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Abstract: This study investigates the effect of laser surface texturing on the friction behavior of
grey cast iron reciprocating under boundary, mixed lubrication conditions and cyclic loading.
Four geometrical parameters of micro-textures (feature depth, feature diameter, area fraction,
and sliding direction) were studied using a design of experiments (DoE) approach. The results
showed that depending on the geometry, micro-textures can have either a positive or a negative effect
on the friction behavior. The DoE analysis revealed that the coefficient of friction is mainly affected
by the interaction of the feature depth and its diameter. It was found that this can be related to the
aspect ratio of the dimples, and the best results were obtained for an aspect ratio of 0.1 and 0.17.

Keywords: tribology; surface engineering; laser surface texturing; mixed lubrication; starved
lubrication; design of experiment

1. Introduction

Nowadays, there is a great need for energy saving and any field related has attracted considerable
attention in recent years. For moving systems or systems with moving parts, one way to decrease
the energy consumption is to reduce the frictional losses. One of the potential methods to decrease
friction is texturing the surface of the moving pieces [1]. Surface texturing consists of producing regular
patterns on the surface in order to improve the tribological properties of the pieces [2]. One popular
method to produce the structures is by laser machining [2–4]. Indeed, laser surface texturing is a
versatile method that allows us to easily create various dimple shape geometries [5,6], depths [7,8],
sizes [9,10], or distributions [4,11].

Three main mechanisms have been proposed to explain the better tribological properties of
textured surfaces. The first mechanism is an increase of the hydrodynamic pressure due to the micro
irregularities of the surface [12,13]. This mechanism was first shown for protruding asperities, but was
later also adapted for dimples or negative indents by Etsion and Burstein [14]. This mechanism works
in the hydrodynamic regime where no solid contacts take place and this is why positive (protruding)
or negative (recessed) texturing can be used. The second mechanism occurs more towards boundary
or starved lubrication with dimples. In this case, the dimples can act as oil reservoirs and facilitate the
re-lubrication of the surface in starved conditions [15–17]. The last mechanism proposed to improve the
properties is the trapping of wear debris inside the dimples [18,19]. This mechanism can be effective
both for dry [18,19] and for lubricated conditions [3,10].

The effects of surface texturing have been mostly studied on laboratory standard equipment,
such as pin-on disk tribometers [4,8,9,18–20]. These tools are helpful for preliminary investigations
and normalized tests, but the direct application of the results to a real mechanical system may be
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very hazardous. A few studies have been done on journal bearing but mostly in unidirectional
sliding and hydrodynamic conditions [5,7]. In this study, the effect of several texture parameters is
investigated in a custom-made, half-journal bearing with reciprocating sliding under complex cyclic
loading. This custom made tribo-setup was designed to simulate a half-journal bearing used in an
industrial cutting machine.

2. Materials and Methods

2.1. Tribological Setup

The tribological experiments were carried out on a custom-made setup allowing for the
reciprocating sliding of a steel axis against a half-journal bearing as shown in Figure 1a. The setup is
identical to that used in our previous studies, and all of the details of the machine and test procedure
are given in Meylan et al. [21]. This setup is made to simulate the exact contact pressure and reciprocal
movement as for a half-journal bearing used in an industrial cutting machine.

During each reciprocating cycle, the load is varied between a minimum (1 or 4 kN) and a
maximum load that can go as high as 250 kN according to Figure 1b. Most of the rotation occurs at
the minimum load. As the load is increased sharply, the maximum load is reached at the end of the
rotation. This maximum load corresponds to a pressure of 110–180 MPa over the contact surface as
calculated by Finite Element (FE) simulations (not shown here). Then, the load decreases sharply
when the axis is rotated back to its initial position. The number of cycles per hour (cycle rate) can also
be adjusted between 3000 and 9500 cycles/h. During the complete duration of a test, a commercial
industrial lubricant with a viscosity of 220 cSt. at 40 ◦C (DIN 51506 VBL) was poured into the gap
between the two pieces at a rate of 1.3 ± 0.02 dL/min (See Figure 1a). The oil was applied by gravity.
In other words, the oil was dropped into the interstice between the steel and cast iron so that it could
flow freely in the contact. The rate was measured several times before and after the experiments to
check the variations of the debit.
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Figure 1. (a) Schematic representation of the tribological setup; (b) Graph showing the reciprocal
rotation of the axis (pink), the load applied (green), and the linear speed at the contact (black) for one
cycle with a maximum load of 250 kN applied.

