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Abstract: This work proposes a numerical model that incorporates the effect of lubricant inertia on
the hydrodynamic pressure distribution, fluid film reaction forces, and the fluid velocity component
profiles for finite-length open-ended squeeze film dampers (SFDs). Firstly, the thin film flow equations
for the SFD in presence of fluid inertia effects are introduced. Furthermore, a small first-order
perturbation by means of the expressions for the fluid film velocity components and the lubricant
pressure distribution that are expanded in power series of the squeeze film Reynolds number is applied
to the flow equations. Subsequently the developed lubricant flow equations are solved to develop
expressions for the velocity component profiles and the hydrodynamic pressure distribution in SFDs.
The pressure expression is numerically solved by using Gauss–Seidel method with finite difference
discretization. Moreover, the fluid film reaction forces are determined by numerically integrating the
hydrodynamic pressure expressions over the journal surface. Additionally, the proposed pressure
distribution expression and the numerical SFD forces are incorporated into a simulation model and the
simulation results are compared with the existing models in the literature under different operating
conditions, including eccentricity ratios and inertia effects (i.e., Reynolds numbers). The simulation
results demonstrate the significant influence of both convective and temporal (i.e., unsteady) lubricant
inertia terms on the SFD hydrodynamic pressure distribution and the fluid film reaction forces.
Furthermore, the proposed SFD model is incorporated into a multi-mass flexible rotordynamic model
to evaluate the effect of SFD fluid inertia on the mass unbalance induced steady-state vibrations of
the rotor and the nodal transient orbits by implementing finite element method and transient modal
integration with predictor–corrector solver. The results of the analysis demonstrate the significant effect
of fluid inertia on the resonance frequencies of the rotor and the steady-state vibration amplitudes and
the transient orbits at the resonance zone.
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1. Introduction

Unbalance induced vibrations are the main source of structural vibrations in high-speed
turbomachinery. This mass unbalance is associated with the limitations and imperfections in
manufacturing rotor systems and leads to a synchronous load cycle in the rotor. Squeeze film
dampers are essential components in high-speed turbomachinery, including aircraft jet engines, high
performance compressors, gas turbines, and automotive turbochargers, that are incorporated to
attenuate or completely suppress the steady-state unbalance induced vibration amplitudes at the
resonance frequencies, reduce the forces transmitted to the supports, and to ensure the stable operation
of the system. Figure 1 demonstrates the geometry of a conventional SFD. A typical SFD consists of a
stationary outer bearing (i.e., the bush) and an inner journal with approximately identical diameters.
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The journal is assembled on the outer surface of a rolling element and is prevented from rotation by
using an anti-rotation mechanism. The annular region between the journal and the housing is filled
with a lubricant. The precession motion of the journal is induced by residual unbalance of the rotor
and generates a hydrodynamic squeeze film pressure distribution that applies reaction forces over
the journal, providing the damping force to attenuate the transmitted forces and in turn reducing the
rotor vibration. The dynamic force response of SFDs is determined by the damper geometry, operating
speed, and lubricant properties. Furthermore, SFDs do not produce direct stiffness; a suitable degree
of stiffness is introduced by using retaining springs parallel to the squeeze film or by using a pair of
elastomer O-rings in radial disposition.
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The pioneering work by Cooper [1] demonstrated the benefits associated with the rotor operation
from coupling of a damping element, represented by an oil squeeze film, to an elastic element placed
within the rotor support. Ever since, research works have focused on providing greater insight into
different features of SFDs, including the effect of lubricant inertia. According to classic lubrication
theory, the pressure distribution in the thin film region of a hydrodynamic journal bearing is determined
by using the Reynolds equation, where it is assumed that the inertial forces are negligible relative to the
viscous forces (i.e., Re ≈ 0) [2]. In modern turbomachinery, increasing velocity and size of rotors as well
as application of low-viscosity lubricants requires the fluid inertia effect to be included in the design
and analysis of journal bearings. The effect of fluid inertia for thin films and hydrodynamic journal
bearings has been considerably studied in the literature. Smith [3] used simplified journal bearing
geometries, including the short and long bearing models, to determine the effect of fluid inertia on the
dynamic characteristics of journal bearings. He concluded that the effect of fluid inertia introduces an
added mass to the rotor system, which significantly influences the dynamic characteristics of short
stiff rotors. Typically, the proposed fluid inertia models assume circular-centered orbits (CCOs) of the
journal center. Circular-centered orbits of the journal center is a very common type of journal motion in
industrial applications of squeeze film dampers, including vertical rotors mounted on SFDs, horizontal
rotors mounted on SFDs with centralizing springs, rotors operating close to critical velocities, and for
rotor response to large unbalance forces [4]. Additionally, several investigations [5] have assumed
small amplitude motions of the journal center in their corresponding investigations. According to order
of magnitude calculations, for small amplitude motions of the journal center, convective inertia terms
in the flow equations are negligible relative to unsteady (temporal) inertia terms [6]. However, for large
amplitude motions of the journal center, including the displacement at critical speeds, the effect of
convective inertia is no longer negligible and should be necessarily incorporated into the calculations.

The force coefficients are the most common representation for the SFD forces in the presence of
fluid inertia. In this technique, firstly, the thin film equations are integrated into an expression for
the lubricant pressure distribution by adopting either one of the momentum approximation method
(aka method of averaged inertia) [7–9], the perturbation method [10], or the energy approximation
method. Han and Rogers [11,12] have provided a detailed comparison of three approximation methods,
namely momentum approximation method, iterative method, and energy method, on the force
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coefficients for short, long, and finite-length cylindrical SFDs. Subsequently, geometric approximations
(i.e., short bearing approximation and long bearing approximation) are applied to the pressure
expression to provide an approximate closed-form representation of the lubricant pressure distribution.
The closed-form pressure expression is integrated over the journal surface to obtain the fluid film
reaction forces (i.e., the tangential and radial components). These forces are nonlinear functions of
the velocity and the acceleration of the journal center. The Jacobian matrices of the journal forces
with respect to the velocities and the accelerations of the journal center are computed to develop
equivalent inertia and damping coefficients respectively. According to the momentum approximation
method [13,14], firstly, the flow equations are integrated along the film thickness to represent the
flow dynamics in terms of the mean flows, averaged inertia, and wall shear stress differences.
Subsequently, the terms in the equations are approximated by assuming that the shape of the velocity
profiles is not strongly influenced by the inertia forces [15]. San Andres and Vance [16] implemented
the momentum approximation technique to determine the force coefficients for finite-length SFDs
executing CCOs. They included convective fluid inertia as well as end seal effects in the calculations.
Furthermore, they suggested that the proposed model is strictly valid for small Reynolds numbers (i.e.,
Re ≤ 1). San Andres and Vance [17] analytically investigated the effect of fluid inertia and turbulence
on the force coefficients of short and long SFDs. They included both temporal and convective inertia
in their analysis. They suggested that at small eccentricity ratios, where the effect of temporal inertia
is dominant, an added mass is produced, which corresponds to the radial direct inertia coefficient,
however, at large eccentricity ratios, where the effect of convective inertia is superior, this effect is
completely reversed. Dousti et al. [18] developed an extended short bearing Reynolds equation that is
applicable to both laminar and turbulent flow regimes. Alternatively, according to the perturbation
technique [10,19,20], a small first-order perturbation by means of the expressions for the fluid film
velocity components and the lubricant pressure distribution that are typically expanded in power series
of the squeeze film Reynolds number is applied to the flow equations. This perturbation technique
separates the flow equations into a set of inertialess equations that are characterized by using the
classic Reynolds equation, and a set of first-order inertial correction equations. According to [16,17,21]
it is suggested that the first-order perturbation is applicable for SFD flow regimes with Re ≤ 25.
Finally, the energy approximation [14,22] firstly develops the expressions for the fluid kinetic energy.
Subsequently, the Lagrange’s equations along with the Reynolds transport theorem are applied to the
energy expressions to obtain the inertia forces. Similar to the momentum approximation technique,
in order to develop the fluid expressions, it is assumed that the shape of the velocity profiles is not
strongly influenced by the fluid inertia effects.

The force coefficient approach is particularly valuable for rotordynamic analysis, since it directly
provides an accelerated estimation of the fluid film reaction forces. However, in order to model the
effect of supplementary dynamic lubricant phenomenon on the damping characteristics of SFDs,
including lubricant cavitation and lubricant temperature variation, it is additionally required to
develop expressions for the lubricant hydrodynamic pressure distribution and the fluid film velocity
components. Furthermore, the force coefficients are typically developed for limiting bearing geometries,
which makes their predictions inaccurate for arbitrary bearing geometries.

