamics (CFD–SPH) code has been
used to simulate a linear slider bearing in the presence of a 3D complex surface. Numerical assessments
show the versatility and the robustness of the computational framework for the simulation of the
fluid flow and the prediction of the load-bearing capacity, the complete 3D fields of the velocity
vector, as well as the pressure 3D field (both within the fluid domain and at the fluid–plate interface).
This study proves the capabilities of CFD–SPH modelling in representing hydrodynamic lubrication
phenomena in the presence of 3D complex surfaces.

The following key physical features arise from the proposed analysis. The presence of a complex
3D bottom surface introduces local fluctuations of the pressure field along the motion direction of
the bearing mobile plate. The 3D effects are mitigated with the distance from the complex surface.
By contrast with the analytical solutions and the codes based on the simplified Reynolds’ equation
for fluid films, this SPH code predicts the time and space evolution of the velocity vector (not just
the stationary regime for the x-component of velocity). The more the monitoring line is far from the
asperities of the complex surface, the smoother the normalized pressure profile is. The normalized
pressure grows with height at the leading edges. By contrast with the analytical solutions and the
codes based on the simplified Reynolds’ equation for fluid films, this SPH code can simulate non-null
vertical gradients of the pressure field, takes into account the inertial effects due to the fluid-structure
interactions at the leading and the trailing edges, and the pressure profile concavity is directed upward.
The more the velocity profile is distant from the leading edge, the more the profile concavity (directed
downward) is pronounced. This feature is similar to linear slider bearings over flat bottom. However,
contrarily to the analytical solutions and the codes based on the simplified Reynolds’ equation for
fluid films, the concavity of the velocity profile close to the leading edge is directed downward. As for
linear sliders over the flat bottom (and the results from Reynolds’ equations for fluid films), the vertical
profile of the horizontal velocity is quadratic in z and depends on x. The code herein used (SPHERA) is
developed and distributed on a GitHub public repository. The successful application of SPHERA for
hydrodynamic lubrication on complex surfaces opens new research perspectives that can be handled
within a SPH computational fluid dynamics framework, such as, for instance, the prediction of the
movement of particles dispersed in the fluid, as well as erosion of the rough boundary. Moreover,
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combined with a topology optimization framework, it allows the design of the topology of complex
textured surfaces to enhance lubrication.
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