The same procedure as in our previous study [21] was used for the running-in to avoid catastrophic
failure and is given in Appendix A, Table A1. During the first 8 h of sliding, the load and the cycle rate
were progressively increased from 60 to 250 kN and from 4000 to 9500 cycles/h, respectively. After,
the loading procedure (8 h), the maximum load, and the cycle rate were kept at their maximum values
of 250 kN and 9500 cycles/h, respectively, whereas the minimum load was increased and kept constant
to 4 kN for 8 h.
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The machine was stopped after 4.5, 8, and 16 h. These stops were necessary to change the settings
and to allow for ex situ observations of the surface. Each stop was sufficiently long to cool the machine
and the oil down to their initial temperatures before restarting the test.

In our previous study, it was found that the steady-state starts after approximately 10 h. In this
study, to be on the safe side and ensure that all of the samples have reached the steady-state for
comparison, the tribological properties were compared for the period between 12 and 15 h.

2.2. Design of Experiment (DoE)

Due to the high cost and time needed for each experiment, only a limited number of tests could
be planned. Under such circumstances, design of experiment (DoE) methods are very efficient as they
allow us to obtain as much information as possible when testing several factors with a limited number
of tests. This method requires much less testing than for example testing one factor at a time, and it is
also possible to obtain information on the interactions between the factors [21]. Consequently, in order
to extract as much information from the limited number of tests, a two-level factorial design was used.

In this study, elongated dimples distributed regularly in a hexagonal matrix were investigated as
illustrated in Figure 2a. The dimples are similar to the ones used by Saedi et al. [10,20], and the factors are
the same except for the length. Indeed, to reduce the number of tests in this study, the length was kept
constant at 500 µm. Four factors were investigated, which are the depth (h), the diameter (d), the area
fraction of micro-textures (f ), and the sliding direction relative to the major axis of micro-textures (α).
The different factors are illustrated in Figure 3, and the values of the two levels used for each factor are
shown in Table 1.
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Figure 2. (a) Schematic representation of the geometric parameters used for the Design of Experiment
(DoE); (b) Schematic representation of the eight textures generated by the DoE, Tx 1–4 have a depth of
50 µm, whereas Tx 5–8 have a depth of 10 µm.

Table 1. Factors, levels, and coded values of the design of experiments.

Factors Low Level High Level

Height (h) (µm) 10 50
Diameter (d) (µm) 100 300

Area fraction (f ) (%) 5 10
Sliding direction (α) (deg.) 15 90

Code −1 1

A full two-level factorial design with four factors still requires 16 experiments (24 = 16). This was
however not possible resource wise, so a fractional factorial design was used [22,23]. One-half fraction,
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or 24-1, was selected in this work, which decreased the number of experiments by a factor 2 and so
decreased the number of experiments to eight. The fractional factorial design was defined using the
generator I = hdfα. This means that each main factor is aliased with the interaction of the three other
factors, and that each interaction of two factors is aliased with the interaction of the other remaining
two factors. As a consequence, the design is of resolution IV. Resolution IV designs are good for
studying the influence of the main factors and interactions of two factors, but are limited to a higher
factor as the influence of the interactions are aliased. Equation (1) shows our first-degree polynomial
model with interactions:

Y = a0 + a1h + a2d + a1 f + a1α + a12hd + a13h f + a14hα + ε (1)

where Y is the experimental response, a0 is a constant, ai are the main effect coefficients associated with
the main factors, aij are the interaction effect coefficients, and ε is the error observed in the response
Y (also known as the residual). The other two factors interactions are aliased with those shown in
Equation (1). The eight textures generated by the fractional factorial design are shown in Figure 2b
and the parameters of the eight structures are summarized in Table 2. To avoid any influence of the
order of the experiment, the tests are run in a random order as shown in the second column of Table 2.

Table 2. The run order and surface textures parameters for the eight textures, as well as the values for
the main response studied in this work (the average maximum torque between 12 and 15 h sliding).