Alternatively, numerical models [23–26] provide very accurate predictions for the SFD behavior.
The bulk flow model [27–29] is an additional numerical technique that is used to study the SFD
dynamics. In this technique, bulk flow variables are introduced by calculating the average lubricant
velocities across the film thickness and are substituted into the flow equations. Subsequently, the
bulk-flow model system of equations, including the continuity equation and the momentum transport
equation, is solved for the hydrodynamic pressure and the velocity profiles by using finite volume
method. The bulk flow modeling along with the finite volume numerical provide superior accuracy
for the prediction of the SFD parameters; however, the process is generally computationally very
expensive, especially for integration of the SFD model into rotordynamic systems, where the SFD
parameters are calculated over a considerable number of iterations.
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Additional analytical techniques have been proposed for calculating the closed-form pressure
distribution in SFDs [4,21,26,30–33], however, either the results are strictly valid for specific SFD
geometries and configurations, which makes them inapplicable to arbitrary bearing geometries, or
they are extremely complicated for integration into rotordynamic models.

Furthermore, the design and application of SFDs in turbomachinery is expansively represented
in [34,35]. Typically, the rotordynamic models incorporating SFDs are categorized as follows: (1) Rigid
Rotor Model; (2) Simple Flexible Rotor Model; and (3) Complex Flexible Rotor Model. The rigid
rotor model assumes that the flexibility of the rotor shaft is neglected and represents the equation of
motion of the rotor based on the relative position, velocity, and acceleration of the center of the SFD
bearing, the center of the SFD journal, and the mass center of the rotor. The dynamics of a rigid rotor
incorporating SFDs and fluid-film bearings was investigated in several studies [36–39]. The simple
flexible rotor model assumes that the total mass of the rotor is either concentrated in the center or in
the middle plane of the rotor, or alternatively it is distributed between the rotor center of mass and
the center of the bearings. The steady-state orbit whirls of a simple flexible rotor supported by SFDs
was investigated in [40–42]. In many practical examples, the number of degrees of freedom (DOFs)
represented by the simple flexible rotor model is insufficient to provide an accurate approximation
of the system dynamics. In this case, the continuous rotor model is discretized and a finite number
of DOFs are introduced. The dynamics of multi-mass and multi-degrees of freedom (MDOF) rotors
supported with SFDs is theoretically studied in [43,44]. The precedent studies assumed that the
effect of lubricant inertia on the fluid film reaction forces in SFDs is negligible and either used the
complete or the approximate (i.e., long bearing and short bearing approximations) Reynolds equation
to represent the SFD dynamics. For large propulsion turbines and aero-engines the operating SFD
squeeze Reynolds number is moderately large, typically on the order of one to twenty [45] and the
effect of fluid inertia can no longer be neglected for those applications.

This work proposes a numerical model that represents the effect of lubricant inertia on the
hydrodynamic pressure distribution, fluid film reaction forces, and the fluid velocity component
profiles for finite-length open-ended squeeze film dampers (SFDs). The proposed models in this
work are powerful tools that provide precise and accelerated evaluation of the SFD hydrodynamic
pressure distribution, velocity profiles, and fluid film reaction forces, for application in rotordynamic
models as well as the study of the effect of lubricant cavitation and lubricant temperature variation on
the damping effectiveness of SFDs. The following sections describe the derivation of the analytical
pressure and velocity expressions. Subsequently, the proposed expressions are incorporated into a
simulation model and the performance of the SFD models are evaluated under different operating
parameters. Finally, the proposed SFD model is incorporated into a flexible multi-mass rotordynamics
model, to determine the effect of SFD lubricant inertia on the transient orbits and the steady-state
unbalance induced vibrations of rotor systems.

2. Governing Equations

The SFD configuration in this work is a symmetric damper about its mid plane with open ends
(i.e., no seal). The geometry of the system is represented in Figure 2. An orthogonal Cartesian
coordinate system {x,y,z} is fixed in the plane of the lubricant, where the z-axis is perpendicular to
the plane of motion. Furthermore, an orthogonal Cartesian system {x′,y′,z′} translating with angular
velocity Ω is introduced, where the x′-axis is perpendicular to the line connecting the centers of the
inner and outer cylinders, and the y′-axis is in the direction of the minimum thickness. The angle θ′

starts from the origin of the fixed Cartesian system and the angle θ is measured at the maximum film
thickness in the direction of the whirling motion. Finally, a fixed inertial coordinate system {X,Y} is
defined at the center of the bearing.
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The dynamic behavior of a viscous Newtonian fluid within boundaries is generally characterized
by using the 3-dimensional continuity and Navier–Stokes equations as follows [2]:

∂ρ

∂t
+∇ · (ρV) = 0, (1)

ρ
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= −∇P +∇ · (µ∇V) +∇

(
−2µ

3
∇ ·V

)
+ ρg, (2)

where Equation (1) is the continuity equation corresponding to the conservation of mass within the
fluid boundaries; and Equations (2) correspond to the conservation of momentum within the fluid
boundaries. The terms in Equations (1) and (2) are expanded as follows [46]:
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(6)

Furthermore, it is assumed that [46]:

1. The body force terms are small compared to the viscous, inertia, and pressure terms.
2. According to an order of magnitude analysis, the velocity gradients ∂u/∂y and ∂w/∂y are large

compared to all other velocity gradients.
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3. The lubricant is Newtonian, incompressible (i.e., density gradient is zero), and iso-viscous (i.e.,
the viscosity gradient is zero).

Applying the above assumptions to Equations (3)–(6) gives:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (7)

ρ

{
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

}
= −∂P

∂x
+ µ

∂2u
∂y2 , (8)

ρ

{
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

}
= −∂P

∂y
+ µ

∂2v
∂y2 , (9)

ρ

{
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

}
= −∂P

∂z
+ µ

∂2w
∂y2 . (10)

Additionally, according to the thin film assumption in hydrodynamic lubrication theory, which is
characterized by the small ratio of film thickness to the bearing’s other physical dimensions, i.e., c <<

R, it is concluded that:

1. The effect of the curvature of the film is negligible; hence a linear coordinate system is used to
describe the lubricant dynamics.

2. The variation of the pressure across the film is negligible (i.e., ∂P/∂y = 0).

Based on the preceding description, for an incompressible and iso-viscous lubricant, the flow
equations in the SFD are reduced to:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (11)

ρ

{
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

}
= −∂P

∂x
+ µ

∂2u
∂y2 , (12)

∂P
∂y

= 0, (13)

ρ

{
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

}
= −∂P

∂z
+ µ

∂2w
∂y2 . (14)

Subsequently, in order to demonstrate the dependence of the fluid inertia terms on the Reynolds
number, the flow equations are normalized by introducing dimensionless parameters as follows:

θ = θ′ − φ = x
R −Ωt, η = y

c , η = y
c , ξ = z

R ,
τ = Ωt, u = u

RΩ , v = v
cΩ , w = w

RΩ ,

F = Fc2

µΩR4 , P = Pc2

R2Ωµ
, H = h

c = 1 + ε cos θ, Re = ρΩc2

µ .
(15)

The dimensionless parameters in Equation (15) are substituted into Equations (11), (12) and (14)
as follows:

∂u
∂θ

+
∂v
∂η

+
∂w
∂ξ

= 0, (16)

Re
{

∂u
∂τ

+ u
∂u
∂θ

+ v
∂u
∂η

+ w
∂u
∂ξ

}
= −∂P

∂θ
+

∂2u
∂η2 , (17)

Re
{

∂w
∂τ

+ u
∂w
∂θ

+ v
∂w
∂η

+ w
∂w
∂ξ

}
= −∂P

∂ξ
+

∂2w
∂η2 . (18)

Additionally, the dimensionless velocity boundary conditions for the lubricant are defined as follows:
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{
u = 0, v = 0, w = 0 η = 0

u = 0, v = ∂H
∂τ , w = 0 η = H

. (19)

Moreover, the boundary conditions for the hydrodynamic pressure in an open ended SFD are
given by:

1. The pressure is periodic and continuous in the circumferential direction (θ), i.e., P(θ, ξ) = P(θ + 2π, ξ)

2. The pressure equals atmospheric pressure at the axial ends of the bearing, i.e., P(θ, L/D) =

P(θ,−L/D) = 0
3. The hydrostatic pressure must be above the liquid cavitation pressure, i.e.,

P ≥ Pcav 0 ≤ θ ≤ 2π,−L/D ≤ ξ ≤ L/D

where Pcav is the saturation pressure of the lubricant or the saturation pressure for release of entrapped
gases, typically ambient pressure.