Texture Run
Order

A: (h)
(µm)

B: (d)
(µm)

C: (f )
(%)

D: (α)
(◦)

Response: Average
Maximum Torque (Nm)

Tx 1 5 50 300 5 15 301
Tx 2 8 50 100 5 90 324
Tx 3 1 50 300 10 90 227
Tx 4 4 50 100 10 15 334
Tx 5 3 10 300 5 90 518
Tx 6 7 10 100 5 15 280
Tx 7 6 10 300 10 15 380
Tx 8 2 10 100 10 90 238

2.3. Materials and Sample Preparation

The steel axes of the tribo-system had a diameter of 65 mm and were made of a standard 42CrMoS4
steel with the chemical composition given in Table 3. The surface roughness (Sa) was 0.32 ± 0.02 µm.
The counter-pieces were in grey cast iron (composition given in Table 3) with an inner diameter of
65.14 mm. All of the surfaces of the grey cast iron workpieces have a surface roughness (Sa) of the
contact region of 0.9 ± 0.1 µm after electric discharge machining (EDM).

Table 3. Chemical composition of the grey cast iron samples and the steel axes (wt %).

C Mn Si P S Cu Cr Mo Fe

Grey cast iron 2.890 0.940 1.470 0.036 0.059 1.000 - - Balance
42CrMo4 steel 0.400 0.750 0.330 0.035 0.028 - 1.010 0.160 Balance

The textures on the cast iron pieces were machined using a pulsed near-infrared laser with a
wavelength of 1064 nm and a pulse duration of 100 ns. The fluence of ablation was 4.2 J/cm2. As a
consequence, splatters are produced during the ns laser pulses and ejected from the ablation zone.
They accumulate around the dimples and form ridges as shown in Figure 3. To avoid any influences
of these ridges during the sliding, they were ground out before performing the test. The grinding
procedure was stopped before doing any modification to the roughness of the contacting surface.
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This is confirmed by the topographic measurements made before and after grinding, and the fact that
the roughness between the dimples is intact (see Figure 3).

In addition to the textured samples, seven samples without texture were also evaluated as
reference surfaces in order to provide a comparison with the textured samples. The reference samples
have the same surface topography as the region between the dimples of the textured samples (see
Figure 3).
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Figure 3. Topography measurement of the surface Tx 8 directly after laser processing (left) and after
grinding the ridges around the dimples (right). Comparison of the profiles shows the disappearance of
the ridges after grinding. The surfaces are shown after the removal of the cylindrical form of the cast
iron piece.

2.4. Ex Situ Characterisation of the Surface

As previously mentioned, the cast iron counter-pieces were dismounted after 4.5, 8, and 16 h for
ex situ observation. To start with, a visual observation of the surface was made to ensure that no severe
wear had occurred during testing. Secondly, the surface was cleaned with acetone followed by ethanol
in an ultrasonic bath. Then, the surfaces’ topography was measured with a white light profilometer
Altisurf 500 from Altimet (Evian, France) that was equipped with an optical pen OP300WM from Stil
SA. The given specifications are a maximum vertical range of 300 µm and an axial resolution of 10 nm.
Surfaces of 5 × 5 mm2 were scanned with a lateral step of 5 µm similar to the maps shown in Figure 3.
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3. Results

3.1. Tribological Tests

The evolution of the maximum torque with the corresponding sliding time is shown for three
selected textured samples in Figure 4a. In this figure, only the textures with the maximum effects are
shown since the others are close to the reference sample which makes the graph difficult to read (see
Figure 4b). In addition, the average of the seven reference samples with their corresponding standard
deviation is also shown in this figure for comparison. During the two stages of running-in from 0 to
4.5 h and 4.5 to 8 h, the tribological behavior of the different samples cannot be separated. They roughly
follow the same trend and some curves cross each other several times meaning that it is difficult to
say which sample performs better during this time. However, clear differences between the samples
appear after 8 h when the process parameters are kept constant with the maximum load at 250 kN,
the minimum load at 4 kN, and the cycle rate at 9500 cycles/h. From this time, a distinct difference in
the maximum torque can be observed between the samples. The torque first increases during the 8 to
12 h period. This is related to an increase of the temperature of the system, and especially the contact
and oil temperatures (see Figure A1 in Appendix A). An increase of the oil temperature decreases
its viscosity and thus decreases its load carrying capacity, which leads to more solid–solid contacts
leading to an increased coefficient of friction. At 12 h, the temperature starts to reach an equilibrium
and the maximum torque tends to stabilize for most samples. For texture Tx 5, the behavior between 8
to 12 h is unstable. The torque increases much more at the beginning than all the other samples but
decreases sharply at 9 h. This is followed by another increase at 11 h to finally stabilize after 12 h at a
very high value. The behavior of Tx 4 is also unstable between 8 and 10 h, but after this time it went
back to a normal behavior and so the torque value measured during 12 to 15 h was not affected by
these instabilities.

For these reasons, the samples were compared during the 12 to 15 h period where the torque
reaches a steady-state and the difference between the samples is maximum. The average maximum
torque for the textured samples between 12 and 15 h is summarized in Table 2 and the non-textured
reference samples are given in Table 4.
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Table 4. Average maximum torque between 12 h and 15 h for the reference samples (non-textured).

Reference Sample 1 2 3 4 5 6 7 Average St. Dev.

Average maximum torque (Nm) 294 257 269 342 288 295 333 297 34
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A comparison between the reference samples and the textured samples shows a larger scatter of
the data for the textured samples. Indeed, based on Table 2, the average of the eight textured samples
is 325 Nm with a standard deviation of 81 Nm whereas the average is 297 ± 34 Nm for the reference
samples. As the averages values are within standard deviations, an F-test is required to see whether
this difference is real or only an artifact. The F-test confirmed that there is a 97.5% chance that the
influence of the textures is significant. The average of the samples is very close as some textured
samples have a lower value than the reference (see Tx 3 and Tx 8 in Figure 4), and some textured
samples have a much higher value than the references (see Tx 5 and Tx 7 in Figure 4).

3.2. Statistical Model

As seen in Section 3.1, the different textures have a clear influence on the tribological behavior
of the samples. Using linear regression, the coefficients (also known as half-effects) of Equation (1)
were calculated and are shown in Table 5. It can be seen that the main coefficient is the interaction
between h and d, followed by the first three main factors (h, d, and f ).

Table 5. Coefficients calculated for the complete model shown in Equation (1).

Coefficient a0 a1 a2 a3 a4 a12 a13 a14

Value 325 −29 31 −30 1.5 −64 14 −23

As a first selection, only the fourth-highest terms were kept, and to characterize their
significance, a statistical approach based on the analysis of variance (ANOVA) was employed similar
to Saeidi et al. [10]. Based on this approach, the only significant term was the interaction, hd, between
the height and the diameter. The three main factors: height (h), diameter (d), and area fraction (f ) are
not statistically significant. The ANOVA table is given in Table 6, where DF is the degree of freedom
and the F-value is given by Equation (2):

F =
MSterm

MSresidual
, (2)

where the mean square of terms (MSTerms) is the ratio of the sum of squares within terms to its degree
of freedom (SSTerms/DFTerm), and similarly (MSResidual = SSResidual/DFResidual). The p-value is the
probability that a given F-value is due to noise. A term with a value lower than 5% is considered
significant whereas a term with a p-value higher than 10% is considered not significant [22]. As can be
seen in our model, only the interaction hd is significant, but doing a model only with this interaction is
a misleading representation of the data. Hence, we decided to keep the next three main factors h, d,
and f in the final model.

Table 6. Analysis of variance (ANOVA) for the average maximum torque.

Source Sum of Squares DF Mean Square F-Value p-Value Prob > F

Model 54,379.50 4 13,594.88 7.09 0.0697
h 6612.50 1 6612.50 3.45 0.1602
d 7812.50 1 7812.50 4.08 0.1368
f 7442.00 1 7442.00 3.88 0.1434

hd 32,512.50 1 32,512.50 16.96 0.0259
Residual 5750.00 3 1916.67

Total 60,129.50 7

The final Equation modeling the average torque is thus given by:

Average maximum torque = 325 − 29·h + 31·d − 30· f − 64·hd. (3)
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The R-square value (R2), Adjusted-R2, and Predicted-R2 of this model are 0.90, 0.78, and 0.32,
respectively. This model is relatively accurate for navigating within the existing data, but cannot be
used reliably to predict non-existing data or great care has to be taken when doing so. This is probably
due to the low number of tests, meaning that one strange experiment, such as for example the Tx 5
shown in Figure 4, can affect to some extent the precision of the model.