Subsequently, a small first-order perturbation by means of the expressions for the fluid film
velocity components and the lubricant pressure distribution that are expanded in power series of the
squeeze film Reynolds number is introduced as follows:

u = u0 + Reu1, (20)

v = v0 + Rev1, (21)

w = w0 + Rew1, (22)

P = P0 + ReP1. (23)

The above approximation separates the pressure and the velocity components into a zeroth-order
inertialess term and a first-order inertial correction component. Substituting Equations (20)–(23) into
Equations (16)–(18) and assuming that the inertial expressions in the equations are approximated by
using zeroth-order velocities [10] gives:

∂u0

∂θ
+

∂v0

∂η
+

∂w0

∂ξ
= −Re

[
∂u1

∂θ
+

∂v1

∂η
+

∂w1

∂ξ

]
, (24)

− ∂P0

∂θ
+

∂2u0

∂η2 = Re
[

∂u0

∂τ
+ u

∂u
∂θ

+ v
∂u
∂η

+ w
∂u
∂ξ

+
∂P1

∂θ
− ∂2u1

∂η2

]
, (25)

− ∂P0

∂ξ
+

∂2w0

∂η2 = Re
[

∂w0

∂τ
+ u

∂w
∂θ

+ v
∂w
∂η

+ w
∂w
∂ξ

+
∂P1

∂ξ
− ∂2w1

∂η2

]
. (26)

According to the expressions for the inertialess continuity and momentum transport equations,
the left-hand side of Equations (24)–(26) is equal to zero. Consequently, the following set of zeroth-order
inertialess equations and first-order inertial equations are introduced:

2.1. Zeroth-Order Equations

∂u0

∂θ
+

∂v0

∂η
+

∂w0

∂ξ
= 0, (27)

− ∂P0

∂θ
+

∂2u0

∂η2 = 0, (28)

− ∂P0

∂ξ
+

∂2w0

∂η2 = 0, (29)

with the following velocity boundary conditions:{
u0 = 0, v0 = 0, w0 = 0 η = 0

u0 = 0, v0 = ∂H
∂τ , w0 = 0 η = H

. (30)
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2.2. First-Order Equations

∂u1

∂θ
+

∂v1

∂η
+

∂w1

∂ξ
= 0, (31)

∂u0

∂τ
+ u

∂u
∂θ

+ v
∂u
∂η

+ w
∂u
∂ξ

= −∂P1

∂θ
+

∂2u1

∂η2 , (32)

∂w0

∂τ
+ u

∂w
∂θ

+ v
∂w
∂η

+ w
∂w
∂ξ

= −∂P1

∂ξ
+

∂2w1

∂η2 , (33)

with the following velocity boundary conditions:{
u1 = 0, v1 = 0, w1 = 0 η = 0

u1 = 0, v1 = 0, w1 = 0 η = H
. (34)

The zeroth-order velocity components and pressure distribution are determined by integrating
Equations (27)–(29) in the radial direction and applying the velocity and pressure boundary conditions
as follows [24]:

u(θ, η, ξ) =
1
2

∂P0

∂θ

(
η2 − ηH

)
, (35)

w(θ, η, ξ) =
1
2

∂P0

∂ξ

(
η2 − ηH

)
, (36)

v(θ, η, ξ) = −1
2

[(
∂2P0

∂θ2 +
∂2P0

∂ξ2

)(
η3

3
− H

η2

2

)
− ∂P0

∂θ

∂H
∂θ

η2

2

]
, (37)

∂

∂θ

(
H3 ∂P0

∂θ

)
+

∂

∂ξ

(
H3 ∂P0

∂ξ

)
= 12

∂H
∂τ

, (38)

where Equation (38) is referred to as Reynolds equation [2], which is adopted to determine the
inertialess lubricant pressure field. Furthermore, according to Equation (38):

∂2P0

∂θ2 +
∂2P0

∂ξ2 =
12
H3

∂H
∂τ
− 3

H
∂P0

∂θ

∂H
∂θ

. (39)

Substituting Equation (39) into Equation (37) gives:

v(θ, η, ξ) =
1
2

∂P0

∂θ

∂H
∂θ

(
η3

H
− η2

)
−
(

2η3 − 3η2H
H3

)
∂H
∂τ

. (40)

Subsequently, the inertialess velocity components in Equations (35), (36) and (40) are substituted into
Equations (32) and (33) to determine the first-order velocity profiles. Firstly, according to Equation (32):

∂
∂τ

[
1
2

∂P0
∂θ

(
η2 − ηH

)]
+ 1

2
∂P0
∂θ

(
η2 − ηH

)
∂
∂θ

[
1
2

∂P0
∂θ

(
η2 − ηH

)]
− 1

2

[(
∂2P0
∂θ2 + ∂2P0

∂ξ2

)(
η3

3 − H η2

2

)
− ∂P0

∂θ
∂H
∂θ

η2

2

]
∂

∂η

[
1
2

∂P0
∂θ

(
η2 − ηH

)]
+ 1

2
∂P0
∂ξ

(
η2 − ηH

)
∂

∂ξ

[
1
2

∂P0
∂θ

(
η2 − ηH

)]
= − ∂P1

∂θ + ∂2u1
∂η2 .

(41)

Equation (41) is integrated twice in the radial direction and is solved for the first-order
circumferential velocity component. Furthermore, the integration constants are determined by
applying the velocity boundary conditions in Equation (34), hence:
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u1 =
(

η2−Hη
2

)
∂P1
∂θ −

∂P0
∂θ

∂H
∂τ

(
η6

15H3 −
η5

5H2 +
η4

8H + η3

12 −
3H2η

40

)
+
(

∂P0
∂θ

)2
∂H
∂θ

(
η6

60H −
η5

20 + η4 H
24 −

H4η
120

)
+ ∂2P0

∂τ∂θ

(
η4

24 −
η3 H
12 + H3η

24

)
+
(

∂P0
∂θ

∂2P0
∂θ2 + ∂2P0

∂τ∂ξ
∂P0
∂ξ

)(
η6

120 −
η5 H
40 + η4 H2

48 −
H5η
240

)
.

(42)

Similarly, the axial first-order velocity component is calculated as follows:

w1 =
(

η2−Hη
2

)
∂P1
∂ξ −

∂P0
∂ξ

∂H
∂τ

(
η6

15H3 −
η5

5H2 +
η4

8H + η3

12 −
3H2η

40

)
+ ∂P0

∂θ
∂P0
∂ξ

∂H
∂θ

(
η6

60H −
η5

20 + η4 H
24 −

H4η
120

)
+ ∂2P0

∂τ∂ξ

(
η4

24 −
η3 H
12 + H3η

24

)
+
(

∂P0
∂θ

∂2P0
∂θ2 + ∂2P0

∂τ∂ξ
∂P0
∂ξ

)(
η6

120 −
η5 H
40 + η4 H2

48 −
H5η
240

)
.

(43)

Subsequently, in order to eliminate the radial velocity component, Equation (31) is integrated
along the film thickness and the velocity boundary conditions are applied:

∂

∂θ

 H∫
0

u1dη

+
∂

∂ξ

 H∫
0

w1dη

 = 0, (44)

where, the first-order lubricant flows are defined as [2]:

qi1 =

H∫
0

ui1 dη. (45)

Substituting Equation (44) into Equation (45) gives:

∂qθ1

∂θ
+

∂qξ1

∂ξ
= 0. (46)

Integrating the first-order velocity expressions in Equations (42) and (43) along the film thickness
and substituting into Equation (46) gives:

∂
∂θ

(
H3 ∂P1

∂θ

)
+ ∂

∂ξ

(
H3 ∂P1

∂ξ

)
=

∂
∂θ

{
− 3H7

560
∂
∂θ

[(
∂P0
∂θ

)2
+
(

∂P0
∂ξ

)2
]
− 3H6

140
∂H
∂θ

(
∂P0
∂θ

)2
+ 13H4

70
∂H
∂τ

∂P0
∂θ + ∂2P0

∂τ∂θ

(
H5

10

)}
∂

∂ξ

{
− 3H7

560
∂

∂ξ

[(
∂P0
∂θ

)2
+
(

∂P0
∂ξ

)2
]
− 3H6

140
∂H
∂θ

∂P0
∂θ

∂P0
∂ξ + 13H4

70
∂H
∂τ

∂P0
∂ξ + ∂2P0

∂τ∂ξ

(
H5

10

)}
.

(47)

Equation (47) provides a Reynolds-like expression that characterizes the first-order pressure
distribution. The total fluid film pressure distribution is calculated by using Equation (23).
Additionally, the total fluid film pressure distribution is numerically integrated over the journal surface to
calculate the fluid film reaction forces as follows:[

Fr

Ft

]
=

L/D∫
−L/D

θ2∫
θ1

P(θ, ξ)

[
cos(θ)
sin(θ)

]
dθdξ. (48)

where θ1 to θ2 is the positive range of the pressure distribution. The following section describes a
numerical scheme that determines the zeroth-order and first-order pressure distributions.

3. Numerical Solution

This section describes the procedure to determine the pressure distribution and the fluid film
forces in SFDs by numerically solving Equations (38) and (47). In order to determine the numerical
solution, firstly, a solution domain is defined for the problem. Subsequently, the partial differential
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pressure expressions are discretized over the solution domain by using finite difference approximation.
Finally, an iterative Gauss–Seidel numerical algorithm with successive over-relaxation (SOR) is
developed to calculate the point-wise pressure distribution in the thin film domain.

3.1. Zeroth-Order Pressure Solution

In order to calculate the total fluid film pressure distribution, the zeroth-order pressure distribution
must be first determined. The zeroth-order pressure distribution is characterized by Equation (38).
This equation is expanded and discretized by applying finite difference approximation. The detailed
description of the numerical procedure is provided in Appendix A. The discretized zeroth-order
pressure expression is produced as follows:

P0 i,j =
A4 + [A1 + A2]P0 i−1,j

+ [A2]P0 i+1,j
+ [A3]

(
P0 i,j+1

+ P0 i,j−1

)
[A1 + 2A2 + 2A3]

, (49)

where
A1 = − 3H2

i (ε sin θi)
∆θ ,

A2 = − H3
i

∆θ2 ,

A3 = − H3
i

∆ξ2 ,

A4 = 12ε sin θi.

(50)

In general, Reynolds equation is classified as an elliptical PDE. Assuming that the lubricant
is incompressible and iso-viscous, and the journal center executes CCO whirls, the following
Gauss–Seidel numerical procedure is used to determine the fluid film pressure distribution for a
specified SFD eccentricity ratio:

1. The boundary points are initialized to their prescribed values, and the interior points are adjusted
to zero.

2. Equation (49) is iteratively solved for the interior points.
3. The iteration is only interrupted when the solution error reaches a convergence criterion.
4. Finally, a SOR technique is used to accelerate the convergence of the solution:

P(k)
0i,j

= P(k−1)
0i,j

+ λ
(

P(k)
0i,j
− P(k−1)

0i,j

)
, (51)

where k denotes the iteration number.

3.2. First-Order Pressure Solution

The numerical procedure that is employed to determine the first-order pressure distribution is very
similar to the one that was described for the zeroth-order pressure. The first-order pressure distribution
in the fluid film is characterized by Equation (47). Similarly, this equation is expanded and discretized
by applying finite difference approximation. The detailed representation of the numerical procedure is
provided in Appendix B. The discretized first-order pressure expression is produced as follows:

P1 i,j =

[
A4 + G1i,j + G2i,j

]
+ [A1 + A2]P1i−1,j + [A2]P1i+1,j + [A3]

(
P1i,j+1 + P1i,j−1

)
[A1 + 2A2 + 2A3]

. (52)
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where
G1(θ, ξ) = − 3H6

40
∂H
∂θ

[
∂P0
∂θ

∂2P0
∂θ2 + ∂P0

∂ξ
∂2P0
∂θ∂ξ

]
− 3H7

280

[(
∂2P0
∂θ2

)2
+ ∂P0

∂θ
∂3P0
∂θ3 +

(
∂2P0
∂θ∂ξ

)2
+ ∂P0

∂ξ
∂3P0

∂θ2∂ξ

]
− 9H5

70

(
∂H
∂θ

)2(
∂P0
∂θ

)2
− 3H6

140
∂2 H
∂θ2

(
∂P0
∂θ

)2
− 3H6

70
∂H
∂θ

∂P0
∂θ

∂2P0
∂θ2

+ 26H3

35
∂H
∂θ

∂H
∂τ

∂P0
∂θ + 13H4

70
∂2 H
∂τ∂θ

∂P0
∂θ + 13H4

70
∂H
∂τ

∂2P0
∂θ2

+ ∂3P0
∂τ∂θ2

(
H5

10

)
+ ∂2P0

∂τ∂θ
H4

2
∂H
∂θ ,

(53)

G2(θ, ξ) = − 3H7

280

[(
∂2P0
∂θ∂ξ

)2
+ ∂P0

∂θ
∂3P0

∂θ∂ξ2 +
(

∂2P0
∂ξ2

)2
+ ∂P0

∂ξ
∂3P0
∂ξ3

]
− 3H6

140
∂H
∂θ

∂2P0
∂θ∂ξ

∂P0
∂ξ −

3H6

140
∂H
∂θ

∂P0
∂θ

∂2P0
∂ξ2

+ 13H4

70
∂H
∂τ

∂2P0
∂ξ2 + ∂3P0

∂τ∂ξ2

(
H5

10

)
,

(54)

Subsequently, Equation (52) is iteratively solved by using the numerical procedure that was
described in the previous section. Finally, the total pressure distribution is determined based on
Equation (23) and the fluid film reaction forces are computed by numerically integrating the total
pressure field over the journal surface:[

Fr

Ft

]
=

N

∑
i=1

M

∑
j=1

Pi,j

[
cos(θi)

sin(θi)

]
∆θ∆ξ. (55)

4. Results and Discussion

This section represents the simulation results for the pressure distribution and the fluid film
reaction forces for the proposed hydrodynamic SFD model. The simulation results are provided at
different operating conditions, including eccentricity ratios and Reynolds numbers (i.e., inertia effects).
The numerical algorithm that was developed in the previous section is incorporated into Matlab and
Simulink® to evaluate the effect of SFD operating parameters on the lubricant pressure distribution and
the fluid film reaction forces in SFDs. In order to investigate the contribution of convective inertia on
the SFD dynamics, the results of the simulations are compared against [24], where the effect fluid inertia
is described for SFDs executing small-amplitude CCOs. According to an order of magnitude analysis,
for small amplitude motions of the journal center, convective inertia terms in the flow equations are
negligible relative to unsteady (temporal) inertia terms [6]. However, for large amplitude motions of
the journal center, including the displacement at critical speeds, the effect of convective inertia is no
longer negligible and should be necessarily incorporated into the calculations. Additionally, this work
incorporates a π-film cavitation model to determine the fluid film reaction forces in the SFDs, however, in
order to compare the pressure profiles at different SFD operating conditions, the negative intervals of the
pressure calculations are included in the figures.

Furthermore, the fluid film reaction force components for the complete inertia model (i.e., both
convective inertia and temporal inertia) and the temporal inertia model in [24] are compared with the force
coefficient model developed by Vance [47]. Vance has developed the force coefficients for short-length
open-ended SFDs by using the π-film assumption (i.e., film cavitation region is developed in half the
damper circumference). The force coefficients are represented as follows:

Ctt =
πµD

4(1− ε2)
3
2

(
L
c

)3
, (56)

Crt =
µεD

(1− ε2)
2

(
L
c

)3
, (57)
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Mrr =
πρD

24

(
L3

c

)[
1− 2

(
1− ε2

) 1
2
]

(
1− ε2) 1

2 − 1

ε2(1− ε2)
1
2

, (58)

Mtr = −
27ρD
140ε

(
L3

c

)[
2 +

1
ε

ln
(

1− ε

1 + ε

)]
. (59)

The fluid film reaction force components are calculated based on the force coefficients in
Equations (56)–(59) as follows:

Fr = −(CrtVt + Mrr Ar),
Fr = −(CttVt −Mtr Ar),

(60)

where
Vt = εcΩ,

Ar = −εcΩ2,
(61)

and
Fr = Fr/C f ,
Ft = Ft/C f ,

(62)

where
C f = µΩR4/c2. (63)

Figure 3 represents the effect of fluid inertia on the dimensionless lubricant pressure distribution
at the bearing midplane (ξ = 0) at small eccentricity ratios for Reynolds equation (i.e., no inertia
effect), the temporal inertia model in [24], and the proposed complete inertia model. In general,
the fluid inertia effect causes a significant elevation in the pressure magnitude, a change in the shape
of the pressure profile, and a phase shift of the pressure peak in the direction of the journal precision.
At small Reynolds numbers, the influence of the viscous forces makes the pressure profile closer to a
sinusoid, however, at moderate and large Reynolds numbers the pressure is in phase with the gap
acceleration and transforms into a cosine wave shape. Furthermore, the temporal inertia model and
the complete inertia model shows demonstrate a close agreement at small eccentricity ratios for a small
to moderately large range of inertia effects.Lubricants 2017, 5, 43  14 of 32 
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Figure 4 illustrates the effect of fluid inertia on the dimensionless lubricant pressure distribution at
the bearing midplane (ξ = 0) at moderate eccentricity ratios. At small Reynolds numbers, the temporal
inertia model and the complete inertia model demonstrate a very close agreement. However, by
increasing the effect of fluid inertia (i.e., Reynolds number), the discrepancy between the results of the
two models grows noticeably. At moderately small and moderate Reynolds numbers, the divergence
between the results of the two models is more significant in terms of the pressure magnitude, while
the shape and the phase of the profile is unaffected. However, at moderately large Reynolds numbers,
the effect of convective inertia terms considerably influences the shape of the pressure profile.