3.3. Topographical Evolution

In Figure 5, the evolution of the topography is shown for two textured samples (Tx 3 and Tx 5).
On the left, the topography maps show the surface state just before the start of the tribological tests
(after texturing and after grinding of the ridges). The laser dimples are well-visible for the 50-µm-deep
texture (Figure 5a), and are less marked for the textures with a 10 µm depth (Figure 5c). The surface
between the laser dimples is rather rough, as the references were chosen to have a rough surface to
avoid scuffing. The surfaces consist of many small craters just a few microns deep with small hills in
between. Some craters nevertheless have a comparable depth to the shallow laser dimples (~10 µm)
(Figure 5c). The craters are also smaller in size than the laser dimples.

After 16 h of sliding, the surfaces have not changed drastically (see Figure 5b,d). Indeed, the wear
occurred only on the highest peaks of the surfaces. The small craters of the original surface are still
preserved as well as the larger laser dimples.
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4. Discussion

Most of the research on the influence of surface texturing have demonstrated an improvement
of the tribological properties [1–3], but this is not always the case as reviewed by Gachot et al. [24].
Our results are consistent with Gachot et al. [24], since in our setup and for the selected textures,
we observed almost no influence for most surface textures as compared to non-textured samples and
an increase of the friction force for two textures and a decrease of the friction for the last two textures.
Several factors can be responsible for such behavior. First, the reference surfaces were not perfectly
flat but were rough with already a kind of random texturing of the surface. This is well-visible in
Figure 5 where small craters are evident on the surfaces. These craters are smaller in size as compared
to the big laser textures shown in Figure 5a, but their sizes are not negligible in comparison to the
smaller structures shown in Figure 5c. Hence, it is obvious that the tribological performance of the
reference surface is already good, and most of the surface textures selected could either have little or
not improve it further.

Secondly, some works have already shown the negative influence of surface texturing under
starved or boundary conditions [25–27]. Indeed, Podgornik et al. [25] found that under starved
lubrication conditions, large dimples can be an obstacle to sliding motion. The dimples are also
thought to impact the local stress distribution, meaning a higher load in the region surrounding the
dimples, which can lead to an increase of the friction [25,27]. Consequently, the area fraction (f ) as well
as the size of the dimples (d and h) must be kept below a certain value. In this study, the area fraction
(f ) was kept low—between 5 and 10%—in order to avoid this problem. Another mechanism explaining
the negative impact of dimples under starved lubrication conditions is that the dimples can ultimately
become “micro-traps” for oil [26,28]. In other words, the oil in the contact becomes very scarce since it
can be trapped in partially empty dimples instead of acting as lubricant in the contact area [28].

In this contribution, it is very likely that the critical moment of the sliding is at the start of the
back rotation. The reason is that towards the end of the movement, the load has the highest value
when the movement stops, meaning that the system is in boundary or starved conditions. The high
pressure at this moment, between 110 and 180 MPa, pushes the oil out of the contact area and as the
pieces deform the whole cast iron surface is in contact with the steel, with no gap for oil to enter from
the sides. Under these conditions, it is likely that we encounter some of the detrimental effects of the
dimples cited in the previous paragraph.