Figure 5 demonstrates the effect of fluid inertia on the dimensionless lubricant pressure
distribution at the bearing midplane (ξ = 0) at large eccentricity ratios. For large eccentricity ratios of
the journal center, the effect of convective inertia effects is very significant on the pressure magnitude
even at moderately small Reynolds numbers. Further increasing the effect of fluid inertia results in the
noticeable divergence of the two pressure profiles. The results imply that the effect of convective fluid
inertia is very significant at large eccentricity ratios, including at the resonance frequencies of the rotor
systems incorporating SFDs.

Lubricants 2017, 5, 43  14 of 32 

 

(a) (b)

 
(c) (d)

 
Figure 3. The effect of fluid inertia at small eccentricity ratios on the midplane pressure distribution. 
(a) 1Re = ; (b) 5Re = ; (c) 10Re = ; and (d) 15Re = . 

Figure 4 illustrates the effect of fluid inertia on the dimensionless lubricant pressure 
distribution at the bearing midplane ( 0ξ = ) at moderate eccentricity ratios. At small Reynolds 
numbers, the temporal inertia model and the complete inertia model demonstrate a very close 
agreement. However, by increasing the effect of fluid inertia (i.e., Reynolds number), the 
discrepancy between the results of the two models grows noticeably. At moderately small and 
moderate Reynolds numbers, the divergence between the results of the two models is more 
significant in terms of the pressure magnitude, while the shape and the phase of the profile is 
unaffected. However, at moderately large Reynolds numbers, the effect of convective inertia terms 
considerably influences the shape of the pressure profile. 

Figure 5 demonstrates the effect of fluid inertia on the dimensionless lubricant pressure 
distribution at the bearing midplane ( 0ξ = ) at large eccentricity ratios. For large eccentricity ratios of 
the journal center, the effect of convective inertia effects is very significant on the pressure 
magnitude even at moderately small Reynolds numbers. Further increasing the effect of fluid inertia 
results in the noticeable divergence of the two pressure profiles. The results imply that the effect of 
convective fluid inertia is very significant at large eccentricity ratios, including at the resonance 
frequencies of the rotor systems incorporating SFDs. 

 
(a) (b)

Lubricants 2017, 5, 43  15 of 32 

 

(c) (d)

 
Figure 4. The effect of fluid inertia at moderate eccentricity ratios on the midplane pressure 
distribution. (a) 1Re = ; (b) 5Re = ; (c) 10Re = ; and (d) 15Re = . 

 
(a) (b)

 
(c) (d)

 
Figure 5. The effect of fluid inertia at large eccentricity ratios on the midplane pressure distribution. 
(a) 1Re = ; (b) 5Re = ; (c) 10Re = ; and (d) 15Re = . 

Figure 6 represents the effect of fluid inertia on the SFD fluid film reaction forces at small 
eccentricity ratios for four SFD models, namely no inertia effects, temporal inertia effects, complete 
inertia effects, and the force coefficient model [47]. The fluid forces are calculated by numerically 
integrating the lubricant hydrodynamic pressure distribution over the journal surface. For a π-film 
SFD model at small to moderate inertia effects, the contribution of the inertia forces to the radial 
force component is a positive value. This positive contribution is added to the negative viscous 
radial forces and reduces the magnitude of the radial force component relative to the inertialess 
model, which diminishes the likelihood of bi-stable rotor operation [16]. Furthermore, the 
magnitude of the inertialess radial forces is negative, meaning that the force is directed towards the 
center of the bearing (i.e., inwards). However, introducing the effect of fluid inertia initially changes 
the value of the forces to positive at small eccentricities, demonstrating the outward direction of the 
forces (i.e., outwards). Subsequently, at larger eccentricity ratios, the value of the radial forces 
switches back to negative, meaning that the force direction is once again towards the center of the 

Figure 4. The effect of fluid inertia at moderate eccentricity ratios on the midplane pressure distribution.
(a) Re = 1; (b) Re = 5; (c) Re = 10; and (d) Re = 15.



Lubricants 2017, 5, 43 14 of 29

Lubricants 2017, 5, 43  15 of 32 

 

(c) (d)

 
Figure 4. The effect of fluid inertia at moderate eccentricity ratios on the midplane pressure 
distribution. (a) 1Re = ; (b) 5Re = ; (c) 10Re = ; and (d) 15Re = . 

 
(a) (b)

 
(c) (d)

 
Figure 5. The effect of fluid inertia at large eccentricity ratios on the midplane pressure distribution. 
(a) 1Re = ; (b) 5Re = ; (c) 10Re = ; and (d) 15Re = . 

Figure 6 represents the effect of fluid inertia on the SFD fluid film reaction forces at small 
eccentricity ratios for four SFD models, namely no inertia effects, temporal inertia effects, complete 
inertia effects, and the force coefficient model [47]. The fluid forces are calculated by numerically 
integrating the lubricant hydrodynamic pressure distribution over the journal surface. For a π-film 
SFD model at small to moderate inertia effects, the contribution of the inertia forces to the radial 
force component is a positive value. This positive contribution is added to the negative viscous 
radial forces and reduces the magnitude of the radial force component relative to the inertialess 
model, which diminishes the likelihood of bi-stable rotor operation [16]. Furthermore, the 
magnitude of the inertialess radial forces is negative, meaning that the force is directed towards the 
center of the bearing (i.e., inwards). However, introducing the effect of fluid inertia initially changes 
the value of the forces to positive at small eccentricities, demonstrating the outward direction of the 
forces (i.e., outwards). Subsequently, at larger eccentricity ratios, the value of the radial forces 
switches back to negative, meaning that the force direction is once again towards the center of the 

Figure 5. The effect of fluid inertia at large eccentricity ratios on the midplane pressure distribution. (a)
Re = 1; (b) Re = 5; (c) Re = 10; and (d) Re = 15.

Figure 6 represents the effect of fluid inertia on the SFD fluid film reaction forces at small eccentricity
ratios for four SFD models, namely no inertia effects, temporal inertia effects, complete inertia effects, and
the force coefficient model [47]. The fluid forces are calculated by numerically integrating the lubricant
hydrodynamic pressure distribution over the journal surface. For a π-film SFD model at small to moderate
inertia effects, the contribution of the inertia forces to the radial force component is a positive value.
This positive contribution is added to the negative viscous radial forces and reduces the magnitude of
the radial force component relative to the inertialess model, which diminishes the likelihood of bi-stable
rotor operation [16]. Furthermore, the magnitude of the inertialess radial forces is negative, meaning that
the force is directed towards the center of the bearing (i.e., inwards). However, introducing the effect
of fluid inertia initially changes the value of the forces to positive at small eccentricities, demonstrating
the outward direction of the forces (i.e., outwards). Subsequently, at larger eccentricity ratios, the value
of the radial forces switches back to negative, meaning that the force direction is once again towards
the center of the bearing. Moreover, the contribution of the inertial forces to the tangential fluid film
reaction forces is a negative value, and is added to the already negative purely viscous tangential forces,
thus increasing the total magnitude of the tangential forces. Furthermore, the comparison between the
temporal inertia model and the complete inertia model shows that at small Reynolds numbers the results
of the two models are in a close agreement. At moderately small inertia effects, the discrepancy between
the results of the two models is noticeable. At small eccentricity ratios, the radial forces suggested by the
two models are in close agreement, however, increasing the eccentricity ratio leads to the divergence of
the force calculations. The discrepancy between the force calculations is much more significant for the
tangential force components, demonstrating the substantial influence of convective inertia effects on the
SFD tangential forces. Further increasing the Reynolds numbers results in a more significant discrepancy
between the radial force calculations at large eccentricity ratios and the tangential forces.