Due to the relatively low number of tests performed, the statistical model proposed has some
limitations and should be used within the structures tested. However, interesting information can be
obtained when looking at the main factors influencing the average maximum torque. Actually, the only
statistically significant term is the interaction between the height and the diameter, hd. As we used a
design with a resolution of IV, this term is aliased with the interaction of the two other coefficients,
area fraction and sliding direction, f and α. However, the physical meaning of this interaction makes
much less sense than hd. The interaction between h and d can be interpreted as the aspect ratio of
the dimple h/d. This parameter was already found to play an important role in the improvement of
friction [2,4,29–31]. Based on the work of Etsion [3,31] and other researchers [24,32], it was concluded
that the h/d ratio is highly dependent on the operating conditions and should be optimized for each
set of conditions. In contrast, Schneider et al. [4] found an optimum for the aspect ratio close to 0.1.
In this work, the model predicts a lower friction if the height and the diameter are both at the low or
high values, respectively. Using our textured geometries, the aspect ratio is either 50/300 ≈ 0.17 or
10/100 = 0.1. These values correspond well with the one reported by Schneider et al. [4]. On the other
hand, when one of the factors is at a low value and the other is at high value, this gives either a low
aspect ratio of 10/300 ≈ 0.03 or a high aspect ratio of 50/100 = 0.5. All of the structures with a small
or high aspect ratio performed worse than the one with an aspect ratio close to 0.1. The influence of
the aspect ratio is linked in the literature to the capacity of creating fluid vortex in the dimples that
effectively creates a shear force and leads to a decrease of the global friction [25]. This mechanism also
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competes with the previously mentioned mechanisms that can hinder the tribological properties and
so leads to this optimum aspect ratio around 0.1 [4].

The other terms in our model are not statistically significant; this is partially due to the low number
of tests and on the other hand can also be a consequence of the interval chosen for the parameters.
As explained above, for example, the textured area fraction was kept relatively low—between
5–10%—since this is an interval often cited in the literature as a good interval for surface texturing [33].
It is possible that within the interval chosen, the friction is close to an optimum and so does not vary
significantly with the area fraction. It is very probable that if this interval was extended, a larger
influence could be detected as it is often reported that the friction decreases for an area fraction that is
too high [4].

Finally, the observations of the topography changes before and after the test confirm that the
wear during the 16 h of sliding is concentrated on the highest peaks of the surface. These observations
confirm our previous findings of the wear evolution of the reference surface [21]. Essentially,
the topographical changes occurred mostly at the top of the asperities whereas the craters of the
original surfaces and the laser dimples are not affected by the wear. As the wear for these experiments
is low, it is not possible to observe a significant difference in the wear rate between the samples. To see
an influence, a much longer running time should be used. Another solution could be to use harsher
conditions to accelerate the wear rate. One possible solution for this custom-made tribometer would
be to increase the minimum load that is applied during most of the stroke. For the current tribo-meter,
the maximum load and the cycle rate cannot be increased but there is a potential to increase the
minimum load up to 20 kN. Under these conditions, differences in the wear rate for the different
textures might be more distinct.

5. Conclusions

In this study, the tribological behavior of textured cast iron samples was investigated under
reciprocating sliding and cyclic loading. The cast iron pieces were sliding against a hardened steel
axis under mixed and boundary lubrication. The conditions were as close as possible to industrial
conditions and so it was not possible to conduct many tests. Because of this, a design of experiment
approach was employed. It was found that most of the textures have similar or worse tribological
properties than the reference surface without laser texture. This can be explained by the fact that
the reference surface is rough and has already micro-craters scattered on the surface. Therefore,
the tribological behavior of this reference surface was already good. Also, under starved lubrication
conditions, the textures can have a negative influence on the tribological properties due to oil trapping
or an increase of local pressure.

Among the studied geometric parameters of the dimples, a semi-empirical model was given
that has to be used within the dimples geometry used. It was found that the interaction between the
height (h) and the diameter (d) of dimples is the only statistically significant factor influencing the
tribological properties. This can be related to the effect of the aspect ratio (h/d) on the tribological
properties. The optimal aspect ratio was found to be between 0.1 and 0.17. Too low or too high aspect
ratios lead to an increase in friction.
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Appendix A

Table A1. Complete experimental conditions used for all of the samples.

Step Number Maximum Load Minimum Load Cycle Rate Time

(kN) (kN) (cycles/h) (min)

Running-in 1 (4.5 h)

1 60 1 4000 30
2 90 1 4000 30
3 120 1 4000 30
4 150 1 4000 30
5 180 1 4000 30
6 150 1 5000 30
7 120 1 6500 30
8 100 1 8000 30
9 100 1 9500 30

Running-in 2 (3.5 h)

10 90 1 4000 30
11 150 1 5500 30
12 180 1 6500 30
13 200 1 9500 30
14 225 1 9500 30
15 250 1 9500 60

Steady-state (8 h) 16 250 4 9500 480
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