Additionally, the results of the complete inertia model and the force coefficient model are in close
agreement for small to moderate Reynolds numbers. Increasing the Reynolds number leads to the
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divergence of the force calculations, since it is suggested that the force coefficient model is mostly
accurate at small to moderate inertia effects. Furthermore, the force coefficient model is derived by
incorporating the short bearing approximation, which reduces the accuracy of the calculations at
moderate and large eccentricity ratios.
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Subsequently, the proposed SFD model is incorporated into a multi-mass flexible rotor model
to study the effect of SFD inertia forces on the steady-state mass unbalance induced vibrations and
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the transient orbits of the rotor system. The details of the proposed rotordynamics model is given
in [48]. The rotor model is discretized by using finite element analysis (FEA) into Timoshenko
beam elements [49] and the element mass matrix, stiffness matrix, and gyroscopic effects matrix are
defined and assembled to provide a global rotor system model. Furthermore, the proposed nonlinear
cavitated SFD model with centering springs, including lubricant inertia effects, is incorporated into
the rotordynamic model. Finally, a predictor–corrector transient modal integration technique is
implemented to determine the transient and the steady-state unbalance response of the rotor system at
different operating conditions.

The main components of a conventional rotor system include the shaft, the disk, the mass
unbalance, the rolling elements, the SFDs, and the retaining springs. This work applies finite element
analysis [50] to determine the vibration amplitudes in the rotor system. In order to apply FEA to
the rotor system, firstly, the structure is discretized into subdivisions of simple geometry that are
referred to by elements. Subsequently, the elastic, inertia, damping, and external forces and moments
on each element (local forces) are expressed in terms of the local coordinates (i.e., translations and
rotations). Furthermore, the forces and the moments from every element are assembled together to
produce the global forces in terms of the generalized coordinates. Finally, the discretized equation
of motion is solved by using numerical techniques. In a rotor system, the shaft is discretized into
several beam elements with nodes at both ends of each element. The disks and the bearings are
assumed to be attached to the shaft at these nodes. In this work, the rotor vibrations in the lateral
and transverse directions are considered. Consequently, each node has four generalized coordinates,
including transverse displacements in the x and y directions as well as rotations about x-axis and
y-axis. The properties of a rigid disk are determined by using Lagrange’s energy method. It is assumed
that the disk strain energy is negligible with respect to the disk kinetic energy. Subsequently, the
kinetic energy of the disk due to translation and rotation are calculated, and Lagrange’s energy method
is applied to the energy equation to determine the element mass matrix and element gyroscopic
matrix for the disk. The shaft contributes mass, stiffness, and gyroscopic effect to the rotor model.
Similarly, the stiffness, inertia, and gyroscopic element matrices for the shaft are determined by using
Lagrange’s energy method. The element matrices are derived for either the Bernoulli beam model or
the Timoshenko beam model (includes both rotary inertia and shear effects). In order to determine the
element matrices, firstly, the displacement along the shaft element is approximated by using shape
functions. Subsequently, expressions for the kinetic energy and the strain energy are used to determine
the element matrices. The strain energy of the shaft is calculated to approximate the element stiffness
matrix. The kinetic energy due to the translation of the shaft gives the inertia element matrix and the
kinetic energy due to the rotational motion of the shaft gives the gyroscopic effect matrix. The bearing
element includes the stiffness and the damping contribution from the rolling elements as well as the
stiffness contribution from the retaining springs in the SFDs. The bearings are flexible and absorb
energy. It is assumed that the rotor is symmetric, and a disk is located at the axial center of the rotor.
Furthermore, the rotor is supported with SFDs at either axial end. The SFDs are assembled on the
outer race of two identical rolling elements that the rotor is assembled on. Moreover, the unbalance
forces are present only on the centered disk. The equation of motion (EOM) of the rotor system is
determined either by using the Lagrange’s energy method. For a conventional rotor system, the EOM
is constructed as follows:

[M]
{ ..

q
}
+ ([C] + Ω[G])

{ .
q
}
+ [K]{q} = {F(t)}, (64)

where q is a vector that contains the translations and the rotations at the nodes. The element matrices
are 8-by-8 for stiffness, gyroscopic effect, and inertia. The effect of bearings, SFDs, and disks are directly
incorporated into the corresponding nodes. Furthermore, the global mass, stiffness, and gyroscopic
effect matrices are constructed by transforming the local element matrices into global coordinates and
assembling the matrices together.
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The transient response of the rotor system is determined to evaluate the effect of time variant
nonlinear components (i.e., SFDs) on the performance of the rotor system. The most common and
inclusive method for computing transient forced vibrations in rotor systems is the transient numerical
integration approach. In the transient integration technique, the rotor system degrees of freedom
are marched forward in time through a force balance at every time step. This technique allows any
nonlinear elements (i.e., SFD forces) to be included directly as long as the forces can be represented as a
function of position and velocity. Furthermore, transient modal integration is a powerful technique to
determine the transient solution for dynamic systems with large number of degrees of freedom [51,52].
This technique is appealing since it facilitates the elimination of higher frequency modes with little
impact on the system dynamics, which yields to significantly lower number of degrees of freedom
compared to the direct integration method. Transformation of the rotor equation of motion into modal
coordinates gives:{ ..

p(t)
}
+
[
ω2
]
{p(t)} = [Mr]

−1[φ]T{F(t)} − [Mr]
−1[φ]T

([C] + Ω[G])
[
φ
]
{p(t)}, (65)

where the model transformation is given by:

{q(x, t)} =
[
φ(x)

]
{p(t)}, (66)

and the modal mass and the modal stiffness matrices are given as follows:

[Mr] =
[
φ
]T
[M]

[
φ
]
, (67)

[Kr] =
[
φ
]T
[K]
[
φ
]
, (68)

and F(t) is the sum of the external forces, including the unbalance forces and the SFD fluid film reaction
forces. Assuming that the unbalance mass is attached to the disk, the unbalance force in the rotor is
determined as:

Funb(t) = <
(

Ω2F0ejΩt
)

, (69)

where Ω2F0 is the vector of forces and moments acting at the ith node due to a disk with an unbalance,
where F0 is given as follows:

F0 =


munb,iσejδ

−jmunb,iσejδ

j
(

Id,i − Ip,i
)
ψejγ(

Id,i − Ip,i
)
ψejγ

. (70)

Assuming that no other unbalance forces are applied to the rotor system, the rest of the force
vector entities are zero. Furthermore, the fluid film reaction forces are calculated by Equation (55).
Subsequently, a transformation is applied to calculate the SFD forces in the fixed inertial coordinate
(i.e., {X,Y}) as follows:

KSFD,eq = Fr/(εc),
CSFD,eq = Ft/(Ωεc),

(71)

and
FX = KSFD,eq · X + CSFD,eq ·

.
X,

FY = KSFD,eq ·Y + CSFD,eq ·
.

Y.
(72)

Additionally, a numerical procedure integrating a predictor–corrector technique is incorporated
into the simulation model to determine the rotor vibration amplitudes at different frequencies. In this
study, the predictor uses backward finite difference method and the corrector uses Newmark–Beta
method. The proposed transient modal integration algorithm is represented in Figure 7.
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In the simulations, it is assumed that the unbalance forces are present only on the centered disk.
Additionally, the rotor shaft is discretized into 20 elements. Table 1 summarizes the rotor and SFD
parameters. A schematic diagram of the rotor in the simulations is demonstrated in Figure 8.

Table 1. The rotor system parameters.

Parameter Value Unit

c11, c22 175.1268 N·s/m
c12, c21 0 N·s/m

c/R 0.00242
Dout, Din 0.0603 and 0.0413 m

Dd,out,
Dd,in

0.2032 and 0.0603 m

D 0.1047 m
Ee 2.11 × 1011 pa

Gshear,e 8.1783 × 1010 pa
k11, k22 8.7563 × 106 N/m
k12, k21 0 N/m
Lshaft 0.5994 m
L/D 0.325

munbσ 3.6004 × 10−4, 1.4402 × 10−4, 7.2008 × 10−5 kg·m
Wd 0.0508 m
α, β 0.5 and 0.25

µ 0.0051 at 100 ◦C Pa·s
ρe 7810 kg/m3

ρd 7810 kg/m3

ρ 1003.5 kg/m3

υe 0.29
Ω 100 to 15,000 rpm
∆t 10−5 s
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Figure 9 represents the effect of SFD viscous forces (i.e., neglecting inertia effect) on the steady-state
vibration amplitudes of the rotor system at the disk node for the SFD radial clearance of 1.27 × 10−4, at
the lubricant temperature of 100 ◦C, and for the three different unbalance magnitudes in Table 1. Firstly,
the steady-state vibration amplitudes increase with the unbalance magnitude. Furthermore, even for
the case where the effect of fluid inertia is neglected, the steady-state vibrations of the disk center is
significantly attenuated at the first resonance frequency (i.e., the first bending mode) by incorporating
the SFDs into the rotor system.
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Figure 9. The effect of SFD on the steady-state vibration amplitudes of the rotor system. (a) Unbalance
magnitude 7.2008 × 10−5; (b) Unbalance magnitude 1.4402 × 10−4; and (c) Unbalance Magnitude
3.6004 × 10−4.

Figure 10 represents the effect of fluid inertia on the steady-state vibration amplitudes of the rotor
system at the disk node for two different cases, namely: (1) Viscous SFD model (i.e., no inertia effects)
and (2) complete fluid inertia effects. The results are represented at lubricant temperature of 100 ◦C and
for the 3 unbalance magnitudes in Table 1. In general, the fluid inertia effects considerably attenuate
the steady-state vibrations at the resonance zone and at large rotor velocities. At small to moderate
rotor speeds, the squeeze Reynolds number is relatively small, and the effect of fluid inertia is negligible,
consequently, the steady-state vibrations for the two cases is very similar. At the first resonance zone
(i.e., first bending mode), the squeeze Reynolds number is moderately large, and the effect of fluid inertia
is significant. Additionally, the vibration amplitudes at the resonance frequency zone are noticeably
larger, resulting in larger SFD eccentricity ratios. Consequently, at the first resonance zone, the inertial
correction component is large and the discrepancy between the results of the two models is noticeable,
demonstrating the influence of fluid inertias effects on the suppression of the unbalance induced vibration
amplitudes. At the post resonance zone, the rotor speeds are large, which results in the elevation of the
Reynolds number and the inertia effects, hence, the inertia correction term remains significant and leads
to the reduction of the steady-state vibration amplitudes relative to the no inertia model. Finally, the effect
of fluid inertia leads to a shift in the first resonance frequency from 8250 rpm to approximately 8000 rpm.
In general, the effect of SFD fluid inertia is represented by and added mass, which is supplemented into
the overall rotordynamic system mass, which in turn reduces the first resonance frequency of the system.
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Figure 10. The effect of SFD lubricant inertia on the steady-state vibration amplitudes of the rotor system.
(a) Unbalance magnitude 7.2008 × 10−5; (b) Unbalance magnitude 1.4402 × 10−4; and (c) Unbalance
Magnitude 3.6004 × 10−4.

Figure 11 represents the transient orbits of the SFD journal center at the 0.00242 radial clearance ratio
and at 0.00036004 kg-m unbalance force at different rotor speeds for three different configurations: (1) No
SFD; (2) Viscous SFD model (i.e., no inertia effects); (3) Complete inertia model. At small rotor speeds
(1000 rpm and 5000 rpm), the squeeze Reynolds number is relatively small and the results for the three
SFD configurations are in close agreement. Furthermore, including the SFD effect significantly accelerates
the convergence of the orbits to the steady-state value. At the resonance zone (7310 rpm and 8250 rpm) the
squeeze Reynolds number and the orbit radius are relatively larger, and the inertia models demonstrate
both significantly faster convergence and smaller orbit radius. At larger rotor speeds (10,000 rpm and
12,500 rpm) the squeeze Reynolds number is moderately large while the orbit radius rapidly declines
relative to the resonance zone.
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5. Conclusions

This work represented expressions for the hydrodynamic pressure distribution and the lubricant
velocity profiles, including fluid inertia effects, for finite-length open-ended squeeze film dampers
incorporated into high-speed turbomachinery. The proposed pressure model provides very close agreement
compared to the existing pressure models, including limiting geometry models. Moreover, a numerical
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procedure is proposed to solve the model for point-wise pressure distribution, which is significantly
more computationally efficient relative to the bulk-flow technique. Finally, the numerical pressure field is
numerically integrated over the journal surface to determine the fluid film reaction forces.

The analysis of the pressure model confirms the significant contribution of the fluid inertia to the
dynamics of the lubricant. According to the results:

1. Including the inertia effects increases the pressure magnitude, shifts the position of the pressure
peak in the direction of the journal precision, and changes the shape of the pressure profile.
The shape of the pressure is sinusoidal at small Reynolds numbers, while at moderate and large
Reynolds numbers the pressure is in phase with the gap acceleration and transforms into a cosine
wave shape.

2. At small to moderate Reynolds numbers, the fluid inertia effect reduces the magnitude of
the radial force component relative to the inertialess model, which diminishes the likelihood
of bi-stable rotor operation. Furthermore, the direction of the radial forces initially changes to
outwards at small eccentricity ratios, however, the direction switches back to inwards at moderate
to large eccentricity ratios.

3. The fluid inertia effect increases the magnitude of the tangential reaction forces; however, the
direction of the forces remains unaffected.

Subsequently, the proposed SFD model was incorporated into a multi-mass flexible rotor model
and the effect of SFD characteristics on the steady-state unbalance induced vibrations and the transient
orbits of the rotor was investigated. According to the results of the simulations, the SFD lubricant inertia
effects significantly attenuates the steady-state vibration amplitudes of the rotor system relative to the
viscous SFD model (i.e., no inertia) at the resonance zone and at large rotor speeds. However, at small
rotor speeds where the squeeze Reynolds number is small, the two models are in close agreement.
Furthermore, the effect of lubricant inertia reduces the first resonance frequency of the rotor system.
Increasing the fluid inertia effects further shifts the first resonance to lower frequencies.

The results of this work are especially valuable to the high-speed turbomachinery industry (i.e., jet
engines and gas turbines) since it provides a method to quickly and accurately review damper designs
and provide results as inputs to the system engineering team during the conceptual design phase of
an engine/turbine. This could lead to significant development cost reduction through reduced system
design iteration. Furthermore, the damper model is effectively integrated into the rotordynamic model
of the complete system, providing a very powerful simulation tool to accurately predict the system
vibrations during the development phase.
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Nomenclature

Symbol Quantity
Ae Shaft element cross section area (m2)
Ar Radial acceleration of the journal center (m/s2)
cij, kij Squirrel cage stiffness and damping components (N·s/m, N/m)
c SFD radial clearance (m)
C, G, K, M Assembled rotor system inertia, bearing damping, gyroscopic effect, and stiffness matrices
Cf Force conversion coefficient
Cij, Mij SFD damping and mass coefficients (N·s/m, kg)
Dout, Din Shaft inner and outer diameter (m)
Dd,out, Dd,in Disk element inner and outer diameter (m)
D, R SFD journal diameter/radius (m)
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e SFD eccentricity (m)
Ee Shaft element Young’s modulus (pa)
F(t) External force (N)
F0 Unbalance magnitude (kg-m)
Fr Radial fluid film reaction force (N)
Ft Tangential fluid film reaction force (N)
Funb Unbalance Force (N)
Gshear,e Shaft element shear modulus (pa)
h Fluid film thickness (m)
H Dimensionless fluid film thickness
Kr, Mr Modal stiffness and model mass matrices (N/m, kg)
L SFD journal length (m)
Lshaft Shaft length (m)
munb Unbalance mass (kg)
p Vector of modal coordinates
P Fluid pressure (pa)
Pcav Cavitation pressure (pa)
q Vector of independent coordinates (m)
Re Squeeze Reynolds number
t Time (s)
u,v,w Fluid film velocity components (m/s)
V Lubricant velocity vector (m/s)
Vt Lubricant tangential velocity component (m/s)
Wd Disk element width (m)
x,y,z The components of the SFD fixed coordinate system
X,Y The components of the SFD fixed inertial coordinate system
x′,y′,z′ The components of the SFD translational coordinate system
P Dimensionless fluid pressure
P0 Dimensionless inertialess pressure
P1 Dimensionless first-order pressure
F Dimensionless fluid reaction forces
Fr,Ft Dimensionless fluid film reaction force components
FX ,FY Dimensionless fluid film reaction force components
qθ1 , qξ1 Dimensionless flow rates
u, v, w Dimensionless fluid velocity components
u0, v0, w0 Dimensionless inertialess velocity component
u1, v1, w1 Dimensionless first-order velocity component
α, β Newmark–beta solver parameters
δ, γ Unbalance force and moment phase (rad)
ε = e/c Eccentricity ratio
η Dimensionless SFD radial component
θ Dimensionless SFD circumferential component (rad)
λ Relaxation parameter
µ Fluid dynamic viscosity (Pa− s)
ξ Dimensionless SFD axial component
ρ Fluid density (kg/m3)
ρe Shaft element density (kg/m3)
ρd Disk element density (kg/m3)
σ, ψ Unbalance force and moment eccentricity (m)
υe Shaft element Poisson ratio
φ Attitude angle
τ Dimensionless time parameter
ω Vector of resonance frequencies
ωi ith natural frequency of the rotor system (Hz)
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Ω Rotor angular velocity (rad/s)
∆t Time step (s)
φ Mode shapes
θ′ Dimensionless SFD fixed circumferential component (rad)

Appendix A. Zeroth-Order Pressure Expression Discretization

Equation (38) is first expanded to facilitate the discretization of the equation terms:[
3H2 ∂H

∂θ

∂P0
∂θ

+ H3 ∂2P0

∂θ2

]
+ H3 ∂2P0

∂ξ2 = 12
∂H
∂τ

. (A1)

The partial derivatives of the fluid film thickness H are given as follows:

∂H
∂θ = −ε sin(θ),
∂H
∂τ

.
ε cos(θ) + ε sin(θ).

(A2)

Assuming that the SFD executes CCOs, the radial velocity and acceleration of the journal center become
zero and:

∂H
∂τ

= ε sin(θ), (A3)

∂H
∂θ

= −ε sin(θ). (A4)

Substituting Equations (A3) and (A4) into Equation (A1) gives:[
−3εH2 sin(θ)

∂P0
∂θ

+ H3 ∂2P0

∂θ2

]
+ H3 ∂2P0

∂ξ2 = 12ε sin(θ). (A5)

Subsequently, the above equation is discretized based on a finite difference approximation (FDA) technique
that uses backward difference approximation for the first order derivative terms and central difference
approximation for the second order derivative terms:

∂P
∂θ

=
P(θ, ξ)− P(θ − ∆θ, ξ)

∆θ
=

Pi,j − Pi−1,j

∆θ
, (A6)

∂P
∂ξ

=
P(θ, ξ)− P(θ, ξ − ∆ξ)

∆ξ
=

Pi,j − Pi,j−1

∆ξ
, (A7)

∂2P
∂θ2 =

P(θ + ∆θ, ξ)− 2P(θ, ξ) + P(θ − ∆θ, ξ)

∆θ2 =
Pi+1,j − 2Pi,j + Pi−1,j

∆θ2 , (A8)

∂2P
∂ξ2 =

P(θ, ξ + ∆ξ)− 2P(θ, ξ) + P(θ, ξ − ∆ξ)

∆ξ2 =
Pi,j+1 − 2Pi,j + Pi,j−1

∆ξ2 . (A9)

Substituting Equations (A6)–(A9) into Equation (A5) gives the discretized Reynolds equation:[
−3εH2

i sin(θi)
P0 i,j
−P0 i−1,j
∆θ + H3

i
P0 i+1,j

−2P0 i,j
+P0 i−1,j

∆θ2

]
+H3

i
P0 i,j+1

−2P0 i,j
+P0 i,j−1

∆ξ2 = 12ε sin(θi).
(A10)

The above Equation is rearranged as following to solve for the point-wise pressure field:

P0 i,j =
A4 + [A1 + A2]P0 i−1,j

+ [A2]P0 i+1,j
+ [A3]

(
P0 i,j+1

+ P0 i,j−1

)
[A1 + 2A2 + 2A3]

, (A11)

where
A1 = − 3H2

i (ε sin θi)
∆θ ,

A2 = − H3
i

∆θ2 ,

A3 = − H3
i

∆ξ2 ,

A4 = 12ε sin θi.

(A12)
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Appendix B. First-Order Pressure Expression Discretization

Equation (47) is first expanded to facilitate the discretization of the differential terms:

H3 ∂2P1
∂θ2 + 3H2 ∂H

∂θ

∂P1
∂θ

+ H3 ∂2P1
∂ξ2 = 12

∂H
∂τ

+ G1(θ, ξ) + G2(θ, ξ), (A13)

G1(θ, ξ) = − 3H6

40
∂H
∂θ

[
∂P0
∂θ

∂2P0
∂θ2 + ∂P0

∂ξ
∂2P0
∂θ∂ξ

]
− 3H7

280

[(
∂2P0
∂θ2

)2
+ ∂P0

∂θ
∂3P0
∂θ3 +

(
∂2P0
∂θ∂ξ

)2
+ ∂P0

∂ξ
∂3P0

∂θ2∂ξ

]
− 9H5

70

(
∂H
∂θ

)2(
∂P0
∂θ

)2
− 3H6

140
∂2 H
∂θ2

(
∂P0
∂θ

)2
− 3H6

70
∂H
∂θ

∂P0
∂θ

∂2P0
∂θ2

+ 26H3

35
∂H
∂θ

∂H
∂τ

∂P0
∂θ + 13H4

70
∂2 H
∂τ∂θ

∂P0
∂θ + 13H4

70
∂H
∂τ

∂2P0
∂θ2

+ ∂3P0
∂τ∂θ2

(
H5

10

)
+ ∂2P0

∂τ∂θ
H4

2
∂H
∂θ ,

(A14)

G2(θ, ξ) = − 3H7

280

[(
∂2P0
∂θ∂ξ

)2
+ ∂P0

∂θ
∂3P0

∂θ∂ξ2 +
(

∂2P0
∂ξ2

)2
+ ∂P0

∂ξ
∂3P0
∂ξ3

]
− 3H6

140
∂H
∂θ

∂2P0
∂θ∂ξ

∂P0
∂ξ −

3H6

140
∂H
∂θ

∂P0
∂θ

∂2P0
∂ξ2

+ 13H4

70
∂H
∂τ

∂2P0
∂ξ2 + ∂3P0

∂τ∂ξ2

(
H5

10

)
,

(A15)

where according to the chain rule:
∂

∂τ
=

∂

∂θ

∂θ

∂τ
= − ∂

∂θ
. (A16)

Equations (A13)–(A15) are discretized by using Equations (A6)–(A9) along with the higher-order and
mixed-derivative finite differences as follows:

∂3P
∂θ3 = P(θ+2∆θ,ξ)−2P(θ+∆θ,ξ)+2P(θ−∆θ,ξ)−P(θ−2∆θ,ξ)

2∆θ3

=
Pi+2,j−2Pi+1,j+2Pi−1,j−Pi−2,j

2∆θ3 ,
(A17)

∂3P
∂ξ3 = P(θ,ξ+2∆ξ)−2P(θ,ξ+∆ξ)+2P(θ,ξ−∆ξ)−P(θ,ξ−2∆ξ)

2∆ξ3

=
Pi,j+2−2Pi,j+1−2Pi,j−1−Pi,j−2

2∆ξ3 ,
(A18)

∂2P
∂θ∂ξ = P(θ,ξ)−P(θ−∆θ,ξ)−P(θ,ξ−∆ξ)+P(θ−∆θ,ξ−∆ξ)

∆θ∆ξ

=
Pi,j−Pi−1,j−Pi,j−1+Pi−1,j−1

∆θ∆ξ ,
(A19)

∂2P
∂θ∂ξ2 = P(θ,ξ+∆ξ)−2P(θ,ξ)+P(θ,ξ−∆ξ)

∆θ∆ξ2

+−P(θ−∆θ,ξ+∆ξ)+2P(θ−∆θ,ξ)−P(θ−∆θ,ξ−∆ξ)
∆θ∆ξ2

=
Pi,j+1−2Pi,j+Pi,j−1−Pi−1,j+1+2Pi−1,j−Pi−1,j−1

∆θ∆ξ2 ,

(A20)

∂2P
∂θ2∂ξ

= P(θ+∆θ,ξ)−2P(θ,ξ)+P(θ−∆θ,ξ)
∆θ2∆ξ

+−P(θ+∆θ,ξ−∆ξ)+2P(θ,ξ−∆ξ)−P(θ−∆θ,ξ−∆ξ)
∆θ2∆ξ

=
Pi+1,j−2Pi,j+Pi−1,j−Pi+1,j−1+2Pi,j−1−Pi−1,j−1

∆θ2∆ξ
,

(A21)

and the partial derivatives of the fluid film thickness for CCO in Equations (A3) and (A4) are substituted into the
equations:

H3
i

P1 i+1,j−2P1i,j+P1i−1,j

∆θ2 − 3H2
i ε sin(θi)

P1i,j−P1i−1,j
∆θ

+H3
i

P1i,j+1−2P1i,j+P1i,j−1

∆ξ2 = 12ε sin(θi) + G1i,j + G2i,j ,
(A22)

hence

P1 i,j =

[
A4 + G1i,j + G2i,j

]
+ [A1 + A2]P1i−1,j + [A2]P1i+1,j + [A3]

(
P1i,j+1 + P1i,j−1

)
[A1 + 2A2 + 2A3]

. (A23)
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